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Abstract 

Artificial neural networks have seen an outburst of interest in past decade. 
There has been an increasing use of ANNs in prediction based studies owing 
to their huge performance accuracy. They have been successfully applied 
across various domains like medicine, geology, finance, physics, engineering 
etc. The system of neural nets witnesses rise in complexity with increase in 
number of layers and number of neurons and possesses the capacity to solve 
intricate problems. The researchers, world over, consider the neural network 
with three layers (input, hidden and output) a universal approximator of 
functions as it has given outstanding results in data validation, price fore-
casting, sales forecasting, customer research etc. over the years. In most of the 
previous studies, either a standard ANN model has been taken or a default 
model has been tested using various softwares. But as we understand, a lot of 
hit and trial should be done by altering the hyperparameters to get the best 
performance model. In our study we attempt to prove the same point and try 
to find the best model for our data set wherein we predict the BSE sensex 
closing price of the next day using previous day data (high price, low price, 
open price, close price and trade volume). We use deep neural networks with 
backpropagation and have altered the hyperparameters: number of nodes in 
hidden layers, the activation function of hidden layers, Number of epochs, the 
batch size and hence the iterations in each epoch. The model performance 
was measured with the help of root mean square error on test set of the mod-
el. We are able to bring out the differences of tuning of hyperparameter and 
ultimately find the best predictor model for BSE sensex close value. 
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1. Introduction 

Of late, neural networks have been very popular in the prediction based studies. 
They have been successful across various domain areas like medicine, geology, 
finance, physics, engineering etc. The system of neural nets becomes more com-
plex with increasing number of neurons and hidden layers. But at the same time, 
these complex models also enhance the prediction ability of complex problems 
which are otherwise difficult or unsatisfactory. Till now, a three layered neural 
network has been christened to be a universal approximator of functions and has 
been used successfully in data validation, price forecasting, sales forecasting, 
customer research etc. Neural networks are a relatively new concept that has 
emerged from the field of Artificial intelligence and is now getting used univer-
sally in almost all fields owing to their high performance rates.  

One of the decade-long paradox in finance and investment is the “prediction 
of stock market” and that too with full accuracy. There have been a lot of propo-
sitions by various renowned researchers on this topic and a lot of models with 
various combinations of theories have been introduced, yet the puzzle stands. 
No model has been found to be fully accurate and reliability of models has been 
a big concern. Sometimes it has been seen that researchers got satisfied with the 
model that gave a good result and failed to test alternatives, which if considered 
could have given better results. This was the biggest gap that we found in pre-
vious literature/research. Thus in our study, we try to propose machine learning 
models with varied alternatives and test them. The effect of change of hyperpa-
rameters on the model can drastically affect the model performance. We could 
not trace any significant previous literature on hyperparameter testing and this 
itself speaks for the uniqueness of our work. By the end of the study, we were 
able to conclude the best model with high predictability and very less error. This 
model if used by investors to predict the future sensex closing value, can help 
them make good profits or at least prevent the losses from unanticipated rupee 
depreciation.  

1.1. Deep Neural Networks 

Feed forward neural networks are the simplest and the basic types of artificial 
neural networks. Here the connections between nodes do not form a cycle, ra-
ther, the information travels only in one direction which is forward from input 
layer to the output layer. A single layer perceptron uses step function as activa-
tion function and uses delta rule for training of neurons. Its drawback is that it 
cannot learn a XOR function. But an improvement of it, called the multilayer 
perceptron (MLP) is capable of processing XOR function and computing a con-
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tinuous output. Here the activation function is commonly logistic function (also 
known as a sigmoid function).  

( ) ( )
1

1 x
f x

e−
=

+
 

Since the sigmoid function has a continuous derivative, it allows backpropa-
gation in multilayer perceptrons.  

( ) ( ) ( )( )1f x f x f x′ = −  

Multilayer perceptron is in fact capable of producing any possible Boolean 
function. It also satisfies the universal approximation theorem. Thus we also use 
it in our research. When there are multiple hidden layers, it is called a Deep 
neural network. More layers mean more processing time but sometimes better 
results. Large data sets can be churned with efficiency using Deep neural net-
works (Figure 1).  

