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Abstract 
In this paper, as a new contribution to the tensor-centric warfare (TCW) se-
ries [1] [2] [3] [4], we extend the kinetic TCW-framework to include 
non-kinetic effects, by addressing a general systems confrontation [5], which 
is waged not only in the traditional physical Air-Land-Sea domains, but also 
simultaneously across multiple non-physical domains, including cyberspace 
and social networks. Upon this basis, this paper attempts to address a more 
general analytical scenario using rigorous topological methods to introduce a 
two-level topological representation of modern armed conflict; in doing so, it 
extends from the traditional red-blue model of conflict to a red-blue-green 
model, where green represents various neutral elements as active factions; 
indeed, green can effectively decide the outcomes from red-blue conflict. Sys-
tem confrontations at various stages of the scenario will be defined by the 
non-equilibrium phase transitions which are superficially characterized by 
sudden entropy growth. These will be shown to have the underlying topology 
changes of the systems-battlespace. The two-level topological analysis of the 
systems-battlespace is utilized to address the question of topology changes in 
the combined battlespace. Once an intuitive analysis of the combined bat-
tlespace topology is performed, a rigorous topological analysis follows using 
(co)homological invariants of the combined systems-battlespace manifold.  
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1. Introduction 

The principal objective of the Modeling Complex Warfighting (MCW) Strategic 
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Research Investment (SRI) is to better enable dealing with uncertainty, meaning 
achieving reliable decision-making in environments that are non-ergodic. Such 
systems are incomprehensible, in a sense, through observation of past data, 
because they lack stability and manifest unique transient states. Phenomena 
associated with war and battle are inherently non-ergodic, a fact that has been 
observed at least since the birth of modern military thinking (see, for instance, [6] 
and references therein1). This paper attempts to approach the MCW problem 
from the multilayered nature of warfare and look at Blue, Red and Green entities. 
The aim is to undertake analysis which closely represents the realities of modern 
warfare. When modeling complex modern combined battlefields it is therefore 
important to consider neutral forces—which we label “Green”—since they are 
much more now than in the past even the central feature of the strategic 
situation. Indeed, in modern asymmetric confrontations neutral or non-engaging 
groups have been known to side with one side or the other or even to engage 
actively in conflict, which rapidly changes the dynamics of the situation. Hence, 
social and psychological domains play an increasingly significant role in 
understanding the dynamics of modern armed conflict. 

The dynamics of the combined effects of these and other factors mean that the 
statistical properties of such problem environments are non-stationary. As a 
result, the outcomes of battles are not predictable, since the battle is inherently 
non-ergodic; yet, it is possible to deal with such systems nonetheless by 
establishing conditions that are weaker than ergodicity, which have essentially 
topology-changing nature. 

The tensor-centric warfare (TCW) series of papers (see [1] [2] [3] [4]) have 
established a basis for MCW to investigate uncertainty in modern war and 
battle, using entropic dynamical properties in place of statistical predictions 
about future outcomes. More specifically, the TCW framework has proposed the 
following pair of Red-vs-Blue tensorial combat models (formally, the pair of 
Red-Blue vectorfields; their solution for some initial conditions gives the pair of 
Red-Blue flows):  

( )

. . .. .

. .. . . .

Red :

, H L ,

Blue :

Red vecfield Red quad LanchasterRed lin Lanchaster
a a b ab c d

t b b cd
Red war symmetryRed Lie dragging Red delta strikes

b a a a a
R b

t

R kA B k E R B

R R B Rδ

∂ = +

 + + + − 

∂

  



 

 

( )

. . .. .

. .. . . .

, H L ,

Blue vecfield Red quad LanchasterBlue lin Lanchaster
a a b ab c d

b b cd
Blue war symmetryBlue Lie dragging Blue delta strikes

b a a a a
B b

B C R F R B

B B R B

κ κ

δ

= +

 + + + − 

  



 

N

        (1) 

where t t∂ ≡ ∂ ∂  and the Red and Blue forces are defined as vectors 
( ) Red,a aR R x t M= ∈  and ( ) Blue,a aB B q t M= ∈ , defined on their respective 

 

 

1This reference was chosen from the many that pepper the military theory literature because it high-
lights the underlying reason for non-ergodic nature of war and battle: such systems contain 
self-reference and hence are populated by formal paradoxes that yield inherent limits to knowledge 
within the situation, particularly around unpredictability of future outcomes.  
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configuration n-manifolds RedM  (with local coordinates { }ax , for 1, ,a n=  ) 
and BlueM  (with local coordinates { }aq ). The Red and Blue vectorfields, 

a
t R∂  and a

t B∂ , include the following terms (placed on the right-hand side of 
Equation (1)): 
 Linear Lanchester-type terms, Red

a b
bkA B M∈  and Blue

a b
bC R Mκ ∈ , with 

combat tensors a
bA  and a

bC  defined via bipartite and tripartite adjacency 
matrices, respectively defining Red and Blue aircraft formations (according 
to the aircraft-combat scenario from [1] [12]); 

 Quadratic Lanchester-type terms, Red
ab c d

b cdk E B R M∈  and  

Blue
ab c d

b cdF B R Mκ ∈ , with the 4th-order tensors ab
cdE  and ab

cdF  representing 
strategic, tactical and operational capabilities of the Red and Blue forces (see 
[1]); 

 Entropic Lie-dragging of the opposite side terms, Red
b a

R bR M∈L N  and 

Blue
b a

B bB M∈L  , where a a ca
b b bcC F= +N  and a a ca

b b bcA E= + . In case of 
resistance, the Lie derivatives are positive, 0a

R b >L N  and 0a
B b >L  , so 

that the non-equilibrium battlefield entropy grows, 0t S∂ > ; in case of 
non-resistance, the Lie derivatives vanish, 0a

R b =L N  and 0a
B b =L  , so 

that the battlefield entropy is conserved, 0t S∂ =  (see [2]); 
 Entropic Red-Blue commutators, Red, 0a aR B M  ≥ ∈   and  

Blue, 0a aB R M  ≥ ∈  , for modeling warfare symmetry (see [2]), in which the 
entropy grows in the asymmetric case (>0) and stays conserved in the 
symmetric case (=0); 

 Hamilton-Langevin delta strikes, ( )H LaRδ −  and ( )H LaBδ − , including 
(on both sides) discrete striking spectra (slow-fire missiles) and continuous 
striking spectra (rapid-fire missiles), as well as bidirectional random strikes, 
Hamiltonian vectorfields, self-dissipation, opponent-caused dissipation and 
non-delta random forces (see [3] for the full explanation of all included 
temporally-confined kinetic strike/missile terms).  

In the present paper, we extend the above kinetic Red-Blue framework to 
include non-kinetic effects, by addressing the general systems-confrontation [5], 
which is waged not only in the traditional physical Air-Land-Sea domains, but 
also in modern non-physical environments, such as cyberspace, electromagnetic 
spectrum, psychological and social network domains. This paper attempts to 
address this complex contemporary warfare situation using rigorous methods 
and techniques from modern algebraic topology; specifically, by extending the 
kinetic Red-Blue scenario (Figure 1) into more general and more representative 
kinetic + non-kinetic Red-Blue-Green scenarios (Figure 2). 

Dynamically speaking, the basic Red-Blue pair of vectorfields (1) is extended 
with the following Green vectorfield:  

( )( ) ( ) ( )

( ) ( )

. .. . .

. .

Green :

  ,

Green quad LanchasterGreen vecfield Green lin Lanchaster
a a a b b ab ab c d d

t b b b cd cd

Green Lie dragging

b a a a b b
G b b

G A C R B E F G R B

G G R B

γ γ∂ = + + + + +

 + + + +

 





N 

. .

,
Green war symmetry





  (2) 
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Figure 1. Sketch of the Red-Blue battlespace cobordism: the combined Red-Blue 
battlespace ( )1N + -manifold W has the N-dimensional boundary W∂  that is defined 

as the disjoint union of the Red and Blue configuration N-manifolds, RedM  and BlueM , 
formally given by: Red BlueW M M∂ =  . The combined battlespace manifold W defines 
the equivalence class of cobordisms, ( )Red BlueCob ,f M M , between the Red and Blue 

manifolds. See section 2 for technical details. 
 

 
Figure 2. Sketch of the Red-Blue-Green systems-battlespace cobordism  

( )Red Blue Green, ,W M M M , addressing a general systems-confrontation scenario, in which the 

non-kinetic effects are embedded in the Green manifold. The combined battlespace 
manifold W now defines the equivalence class of cobordisms, ( )Red Blue GreenCob , ,f M M M , 

between the Red, Blue and Green manifolds. See Section 2 for technical details. 
 
where ( ) Green,aG x t M∈  is the Green flow on the Green manifold GreenM ; γ  
and bγ  represent non-kinetic effects in scalar and vector form, respectively, 
and all the other terms are the same as in Equation (1). Notice that on the 
right-hand side of Equation (2) al the tensors are the sums of the corresponding 
Red and Blue tensors. This insures the fact that the Green force includes both 
Red and Blue forces and the covariance is preserved. Also, the kinetic delta 
strikes are missing, which gives the highest importance to entropic Lie-dragging 
( ( )a a

G b b+N  , with or without resistance) of the Red-and-Blue cyberspace, 
electromagnetic, psychological and social-network domains (encaptured in the 
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tensors a a ca
b b bcC F= +N  and a a ca

b b bcA E= + ). 
Topological motivation for the present paper is inherited from the influence 

on modern physics by John Wheeler from Princeton2. Although we might have 
some well-defined and (numerically) solvable local TCW Equations (1)-(2), we 
lack a picture of the global topology of the systems-battlespace-the environmental 
configuration manifold in which the combat happens-with its dramatic spacial 
(eliptic/hyperbolic) changes. In (1) both the Red and Blue vectorfields, 

( ),a a
tR R t= ∂ x  and ( ),a a

tB B t= ∂ x , and their corresponding flows,  
( ),a aR R t= x  and ( ),a aB B t= x , which consist of the integral lines of the 

vectorfields aR  and aB  obtained by their numerical integration starting from 
the chosen initial conditions, 0

aR  and 0
aB , respectively-are defined on their 

respective configuration n-manifolds3, RedM  and BlueM . To give the global 
picture of the battlefields governed by local Equation (1)-(2) we need to perform 
the topological analysis of the joint manifold including all three submanifolds: 

RedM , BlueM  and GreenM . 
Global topological analysis is an extension of local geometric analysis. To 

utilize the geometric framework most suitable for the present topological 
analysis4, we will assume that Red and Blue (as well as Green) configuration 
manifolds, RedM , BlueM  and GreenM , are endowed with the 
pseudo-Riemannian geometry, which is both elliptic (positive metric) and 
hyperbolic (negative metric; see, e.g. [7] [8]), defined by their corresponding 
quadratic forms, a b

abA R R , a b
abC B B  and ( )( )a b a b

ab abA C R R B Bγ + + . These 
three quadratic forms are not necessarily positive-definite, which would be the 
necessary condition for the strict Riemannian geometry, but only non-degenerate, 
which is a weaker condition. Since we are working in the more general 

 

 