1.2. Back Propagation 

It is a popular method which helps in training of neural networks. Backpropaga-
tion optimizes the weights in multiple back passes and helps the network of 
neurons to correctly map the given inputs to their outputs. For illustration let’s 
consider a neural network with one input layer, one hidden layer and one output 
layer. Here we are talking of supervised learning, and therefore have the data of 
inputs and their target outputs with us. The whole process starts with forward 
feeding of input/output data to the neural network input layer. As the input passes 
 

 
Figure 1. Structure of a deep neural network. (Source: Researcher’s own work) 
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through the hidden layer, it gets crushed with the activation function of the 
layer. The compressed output of the hidden layer passes as input into the output 
layer. Here it gets crushed by the activation function of this layer. The output of 
this crushing gives the output of the forward pass of inputs through the select 
neural network. This output is compared to the target output that we want. De-
pending on the difference between the two, the error is backpassed through the 
network, starting from the output layer. The weights in the network are updated, 
so that the output from the neural network gets closer to the target output. The 
delta rule is used for error backpropagation.  

For a neuron “i”, with activation function f(x), the delta rule (gradient des-
cent) for i’s jth weight wij is given as follows 

( ) ( )ij i i i jw l t y f h x′∆ = −  

where l is learning rate 
f(x) is the activation function of neuron “I” in question 

it  is the target output 

iy  is the produced output 

jx  is the jth input 

ih  is the weighted sum of neuron’s inputs 
Once the error reaches the input layer, the weights of the network have got 

updated. The output from the network is then again compared to the target 
output. This process goes on till the error is decreased substantially. There can 
be various ways to terminate training of the network e.g. when the learning rate 
decreases beyond a predefined limit, or after a predefined number of epochs, or 
when the relative change in training error falls a defined limit etc.  

Different termination ways of the training algorithm and different settings of 
hyperparameters can give different results differing in accuracy and efficiency.  

1.3. Hyperparameter 

A hyperparameter is a special class of parameter whose value we set before the 
beginning of learning process. The value of other parameters is otherwise de-
rived from training. 

1.4. Activation Functions 

Different activation functions can be used in deep neural networks. Different ac-
tivation functions can be used in different layers (i.e. in hidden layers and output 
layers). 

Unipolar logistic function 

( )  

1
1 l xf x

e−=
+

 

This function gives the output between 0 and 1. 
Bipolar logistic function 

( )  
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This function gives the output between −1 and 1. 
Hyperbolic Tangent function 

( )
  

  

l x l x

l x l x

e ef x
e e

−

−

−
=

+
 

This function gives the output between −1 and 1. 
Radial basis function 

( )
( )2 221

2

xef x
µ σ

σπ

− −

=  

This function gives the output between 0 and 1
2σ π

. 

In the algorithm that we used to train our neural networks, we set aside 20% 
data set for crossvalidation step to measure the error of each iteration and help 
in gradient descent of error. Test error and the training errors are calculated 
separately in each constructed neural network.  

We calculate SSE i.e. sum of square error and RE i.e. relative error for both 
sets. SSE gives an indication of the RMSE (root mean square error) which is by 
far the most reliable method to measure performance of a neural network. The 
lesser the error, the better the network.  

This research paper has been organized in sections, where Section 1 introduces 
the title and the subject under consideration in this research, Section 2 talks 
about previous works done in the similar areas, the need for the study and the 
research gap are explained in Section 3 under research objectives. Section 4 gives 
a detailed structure of methodology used in this research followed by Section 5, 
which explains all the different models with the variations of hyperparameters 
and the results of all these variations. At the end of Section 5, the best fit model 
for our research BSE Sensex is described. Finally, Section 6 concludes the paper. 