2Recall that John A. Wheeler was initially an assistant of Albert Einstein and later a supervisor of two 
future Nobel Laureates, Richard Feynman and Kip Thorne (even later, he became the “Godfather of 
Mathematica”, as called by Stephen Wolfram). Einstein introduced local Riemannian geometry into 
physics, under his famous dictum: “Physics is simple only locally”. Wheeler was not satisfied with 
this local view of physics—he felt that even when differential equations of all fields and motions are 
precisely defined—something important is still left missing—the global topology of the environ-
mental configuration manifold in which these equations evolve (e.g., Einstein’s gravitational equa-
tions are the same for elliptic surface of the Earth as for elliptic/hyperbolic surface of an ap-
ple—which is clearly not quite right, notwithstanding the magnificence of Einstein gravity theory). 
So, using his famous slogan: “the boundary of a boundary is zero” (BBZ), Wheeler introduced global 
topological analysis into physical sciences, which goes hand-in-hand with local Riemannian geome-
try used by Einstein. Similarly, in our TCW systems-battle space, even when the local Red-Blue ten-
sor equations are precisely defined, we are still missing the global topology of the systems-battle 
space with its dramatic changes. Redressing this is the objective of the present paper. 
3More correctly, according to the existence and uniqueness theorems for the sets of ODEs, the Red 
and Blue flows uniquely exist on the 

RedM  and 
BlueM  manifolds, while their corresponding vector 

fields are defined on their respective tangent bundles 
RedTM  and 

BlueTM . However, for the present 
topological considerations, this subtle geometric difference can be neglected, or rather unified within 
the notion of pseudo-Riemannian geometry (see, e.g. [7] [8] and the references therein). 
4In this paper we present continuous, analytical approach to topological analysis of systems con-
frontation. Alternatively, a discrete, computational framework with networks of up to millions of 
nodes, based on persistent homology algorithms on directed simplices [9] has been developed as a 
Matlab toolbox supporting the cutting-edge topological research of brain cliques and cavities from 
computational neuroscience (the Blue Brain project [10] [11]).  
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pseudo-Riemannian geometry framework, the three quadratic forms, a b
abA R R , 

a b
abC B B  and ( )( )a b a b

ab abA C R R B Bγ + + , can be either positive or negative, 
depending on their respective combat tensors, abA , abC  and ( )ab abA Cγ + , 
which have initially been defined as combinations of kink (Tanh) and bell (Sech) 
functions applied to the bipartite-Red and tripartite-Blue adjacency matrices 
from the initial scenario5 from [1] [12] (as depicted in Figure 1). This gives us 
the level of generality needed for a reasonable representation of the  
systems-battlespace, but can be easily generalized further to the system 
confrontation level by adding non-kinetic terms, mostly present within the 
combined Green tensor: ( )ab ab abG A Cγ≡ + . 

The non-equilibrium phase transitions occurring at the battlefield at various 
stages of warfare, can be superficially characterized by sudden entropy growth. 
However, these rapid changes of the systems-battlespace always have underlying 
structural topology changes (see [13] and the references therein). In this paper, 
we give a two-level topological analysis of the systems-battlespace. We start 
visually by giving a largely intuitive analysis of the systems-battlespace topology 
using Thom’s cobordisms and Morse functions. Then we move into a rigorous 
topological analysis of the systems-battlespace by deriving its (co)homological 
invariants, which can be summarized by the famous dictum of John Wheeler: 
“The boundary of a boundary is zero (BBZ)”. Specifically, we derive the Morse-Smale 
homology and the Morse-Witten cohomology of the systems-battlespace 
manifold. All the necessary geometrical and topological background is given in 
the self-content and comprehensive Appendix, which provides the Hodge-de 
Rham theory based on the Stokes theorem. Then we perform a rigorous analysis 
of the systems-battlespace topology with its dramatic spatial changes by deriving 
its (co)homological invariants6. 

2. Components of the Systems-Battlespace Topology:  
Cobordisms and Morse Functions 

In this section we develop the basic differential topology of the systems-battlespace, 
mainly following the work of the Fields medalist John Milnor [15] [16] [17]. 

2.1. Systems-Battlespace Cobordisms: Red-Blue versus  
Red-Blue-Green 

To start with the systems-battlespace topology, we introduce an important 
concept from differential topology (and its gravitational-physics applications): 

 

 

5Recall that in our initial kinetic scenario (see [1] [12]) we have 30n =  aircraft on each side. In case 
of the Red force, they enter into the combat in the bipartite (15 + 15)-formation, while in the case of 
the Blue force, they enter into the combat in the tripartite (10 + 10 + 10)-formation. 
6The importance of the homological invariants here relates directly to the previously identified ap-
proach for dealing with uncertainty in non-ergodic problem environments by establishing weaker 
invariant conditions than ergodicity as the basis for reliable decision-making, within known limita-
tions [14]. The context of this previous work was primarily autonomous systems development; 
however, the homological invariants derived here shows that the approach is applicable to modeling 
systems manifesting uncertainty more generally. 
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the so-called cobordism7. Briefly, the cobordism relation, denoted Cob f , 
between two compact (i.e., closed and bounded) n-manifolds, 1M  and 2M , 
means that their disjoint union 1 2M M  is the boundary W∂  of a compact 
( )1n + -manifold W. In other words, cobordism Cob f  between two compact 
n-manifolds 1M  and 2M  is the compact ( )1n + -manifold W whose 
boundary 1 2W M M∂ =   is the disjoint union of 1M  and 2M . This is an 
equivalence relation and the equivalence class of cobordisms is denoted by 

( ) ( )1 2 1 2, Cob ,fW M M M M∈ 8 (for technical details, see e.g. [7] [8] [17] [18]). In 
our case, the Red-Blue systems-battlespace ( )1n + -manifold W has the nD 
boundary Red BlueW M M∂ =   (see Figure 1), and the equivalence class of 
systems-battlespace cobordisms given by: 

( ) ( )Red Blue Red Blue, Cob , .fW M M M M∈  

The two-party battlespace cobordism from Figure 1 can be extended into a 
three-party systems-battlespace manifold ( )Red Blue Green, ,W M M M , depicted in 
Figure 2, as follows. We introduce the composition of cobordisms, 
( )1 2 3, ,c M M M , which can be defined in case of a triple manifold, 
( )1 2 3, ,W M M M , so that the glued cobordism, : Cob Cob Cobf g h→c 

, where 


 represents the gluing operation, is defined by the following (semigroup-like 
operation) map9:  

( ) ( ) ( ) ( )1 2 3 1 2 2 3 1 3, , : Cob , Cob , Cob , ,f g hM M M M M M M M M→cc 
 

which in our case of an extended three-party systems-battlespace manifold, 
( )Red Blue Green, ,W M M M , reads:  

( ) ( ) ( )
( )

Red Blue Green Red Blue Blue Green

Red Green

, , : Cob , Cob ,

Cob , .
f g

h

M M M M M M M

M M→c
c 

 

In the language of abstract algebra, we say that the following diagram 
commutes: 
 

 

 

 

7The concept of cobordism of smooth manifolds was discovered by the Fields medalist René Thom, 
the father of Catastrophe Theory (or, theory of sudden changes in arbitrary bio-socio-physical sys-
tems). 
8In topology (and gravitational physics), cobordisms are used to define the so-called surgery theory 
on smooth manifolds, which is a collection of techniques used to produce one manifold from anoth-
er in a “controlled” way, that is, by cutting out parts of the initial manifold and replacing it with a 
part of the second manifold, matching up along the boundary. 
9We remark that the (n + 1)D glued cobordism operation  , as well as the surgery on manifolds, 
can be defined in terms of another topological (nD operation on manifolds. It is the connected sum 
of two n-manifolds, usually denoted by #, which produces a new n-manifold formed by deleting a 
ball inside each of the old manifolds and gluing together the resulting boundary spheres (see, e.g. [7] 
[8] and the references therein). 
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In plain English, this commutative diagram reads: if we have a cobordism 
between the Red and Blue manifolds, and a cobordism between the Blue and 
Green manifolds, then we also have a cobordism between the (initial) Red and 
(final) Green manifolds. That is, Cob Cob Cobh f g= 

 (see Figure 2). 
Clearly, this operation can be extended to any number of parties, producing 

the so-called chain cobordism, between the first and the last manifold; e.g., in 
case of four parties/manifolds (Red, Blue, Green, Yellow), we have the following 
commutative chain cobordism:  
 

 
 

That is, Cob Cob Cob Cobk f g h=  

, etc. 

2.2. Morse Functions of the Systems-Battlespace: Red-Blue versus  
Red-Blue-Green 

Closely-related to the systems-battlespace cobordisms are the Morse functions of 
the systems-battlespace. Namely, on the Red-Blue systems-battlespace (Figure 
1), which is a pseudo-Riemannian n-manifold: 

( ) ( )Red Blue Red Blue, Cob ,W M M M M∈  

we can define the real-valued Red-Blue Morse function, RB :f W →   (see [15] 
[16] [17]), as a sum of the two pseudo-Riemannian quadratic forms:  

RB ,a b a b
ab abf A R R C B B= +  

which can be seen as the Red-Blue landscape. Its gradient vectorfield: 

RB ,a b a b
ab abf A R R C B B∇ = ∇ +∇  

according to the Morse lemma, defines the Red-Blue level set10 of equipotential 
contour lines (of equal altitude) at the critical points p of RBf  where the 
gradient vanishes: ( )RB 0f p∇ = . The finite set { }1 2, , , mp p p W∈  of m 
critical points of RBf  is denoted by Crit( RBf ). 

In addition, we need to consider only nondegenerate critical points of RBf , 
that is, only those critical points p of the vanishing gradient, RB 0f∇ = , which 
have the nondegenerate Hessian 2

RBf∇  or, non-singular Hessian matrix:  

( )
2 2

RB RB
RB RB, with det 0.a b a b

p p

f fH H
R R B B

 ∂ ∂ = + ≠
 ∂ ∂ ∂ ∂ 

 

 

 

10More precisely, the c-level set of the Red-Blue Morse function 
RB :f W →  is the set of all the 

points p W∈  such that ( )RBf p c= , i.e., ( ) ( ) ( ){ }1
RB Red Blue RB, : .f p p W M M f p c− = ∈ =  
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By definition, the function RB :f W →   is Morse if all critical points are 
nondegenerate. All nondegenerate critical points in Crit( RBf ) are isolated in the 
Red-Blue systems-battlespace W. 

The index λ  of each critical point p is the number of negative eigenvalues of 
the Hessian matrix RBH . In other words, each critical point p of the Red-Blue 
Morse function RBf  has its own index λ , which is the number of independent 
directions around p in which RBf  decreases. Therefore, we have natural indices 
of 0λ =  for the minima of RBf , 1λ =  for the saddles of RBf , and 2λ =  
for the maxima of RBf . 

Topology change of the Red-Blue systems-battlespace RBW  happens as an 
abrupt change of the shape of the level sets of the Morse function RBf  
whenever it passes through the critical values ( )RB RBf p W∈  where ( )RB 0f p∇ = , 
otherwise the topology of W does not change. The mechanism of topology 
change is attaching a λ -cell (the so-called “handlebody”) to RBW , completely 
determined by the index λ , at the critical points p of RBf . Therefore, the index 
λ  determines the topology changes of the Red-Blue systems-battlespace W 
(from Figure 1)11. 

According to the Morse-cobordism theorem (see [15] [16] [17]), the Red-Blue 
Morse function RBf  has a finite number of critical points Cλ  of index λ , 
and every cobordism ( )Red Blue,W M M  has its Morse function, characterized by 
the Morse number of a cobordism12, ( ) ( )Red Blue,W W M Mµ µ  =   . 