2. Literature Review 

Some noteworthy researches in the area of financial modelling using machine 
learning have been done over past few decades. Few of them are worth men-
tioning. A pioneering work was done by Kimoto et al. [1] wherein they applied 
modular neural networks to the price indices data of Tokyo stock exchange and 
developed a prediction system for best time of stock buying and selling and 
achieved accurate predictions. The simulation showed excellent profits. The re-
search done by Ghiassi and Saidane [2] was commendable since they designed a 
new model of ANN where in they used the entire data set simulataneously for 
model parameter estimation. The model was appraised using marketing data set 
and compared it with traditional feed forward methods. The new model was 
found to perform better. Ghiassi et al. [3] compared the traditional iterative back 
propagation feed forward method of time series forecasting with the dynamic 
model of neural network and established the supremacy of the latter method. 
One of the highly acclaimed research was performed by Chang et al. [4]. They 
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developed an integrated system for stock forecasting in which neural network, 
case based reasoning and dynamic time windows were combined. The predic-
tion of sell/buy deciding points was found to be better than with any of the three 
methods used alone. Hamzacebi et al. [5] compared two methods (direct and 
iterative) of artificial neural network for time series forecasting. In iterative me-
thod one period value is forecasted from the past period one, and then this value 
is used to predict the next period value. In the direct method all the values of 
successive periods can be predicted in one go. The researchers compared the two 
methods using grey relational analysis and found that direct method was better 
than the iterative method. An innovative empirical study was attempted by 
Cheng et al. [6] wherein they used fundamental and technical analysis and in-
tergrated them with artificial neural network system and set theory to develop 
market timing investment strategy model. Forecasting accuracy and returns 
from investments were used for evaluating the model. Liao and Wang [7] stu-
died the fluctuations of Chinese stock Index and make an improvised forecasting 
neural network model by introducing stochastic time effective function. They 
suggest that the closer is the time of the past data is to the current time, the 
stronger is its effect on the prediction model. The model is also appraised by dif-
ferent parameters of volatility. In another research by Guresen et al. [8], the re-
searchers tried to cut through traditional linear and nonlinear approaches to 
forecast stock market rates and analysed three new models: Multi-layer percep-
tron (MLP), Dynamic artificial neural network (DAN) and a Hybrid nuerual 
network. The Mean square error used for appraisal of models showed that the 
MLP model gave the best predictions when used on the same data set. Moghad-
dam et al. [9] investigated the stock forecasting ability of artificial neural net-
work using NASDAQ stock exchange. Two types of input sets four prior days 
and nine prior days were used, although both methods were found to be equally 
meritorious. 

In most of the studies, either a standard ANN model has been taken or a de-
fault model has been tested using various softwares. But as we understand, a lot 
of hit and trial should be done by altering the hyperparameters to get the best 
performance model. In our study we attempt to prove the same point and try to 
find the best model for our data set. 

3. Research Objectives 

In this research, we wanted to see the effect of change of some hyperparameters 
on the model’s prediction ability and efficiency. The testing is useful as it points 
out the effect of taking some hyperparameters as default and getting the results 
without realizing that the model could be tuned for further better results.  

4. Research Methodology 

We took the daily data of BSE Sensex from yahoo finance website for a time pe-
riod 1 January 2014 to 31 December 2018. The daily data contained volume 
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traded, the high price, low price, close price and open price. Raw data was 
cleaned for any missing values and standardized using Z scores.  

Input-meanZ score
variance

=  

A total of 1231 readings (observations) were retrieved for analysis using deep 
neural networks. Cases with user missing values on factors and categorical de-
pendent variables were excluded during analysis. 

We used SPSS for analysing the data and constructing different networks. The 
input or independent variables consisted the high price, low price, open price, 
close price and the volume traded. The dependent variable or the output value 
was the closing value of index (labelled closenext here) on the successive day. 
We set the data partitions as 60% training set, 20% validation set and another 
20% as test set. We used batch training for each epoch so as to see the effect of 
change in iterations on the prediction capacity. The training momentum was set 
at default value of 0.9. The maximum training time was set to 15 minutes (for 
the worst scenario if the termination criteria is not reached). The stopping crite-
ria was 6 consecutive training steps with no change in training error or relative 
change of 0.0001 in training error achieved. Both training and test data were 
used to compute prediction errors.  

The learning rate was set at 0.4 and the lower boundary of learning rate was 
fixed to 0.001. Gradient descent was used for backpropagation.  

The hyperparameters we changed in different models were: 
• The number of hidden layers 
• Number of nodes in hidden layers 
• The activation function of hidden layers 
• Number of epochs 
• The batch size and hence the iterations in each epoch 

The model performance was measured with the help of root mean square er-
ror on test set of the model. Both the training and test data sets were used for 
computing prediction error. 