The fundamental topological invariant of the Red-Blue systems-battlespace 
( )Red Blue,W M M  is its Euler characteristic, ( ) ( )Red Blue,W W M Mχ χ  =   , 

defined as the alternating sum of the critical points Cλ :  

( ) ( )
1

1 ,
n

W Cλ λ

λ
χ

=

= −∑  

which is equivalent to the alternating sum of the Betti numbers13 ( )b Wλ  of the 
systems-battlespace W: 

( ) ( ) ( )
1

1 .
n

W b Wλ
λ

λ
χ

=

= −∑  

Based on the sign of the quadratic forms a b
abA R R  and a b

abC B B , we can 
distinguish the following four principal cases of the Red-Blue landscape 
topology, or four critical points, of the Morse function RBf 14, with its 

 

 

11We remark that the special handle body calculus has been developed to address the spatial topology 
changes (with applications in quantum gravity; see [19] and the references therein). However, this 
approach represents a further extension of Morse topology, too technical for the scope of the present 
paper-it might be addressed in our future research. 
12In general, the Morse number ( )Wµ  of a cobordism W is the minimum (over all the Morse func-

tions f defined on W) of the number of its critical points C λ  (e.g., the sphere 2S  has ( )2 2Sµ = , 

the cylinder 1S I×  has ( )1 0S Iµ × =  and the torus 2T  has ( )2 4Tµ = ). 
13The nth Betti number represents the rank/dimension of the nth homology and nth cohomology 
groups, derived in the next section. 
14We can plot this landscape topology in a symmetric fashion, because any smooth (diffeomorphic) 
local perturbation will leave these principal characteristics invariant. 
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corresponding indices15: 
Case 1 (depicted in Figure 3): both the Red and Blue quadratic forms are 

positive, 0, 0a b a b
ab abA R R C B B> > , which gives the global landscape minimum, 

or the global minimum of the Morse function RBf , with index 0. Its vanishing 
gradient vectorfield, RB 0f∇ = , defines the level set composed of concentric 
contour lines. 

Case 2 (depicted in Figure 4): the Red quadratic form is positive, 
0a b

abA R R > , and the Blue quadratic form is negative, 0a b
abC B B < , which 

gives the left landscape saddle (or, mountain passage) in the Red direction, or 
the saddle-point of the Morse function RBf , with index 1. Its vanishing gradient 
vectorfield, RB 0f∇ = , defines the Red-saddle level set of contour lines. 
 

 
Figure 3. Case 1 of the Red-Blue landscape topology: the 3D-plot of the Morse function 

RBf  (left, showing the global surface minimum) and the contour plot of its gradient 
vectorfield RBf∇  (right, showing the level set). In this case, both the Red and Blue 

quadratic forms are positive: 0, 0a b a b
ab abA R R C B B> > , the Morse function RBf  has 

index 0, and the vanishing gradient vectorfield, RB 0f∇ = , defines the level set composed 
of concentric contour lines. 
 

 
Figure 4. Case 2 of the Red-Blue landscape topology: the 3D-plot of the Morse function 

RBf  (left, showing the Red-saddle) and the contour plot of its gradient vectorfield RBf∇  
(right, showing the level set). In this case, the Red quadratic form is positive, 

0a b
abA R R > , and the Blue quadratic form is negative, 0a b

abC B B < , the Morse function 

RBf  has index 1, and the vanishing gradient vectorfield, RB 0f∇ = , defines the 
Red-saddle level set of contour lines. 

 

 

15Intuitively speaking, the index of a critical point p of the battle landscape is the number of inde-
pendent directions around p in which the landscape height decreases. Therefore, we have natural in-
dices of 0 for the landscape basins/minima, 1 for the landscape passes/saddles, and 2 for the land-
scape peaks/maxima. 
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Case 3 (depicted in Figure 5): the Red quadratic form is negative, 0a b
abA R R < , 

and the Blue quadratic form is positive, 0a b
abC B B > , which gives the right 

landscape saddle (or, mountain passage) in the Blue direction, or the 
saddle-point of the Morse function RBf , with index 1. Its vanishing gradient 
vectorfield, RB 0f∇ = , defines the Blue-saddle level set of contour lines. 

Case 4 (depicted in Figure 6): both the Red and Blue quadratic forms are 
negative, 0, 0a b a b

ab abA R R C B B< < , which gives the global landscape 
maximum, or the global maximum of the Morse function RBf , with index 2. Its 
vanishing gradient vectorfield, RB 0f∇ = , defines the level set composed of 
concentric contour lines. 

Now, we can introduce the third player into our wargame, the Green force 
( ),a aG G t= x , represented by its own pseudo-Riemannian quadratic form:  

( )( ) ,a b a b a b
ab ab abD G G A C R R B Bγ= + +  

 

 
Figure 5. Case 3 of the Red-Blue landscape topology: the 3D-plot of the Morse function 

RBf  (left, showing the Blue-saddle) and the contour plot of its gradient vectorfield RBf∇  
(right, showing the level set). In this case, the Red quadratic form is negative, 

0a b
abA R R < , and the Blue quadratic form is positive, 0a b

abC B B > , the Morse function 

RBf  has index 1, and the vanishing gradient vectorfield, RB 0f∇ = , defines the 
Blue-saddle level set of contour lines. 
 

 
Figure 6. Case 4 of the Red-Blue landscape topology: the 3D-plot of the Morse function 

RBf  (left, showing the global surface maximum) and the contour plot of its gradient 
vectorfield RBf∇  (right, showing the level set). In this case, both the Red and Blue 

quadratic forms are negative, 0, 0a b a b
ab abA R R C B B< < , the Morse function RBf  has 

index 2, and the vanishing gradient vectorfield, RB 0f∇ = , defines the level set composed 
of concentric contour lines. 
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where the social-network type, system-confrontation tensor abD  is defined as 
combinations of kink (Tanh) and bell (Sech) functions applied to Green force 
adjacency matrix. In this way, we obtain the Red-Blue-Green systems-battlespace 

( )Red Blue Green, ,W M M M , which is also a pseudo-Riemannian ( )1n + -manifold. 
On the triple configuration manifold ( )Red Blue Green, ,W M M M , depicted in 

Figure 2, we can define the Red-Blue-Green Morse function RBG :f W →  , as a 
sum of all three pseudo-Riemannian quadratic forms:  

RBG ,a b a b a b
ab ab abf A R R C B B D G G= + +  

which represents the Red-Blue-Green landscape. Its gradient vectorfield:  

RBG ,a b a b a b
ab ab abf A R R C B B D G G∇ = ∇ +∇ +∇  

according to the Morse lemma, defines the Red-Blue-Green level set16 of 
equipotential contour lines (see Figure 7) passing through the critical points p of 

RBGf  where the gradient vanishes: RBG 0f∇ = . The finite set { }1 2, , , mp p p W∈  
of m critical points of RBGf  is denoted by Crit( RBGf ). 

In addition, we need to consider only nondegenerate critical points of RBGf , 
that is, only those critical points p of the vanishing gradient, RBG 0f∇ = , which 
have the nondegenerate Hessian 2

RBGf∇  or, non-singular Hessian matrix: 

( )
2 2 2

RBG RBG RBG
RBG RBG, with det 0.a b a b a b

p p p

f f f
H H

R R B B G G

 ∂ ∂ ∂ = + + ≠
 ∂ ∂ ∂ ∂ ∂ ∂ 

 

By definition, the function RBG :f W →   is Morse if its all critical points are 
nondegenerate. All nondegenerate critical points in Crit( RBGf ) are isolated in 
the Red-Blue systems-battlespace W. 
 

 
Figure 7. The Red-Blue-Green landscape topology depicted as the 3D contour plots of 
the Morse function RBGf , passing though the critical points p in which the gradient 
vanishes: RBG 0f∇ = : (a) all three quadratic forms have the same sign (either positive or 
negative)-resulting in elliptic geometry of the Red-Blue-Green landscape; (b) Red and 
Green forms are positive and Blue is negative, giving hyperbolic geometry of the 
Red-Blue-Green landscape; (c) Red and Blue are positive and Green is negative, giving 
hyperbolic geometry of the Red-Blue-Green landscape; (d) Blue and Green are positive 
and Red is negative, giving hyperbolic geometry of the Red-Blue-Green landscape; all 
other combinations reduce to these four cases. 

 

 

16The c-level set of the Red-Blue-Green Morse function 
RBG :f W →  is the set of all the points 

p W∈  such that ( )RBf p c= , i.e., ( ) ( ) ( ){ }1
RBG Red Blue Green RBG, , : .f p p W M M M f p c− = ∈ =  
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As before, the index λ  of each critical point p of the Morse function RBGf  
is the number of negative eigenvalues of the Hessian matrix RBGH . Topology 
change of the Red-Blue-Green systems-battlespace RBGW  happens as an abrupt 
change of the shape of the level sets of the Morse function RBGf  whenever it 
passes through the critical values ( )RBG RBGf p W∈  where ( )RBG 0f p∇ = , 
otherwise the topology of RBGW  does not change. The mechanism of topology 
change is attaching a λ -cell/handlebody, completely determined by the index 
λ , at the critical points p of RBGf . Therefore, the index λ  determines the 
topology changes of the Red-Blue-Green systems-battlespace RBGW  (from 
Figure 2). 

As in the case of cobordisms, this 3-party Morse function can be extended to 
address more players (e.g., various groups within Green, various coalition 
partners within Blue and Red, or even a third conflicting Yellow force) in the 
wargame. 

3. Morse (Co)homology of the Systems-Battlespace 

In this section, we move to the realm of (co)homology, which can be 
summarized by Wheeler’s BBZ dictum: “the boundary of a boundary is zero”. 
We explore the systems-battlespace topology changes, using Morse (co)homology 
techniques. We will apply Morse (co)homology to the  
systems-battlespace-cobordism n-manifold W using two approaches, classical 
approach of Morse homology and modern approach of Morse cohomology (see 
the Appendix for the basic (co)homology definitions, all rooted in the BBZ 
dictum). 

3.1. Morse-Smale Homology of the Systems-Battlespace 

The basic Morse theory was further developed into the Morse homology17 by 
three Fields Medalists: R. Thom, S. Smale and J. Milnor. In this section we give a 
brief overview of of Morse homology, applied to the systems-battlespace-cobordism 
manifold W, using the abbreviated Morse-Smale approach (for a detailed 
technical review of Morse homology, see [20]). 

As a background, we summarize and make the qualitative concepts from the 
previous section more precise and, for simplicity, restricted to the Red-Blue 
systems-battlespace. Let RB :f W →   represent a C∞ -smooth Morse function 
on the systems-battlespace-cobordism n-manifold W, equipped with the 

 

 

17Recall that the concept of homology as a rigorous mathematical method for defining and catego-
rizing holes in a manifold was pioneered by Henri Poincaré in his seminal 1895-paper “Analysis si-
tus” [21] (which introduced homology classes and relations; the possible configurations of orientable 
cycles are classified by the Betti numbers, which are refinement of the Euler characteristic of the ma-
nifold). Homology theory was developed as a way to analyze and classify manifolds according to 
their cycles. Informally, a cycle is a closed submanifold, a boundary is a cycle which is also the 
boundary of a submanifold and a homology class (which represents a hole) is an equivalence class of 
cycles modulo boundaries. A non-trivial equivalence class is thus represented by a cycle which is not 
the boundary of any submanifold. A hypothetical manifold whose boundary would be that particular 
cycle is “not there” which is why that cycle is indicative of the presence of a hole. 

https://doi.org/10.4236/ica.2019.101002


V. Ivancevic et al. 
 

 

DOI: 10.4236/ica.2019.101002 26 Intelligent Control and Automation 
 

pseudo-Riemannian metric tensor: ab ab abg A C W= + ∈ . The point  
( ),cx R B W= ∈  is the critical point of RBf  if ( ) ( )RB RB , 0cf x f R B∇ ≡ ∇ =   . 