Error Calculation 
In the algorithm that we used to train our neural networks, we set aside 20% 

data set for crossvalidation step to measure the error of each iteration and help 
in gradient descent of error. Test error and the training errors are calculated 
separately in each constructed neural network.  

We calculate SSE i.e. sum of square error and RE i.e. relative error for both 
sets. SSE gives an indication of the RMSE (root mean square error) which is by 
far the most reliable method to measure performance of a neural network. The 
lesser the error in the test set, the better the network. As a rule of thumb, if the 
training error is more, we increase the number of neurons in the hidden layer or 
the number of hidden layers. If the training error is satisfactory, but test error is 
more, we presume that the training has led to over-fitting, and therefore we re-
duce the number of neurons in the hidden layer or the number of hidden layers.  
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5. Analysis and Results 

Case 1. Effect of Change in number of hidden layers and the activation 
function of hidden layers 

In our first variation, we changed the number of hidden layers to 1 and 2. The 
number of nodes in the single hidden layer were taken as 3 while in the model 
with two hidden layers, the first layer had 3 nodes and the second had 2 nodes. 
The number of layers was restricted to 2 as on further increasing, the test error 
was getting very high. Also, for both the model types (two variations in number 
of hidden layers) we tested two activation functions for the layers, first one was 
the sigmoid function and the second one was the hyperbolic tangent function. 
The performance metrics of the (four total) models is shown in Table 1. 

The errors of prediction are elaborated graphically in Figure 10. Figures 2-5 
below show the regression results of predicted and actual test set values for  
 

Table 1. Performance metrics of variation in number of hidden layers and its activation functions. 

 
Number of hidden layers 

(activation function of hidden layers is sigmoid) 
Number of hidden layers 

(activation function of hidden layers is hyperbolic tangent) 

 
1 

(hidden nodes = 3) 

2 
(hidden nodes in first layer =3,  

hidden nodes in second layer = 2) 

1 
(hidden nodes = 3) 

2 
(hidden nodes in first layer =3,  

hidden nodes in second layer = 2) 

Train SSE 1.266 1.964 25.509 1.286 

Train RE 0.004 0.005 0.070 0.004 

Training time taken 0:00:00.41 0:00:00.58 0:00:00.10 0:00:00.62 

Test SSE 0.647 0.761 7.065 1.198 

Test RE 0.006 0.007 0.070 0.012 

Holdout RE 0.008 0.009 0.090 0.010 

SSE = sum of square error, RE = Relative error (Source: Reasearcher’s analysis of data). 

 

 
Figure 2. MLP FFN model with Hidden (3) sigmoid: Predicted test value vs. actual test labels. (Source: Reasearcher’s analysis of 
data) 
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Figure 3. MLP FFN model with Hidden (3, 2) sigmoid: Predicted test value vs. actual test labels. (Source: Reasearcher’s 
analysis of data) 

 

 
Figure 4. MLP FFN model with Hidden (3) hyperbolic tangent: Predicted test value vs. actual test labels. (Source: Rea-
searcher’s analysis of data) 

 

 
Figure 5. MLP FFN model with Hidden (3, 2) hyperbolic tangent: Predicted test value vs. actual test labels. (Source: 
Reasearcher’s analysis of data) 
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the four models taken in our case 1. The more clean the regression line, the bet-
ter the results. Along with this, the figures on the right side show the residual 
distribution with predicted value. The more centered and closer the residuals, 
the better is the model.  

The graphs shown in Figures 6-9 below show the hits and miss of the actual 
values and the predicted values for the four models of case 1. The more the visi-
bility of blue line in the graph, the more the misses in the prediction.  