In local coordinates in a neighborhood of cx  on W,  

( ) ( )1 1 1, , , , , , ,n n n

c c
x x R R B B=    this means ( )RB , 0a

f R B
x

∂
=

∂
 for  

1, ,a n=  . The (finite) set of critical points of RBf  is denoted by Crit( RBf ). 
The Hessian of the Morse function RBf  at a critical point cx  defines a 
symmetric bilinear form:  

( ) ( )
2

2 2 RB
RB RB: , such that :x x c a b

ff x T W T W f x
x x

 ∂
∇ × → ∇ =  

∂ ∂ 
  

on the tangent space xT W  to the systems-battlespace-cobordism manifold at 
the point cx , which is in local coordinates ( )ix x=  represented by the matrix  

of second partial derivatives, 
2

RB
a b

f
x x

 ∂
 
∂ ∂ 

. Index λ  and nullity of the matrix  

( )2
RB cf x∇  are called the index and nullity of the critical point cx  of the 

Morse function RBf . Since W is a compact n-manifold, it is always possible to 
alter a given Morse function RBf  into a self-indexing Morse function, which 
has: ( ) ( )index c cx f x= , for every critical point cx  (for the proof, see [17]). 

We develop the Morse homology of the systems-battlespace-cobordism 
n-manifold W in the following three steps: 

1) On the systems-battlespace manifold W we define the negative gradient 
flow, ( RBf−∇ ), as a map :W Wφ × →  such that:  

( ) ( ) ( )

( ) ( )
RB

1
RB RB RB

, , , ,0 1 ,

where : ,

t W

ab ab
a b ab

x t f x t

f g f f g g

φ φ φ
−

∂ = −∇ ⋅ =  

∇ = ∂ ∂ =
            (3) 

From the work of Smale [22] [23], it follows that for a generic metric g W∈ , 
the corresponding Hessian ( )2

RBf x∇  has only nondegenerate eigenvalues. 
2) Using the negative gradient flow (3), we can decompose the systems-battlespace 

manifold W into a disjoint union of unstable submanifolds,18 ( )uW x , (or 
equivalently, a disjoint union of stable submanifolds, ( )sW x ), using the 
prescription due to R. Thom. Let x be a critical point of the Morse function RBf . 
We define the unstable submanifold, ( )u

xW x , of the point x under the negative 
gradient flow ( f−∇ ), to be the set of all points flowing from the critical point x, 
formally:  

( ) ( ){ }| lim , ,u
x t

W x p W p t xφ
→−∞

= ∈ =  

so ( )u
xW x  is an embedded open disk in W with dimension equal to ( )index x . 

Similarly, we define the stable submanifold, ( )s
xW x , of the point x under the 

negative gradient flow ( f−∇ ), to be the set of all points flowing into the critical 
point x, formally:  

 

 

18A disjoint decomposition of the systems-battlespace manifold W by unstable submanifolds 
( )uW x  formally reads: 

( )
( )

Crit

.u

x f

W W x
∈

=
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( ) ( ){ }| lim , ,s
x t

W x p W p t xφ
→∞

= ∈ =  

so ( )s
xW x  an embedded open disk in W with dimension equal to  

( )indexn n xλ− = − . 
A function is said to be Morse-Smale if the unstable and stable submanifolds 

intersect transversely for any two critical points, x and y of RBf . Here comes the 
Morse--Smale condition: for a generic metric g W∈  the intersection:  

( ) ( ) ( )
RB , , u s

f g g gx y W x W y=   is transverse19. 
1) We can now define the boundary operator ∂  (see Appendix A.2), as:  

( ) ( )
( )

( )
1 RB

RB 1 RB
Crit

: , such that : , ,
y f

C f C f x n x y y
λ

λ λ
−

−
∈

∂ → ∂ = ∑  

where ( ),n x y  is the number of points in the quotient manifold: ( )
RB , , /f g x y  . 

The proof of the BBZ-condition: 2 0∂ = ∂ ∂ =  is based on gluing and 
cobordism arguments (see [20]). The corresponding Morse homology group:  

( ) ( ) ( )Morse
RB Ker Im ,H fλ = ∂ ∂  

states that, for two generic Morse functions ( )RB RB,f fα β , their homology groups 
( )Morse

RBH f α
λ  and ( )Morse

RBH f β
λ  are isomorphic20. Furthermore, for a generic 

RBf  they are isomorphic [17] to the singular homology group (see Appendix 
A.2) of the systems-battlespace manifold W: ( ) ( )Morse sing

RBH f H Wλ λ≅ .  

3.2. Morse-Witten Cohomology of the Systems-Battlespace 

Apart from the “classical” Thom-Smale-Milnor approach to Morse homology, in 
1980s Ed Witten from Princeton (the only physicist who become the Fields 
Medalist) rediscovered in [24] the way of computing the cohomology group 

( )pH M  of an oriented compact Riemannian n-manifold M, in terms of the 
critical points, Crit(f), of a Morse function :f M →  , applying the Hodge-de 
Rham theory (presented in Appendix ). 

Witten’s approach (see [24] [25] [26]) is based on the set/group ( )p M  of 
all harmonic p-forms on M, defined via the Hodge Laplacian ∆  as:  

( ) ( ){ }| 0 .p pM Mω ω= ∈Ω ∆ =  

 

 

19Two curves in a topological space are described as “transverse” if they cross without tangency. 
Since this can be almost always achieved by small perturbations of the metric g W∈ , this means 
that almost all functions on a pseudo-Riemannian manifold W are Morse--Smale. In our case of the 
systems-battlespace manifold W, the requirement on the pair ( )RB ,f g  is called Morse--Smale con-
dition: 

RBf  is a Morse function and for every pair of critical points 
1x  and 

2x , the unstable mani-

fold 
1

u
xW  is transverse to the stable manifold 

2

s
xW . This implies that we can define a flow-line from 

1x  to 
2x  to be a map : Wγ →  such that:  

( ) ( ) ( ) ( )RB 1 2with lim and lim .
t t

t f t t x t xγ γ γ γ
→−∞ →∞

= −∇ = =    For technical details on structurally sta-

ble Morse-Smale dynamical systems, see [27] and the references therein. 
20The construction of the homology isomorphism: ( ) ( )Morse Morse