From Figure 6, it can be seen that most of the predicted values coincide with 
the actual values. A few mismatches in between Jan 2014 and March 2014, 
around August 2018 etc. can be easily identified from the graph plot. There are 
very few mismatches and outliers. The training time from the data Table 1 
 

 
Figure 6. Hidden (3), sigmoid: graph showing actual data values and predicted values. 
(Source: Reasearcher’s analysis of data) 
 

 
Figure 7. Hidden (3, 2) sigmoid: graph showing actual data values and predicted values. 
(Source: Reasearcher’s analysis of data) 
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Figure 8. Hidden (3) hyperbolic tangent: graph showing actual data values and predicted 
values. (Source: Reasearcher’s analysis of data) 
 

 
Figure 9. Hidden (3, 2) hyperbolic tangent: graph showing actual data values and pre-
dicted values. (Source: Reasearcher’s analysis of data) 
 
can also be seen to be low. Overall it is a good model with less error in testing. 

It can be seen from Figure 7 that the predicted values and the actual values 
of closing sensex coincide for most of the study period. Also from Table 1, it 
can be deduced that both the SSE and RE for both training and testing are 
more than the previous model. Also, this model has taken more time for 
training than the previous one with 3 hidden sigmoid neurons. The mis-
matched areas can be prominently seen in blue colour in the graph (Jan 
2014-March 2014, March 2015, April 2017-July 2017, around August 2018 and 
November 2018). 

This model with 3 hidden hyperbolic tangent neurons shows a lot of deviation 
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between the actual and the predicted closing sensex values. The error rate in 
both training and testing is high. The disagreement patches are also large and 
clear (seen in big blue colour lines around January 2014-May 2014, June 2018-Nov 
2018 etc.). Also from the graph is messy since the scatter plot shown in Figure 4 
shows huge scatter between residuals and predictions. Thus the model is not ap-
propriate for the prediction in current research. Table 1 shows that this model 
has high SSE in training process. This means that there is requirement to in-
crease the number of hidden layers, or number of hidden neurons or both. To 
test this we check another model seen in Figure 5 & Figure 9. 

When we see Figure 9 along with Figure 8, we can see the difference. There is 
a lot of improvement in the predictability of model with two hidden hyperbolic 
tangent layers (3, 2). The training and test error show drastic reduction from the 
previous model where there was only one hyperbolic tangent layer. Also, the 
mismatches seen are less (less blue visible lines in above graph). The most 
prominent deviation seen is from June 2018 to Nov 2018. Though this model is 
appraised to be good, but the training time taken is more.  

As can be seen from the Figure 10, both the test and train error are low in 
ANN with sigmoid function activated hidden layer. Also, the model with sig-
moid function gives best result with one hidden layer with three hidden neurons. 
The training time in 3 unit single sigmoid activated layer model has less training 
time of 0.41 seconds with good performance.  

Case 2. Effect of change of training batch size 
The batch size used for one iteration was varied to see the effect on model 

performance. We took the number of records as 10, 20, 30 and 50 for a composi-
tion of a batch in successive variations of model. The number of units were 192 
and the number of hidden layers was 1 (taken as default setting for case 2 varia-
tion). The number of nodes in hidden layer was 3. The activation function used 
was sigmoid. The output activation function was linear. 

 

 
Figure 10. Effect of change in number of hidden layers and change in hidden layer acti-
vation function. (Source: Reasearcher’s analysis of data) 
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The results of the performance of models with different batch size iterations is 
explained through graph in Figure 11. 

The batch size was restricted to 50 and no further increase was reported as the 
error was increasing at exponential rates.  

From Figure 11, it can be seen that the least error for both training set and the 
test set is in 10 records. Also from Table 2, it can be seen that the training time 
of 0.41 seconds is also comparable with 20 and 30 batch size training time. 
Hence 10 records is the best size to train the current data set. 

Case 3. Effect of change in number of nodes in one hidden layer 
In this case, we varied the number of nodes (neurons) in the hidden layer. The 

number of units were 192 and the number of hidden layers was 1 (taken as de-
fault for case 3 variations). The activation function of hidden layer was sigmoid. 
The output activation was linear. The hidden nodes varied being 3, 10, 20 and 30 
in different models tested. On further increase in number of nodes, the error in-
creased immensely. 

The performance results of case 3 are explained graphically in Figure 12. 
 
Table 2. Performance metrics of variation in batch size used for training. 

 Batch size 

 10 20 30 50 

Train SSE 1.266 1.468 2.211 8.118 

Train RE 0.004 0.004 0.006 0.022 

Training time taken 0:00:00.41 0:00:00.52 0:00:00.32 0:00:00.19 

Test SSE 0.647 0.717 0.628 2.343 

Test RE 0.006 0.007 0.007 0.022 

Holdout RE 0.008 0.007 0.011 0.024 

SSE = sum of square error, RE = Relative error (Source: Reasearcher’s analysis of data). 

 

 
Figure 11. Effect of change of training batch size (no. of records). (Source: Reasearcher’s 
analysis of data) 
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Figure 12. Effect of change in no. of hidden units (nodes) in the single hidden layer. 
(Source: Reasearcher’s analysis of data) 
 

From Figure 12 it can be seen that the training error increases with the num-
ber of increasing nodes in the hidden layer. The test set error remains more or 
less same when the no. of hidden units is 3, 10 and 20. It increase when the no. 
of nodes is increased to 30. Thus the best model is one with 3 hidden units 
(nodes) where both the test and train errors are less. Also, from Table 3 it can be 
seen that the training time is also least when the number of nodes is 3. 

Case 4. Effect of change in number of training epochs 
In case 4, we attempted to study the effect of change in number of training 

epochs. One epoch is defined as one pass of the complete data set through the 
neural network. The number of units were 192 and the number of hidden layers 
was 1 (taken as default for case 4 variation analysis). The number of nodes in 
hidden layer was 3. The activation function used was sigmoid. The output acti-
vation was linear. We tested a varied number of epochs (starting from 10, 20, … 
upto 100). There was change in error at each change and also the training time 
varied across all cases (Table 4).  

The performance of case 4 variations is explained further through graph in 
Figure 13. 

From Figure 13 it can be seen that both training and test error are less when 
the number of epochs used for training are 10, 75 and 80. But the least error is 
when the number of epochs used is 10. Also the time taken for training is less 
when seen along with the error rate. Thus the best model for our data set in this 
research is the one using 10 epochs for training. This is suggested keeping in 
mind both the model error and the training time taken. 

Case 5. Using radial basis function 
We tried to use radial basis function network in place of multilayer perceptron 

feed forward model to check if it gives a better result. In radial basis function, 
the number of hidden layers is always 1. Hidden layer’s number of nodes is va-
ried. The activation function of hidden layer is softmax function. We varied the  
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Table 3. Performance metrics of variation in number of hidden layer nodes. 

 Number of nodes 

 3 10 20 30 

Train SSE 1.266 1.723 2.200 2.942 

Train RE 0.004 0.005 0.006 0.008 

Training time taken 0:00:00.41 0:00:00.76 0:00:01.49 0:00:03.06 

Test SSE 0.647 0.699 0.637 0.826 

Test RE 0.006 0.007 0.008 0.007 

Holdout RE 0.008 0.008 0.006 0.007 

SSE = sum of square error, RE = Relative error (Source: Reasearcher’s analysis of data). 

 
Table 4. Performance metrics of variation in number of training epochs. 

 Number of epochs 

 10 20 50 75 76 77 80 100 

Train SSE 1.554 8.641 10.912 1.547 4.298 6.491 1.725 5.042 

Train RE 0.004 0.023 0.030 0.004 0.012 0.018 0.005 0.014 

Training time 
taken 

0:00:00.37 0:00:00.16 0:00:00.15 0:00:00.56 0:00:00.30 0:00:00.22 0:00:00.60 0:00:00.17 

Test SSE 0.718 2.238 3.444 0.788 1.679 2.667 0.920 2.314 

Test RE 0.007 0.023 0.036 0.007 0.017 0.024 0.009 0.021 

Holdout RE 0.007 0.022 0.029 0.009 0.014 0.026 0.011 0.020 

SSE = sum of square error, RE = Relative error (Source: Reasearcher’s analysis of data). 

 

 
Figure 13. Effect of change in no. of training epochs. (Source: Reasearcher’s analysis of 
data) 
 
number of hidden units (nodes) in the single hidden layer from 10, 20, up to 50. 
Further increase was giving high errors. The performance statistics are reported 
in Table 5.  

The results of variations done in case 5 are explained through graph in Figure 
14. 
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Table 5. Performance metrics of variation in number of nodes in hidden layer when RBF 
function model is used. 

 Number of hidden units in the hidden layer 

 10 20 29 30 31 32 35 50 

Train SSE 6.906 2.262 2.401 2.030 2.489 2.354 2.498 2.555 

Train RE 0.019 0.006 0.007 0.006 0.007 0.006 0.007 0.007 

Test SSE 1.868 0.587 0.817 0.494 0.746 0.803 0.623 0.842 

Test RE 0.019 0.005 0.007 0.006 0.007 0.007 0.005 0.008 

Holdout RE 0.016 0.005 0.005 0.008 0.007 0.006 0.006 0.008 

SSE = sum of square error, RE = Relative error (Source: Reasearcher’s analysis of data). 

 

 
Figure 14. Effect of changing no. of hidden units in radial basis function model. (Source: 
Reasearcher’s analysis of data) 
 

As we can see from Figure 14, the training and testing error co-vary as the no. 
of hidden units is increased from 20 to 50. The highest error is when the number 
of units is 10. If we compare these results with our best fit MLP FFN (one hidden 
layer, with three nodes, sigmoid activation function, 10 record iteration, 10 
epochs for training), the training error is high in all cases of RBF network. The 
test error is although comparable in few of the RBF network cases, overall we 
can say that a MLP FFN is best suited for BSE Sensex prediction with both 
training and test errors at their minimum. They show the best performance. 

The best fit model for BSE Sensex prediction 
Based on the above results from Cases 1 - 5 (represented in Tables 1-5 and 

Figures 2-15), we can easily say that the best performance is given by MLP FFN 
model for prediction of BSE sensex and the network with one hidden layer hav-
ing 3 neurons gave the best results. We also suggest that the hidden layer should 
be activated with sigmoid function and the output layer by linear function. We 
get best results with batch training having 10 records per iteration and 10 epochs 
for whole training. The detailed summary of the model is given below in Table 6. 

From the above statistics (Table 7), we can see that closing value of the previous  
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Table 6. Case processing summary. 

 N Percent 

Sample 

Training 707 60.3% 

Testing 239 20.4% 

Holdout 227 19.4% 

Valid 1173 100.0% 

Excluded 58  

Total 1231  

(Source: Reasearcher’s analysis of data) 

 
Table 7. Independent variable importance. 

 Importance Normalized Importance 

Volume 0.077 20.4% 

Open 0.155 41.2% 

High 0.293 77.8% 

Low 0.098 26.0% 

Close 0.377 100.0% 

(Source: Reasearcher’s analysis of data) 

 

 
Figure 15. Graph showing variable importance in prediction of closing value of BSE Sen-
sex on the next day. (Source: Reasearcher’s analysis of data) 
 
day has the highest effect on the closing value of the successive day. Highest pre-
vious day values have a little less importance.  

6. Conclusion 

In our attempt to investigate the effects of change in hyperparameters in the 
performance of neural network model for BSE Sensex prediction, we discuss 5 
different cases. In our first case, we saw the effect of change in number of hidden 
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layers and their activation functions. In the second case we changed the batch 
size of each iteration. Next we probed the effects of change in number of units in 
hidden layer. Case 4 assessed the change in number of training epochs used in 
the model. Lastly we changed the multilayer perceptron feed forward network to 
radial bases function network and tapped its performance and predictive ability. 
From all the above experiments, we conclude that the best model for prediction 
of BSE sensex next day close value is a multilayer perceptron feed forward net-
work with gradient descent based back propagation. MLP FFN with one hidden 
layer, having three nodes and sigmoid activation function gave the best predic-
tion, with least performance error and best trade-off training time. The network 
activation should use sigmoid function for hidden layers and linear function for 
output layers. 10 records per iteration and 10 epochs of training gave the most 
accurate results with feasible training time. Also from our study we conclude 
that the most important variable for prediction of next day sensex closing value 
is the closing value of the previous trading day. This result is in line with the 
previously established theories where it is said that the stock markets follow a 
random walk process and the trading strategy is a martingale process. Today’s 
price is the best prediction for tomorrow’s price. Thus using the best fit neural 
network model discovered in our research, we can use today’s close price to pre-
dict tomorrow’s best value. 
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