RB RB:h H f H fα β
αβ λ λ→  for two generic 

Morse functions ( )RB RB,f fα β  uses the “connecting trajectories” which are solutions of the paramete-

rized gradient equation: ( ) RB, ,t tt f αβφ∂ = −∇x  where 
RBtf αβ  is the homotopy connecting 

RBf α  and 

RBf β  (see [28] for technical details).  
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Since every harmonic p-form is closed ( 0 0dω ω∆ = ⇒ = ), we have a linear 
map: ( ) ( )p p

dM H M→ , by taking the de Rham cohomology class 
[ ] ( )p

dH Mω ∈ . The de Rham theorem states that the de Rham cohomology 
( )p

dH M  is isomorphic to the singular homology ( )pH M∂ , as well as to any 
other cohomology with real coefficients, ( ),pH M  . In addition, the Hodge 
theorem states that an arbitrary de Rham cohomology class [ ] ( )p

dH Mω ∈  of 
an oriented compact Riemannian manifold M can be represented by a unique 
harmonic form ω , which means that the natural map: ( ) ( )p p

dM H M→  is 
actually an isomorphism: ( ) ( )p p

dM H M 
. 

We derive the Morse-Witten cohomology for the Red-Blue systems-battlespace 
cobordism n-manifold W in the following four steps: 

1) To start with, we take the Red-Blue Morse function RBf W∈  along with 
the pseudo-Riemannian metric g W∈ , and consider the long de Rham complex 
on W (i.e., the long exact sequence of exterior vector-spaces ( )p WΩ ; see 
Appendix A.2):  

( ) ( ) ( )0 1: 0 0.d d d nW W W∗Ω →Ω →Ω → →Ω →  

The complex ∗Ω  can be decomposed into the direct sum of 
finite-dimensional eigenspaces λ  of the Hodge Laplacian ∆  as:  

( ) ( ) ( ) ( ){ }, where | .p p pW W W Wλ λ
λ

ω ω λω∗Ω = Ω Ω = ∈Ω ∆ =⊕  

The Hodge-de Rham theory (see Appendix A.3) implies the following 
isomorphisms:  

( ) ( ) ( ) ( ), .p p p p
dW W H W H WΩ   

 

2) Next, the very definition of the Hodge Laplacian, d dδ δ∆ = + , implies 
that its product d∆  with the exterior de Rham differential d (as well as with the 
codifferential δ ) is commutative:  

2 2 .d d d d d d d dδ δ δ δ∆ = + = + = ∆  

Therefore, we can restrict the de Rham differential d to dλ  by acting on the 
subcomplex: ( ) ( )1

n p
pW Wλ λ

∗
=Ω = Ω⊕ , and obtain the λ -restricted de Rham 

complex:  

( ) ( ) ( )0 1: 0 0.d d d nW W Wλ λ λ
λ λ λ λ
∗Ω →Ω →Ω → →Ω →  

To prove that the restricted de Rham complex λ
∗Ω  is exact, we note that if 

any p-form ( )p Wλω ∈Ω  is in the kernel of dλ , Ker( dλ ), then 0dλω = ; 
therefore we have:  

( )1 1 1 1 1 .d d d dω λω ω δ δ ω δω δω
λ λ λ λ λ

 = = ∆ = + = =  
 

 

Since ∆  commutes with both d and δ , we see that ( )1 pd Wλδω
λ

 ∈Ω 
 

,  

which means that the complex λ
∗Ω  is exact. From the exactness of the restricted 

de Rham complex λ
∗Ω , it follows that the a-parameterized curve of complexes: 
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( ) ( )n
a aW Wλλ
∗ ∗

≤Ω = Ω⊕  has as its cohomology the set/group ( )p W  of all 
harmonic p-forms on W, for any real 0a > . 

3) We can now introduce Witten’s main idea from [24]: conjugating the de 
Rham differential, ( ) ( )1: p pd W W+Ω →Ω , by multiplication/composition with 

RBetf  (for the Morse function RBf  and some real parameter 0t ≥ ), gives a 
deformed closed coboundary operator, ( ) ( )1: p p

td W W+Ω →Ω , defined by:  
RB RB RB RB2 2e e , e e 0tf tf tf tf

t td d d d− −= = =     

(compare with Equations (11)-(12) in Appendix A.3). The deformed 
differential td  yields the deformed de Rham cohomology, also called the 
Witten cohomology:  

( ) ( ) ( )Ker Im ,p
t t tW d d=  

which is also isomorphic to ( )p
dH W : ( ) ( ) ( ) ,p p p

t dW W H W  
 because 

we are only conjugating the de Rham differential d with RBetf . 
4) The deformed cohomology, ( ) ( ) ( )Ker Imp

t t tW d d= , is computed 
using the Hodge theory, by considering the Witten Laplacian: t t t t td dδ δ∆ = +  
and the decomposition: ( ) ( ), ,pt W t Wλλ

∗Ω = Ω⊕ , where ( ),t Wλ
∗Ω  is the 

eigenspace of t∆ , along with the t-parameterized curve of the chain complexes: 
( ) ( ), ,p

a at W t Wλλ
∗

≤Ω = Ω⊕ , spanned by all eigenforms of t∆  with eigenvalues 
aλ ≤ . The t-parameterized curve of the chain complexes: ( ),a t W∗Ω , generated 

by the Witten Laplacian t∆  gives both the Morse-Witten cohomology 
( )p

t W  and its dual, the deformed homology ( )t
p W  of the Red-Blue 

systems-battlespace cobordism n-manifold W, as follows. Namely, Witten stated 
in [24] that if the parameter t is large enough (i.e., t →∞ ), the dimension of 
these chain complexes will be independent of t, and can be denoted by 

( ),a W∗Ω ∞ . This independence implies the following two properties of the set 
Crit( RBf ) of critical points of the Red-Blue Morse function RBf : 
 The dimension, ( )dim ,p

a W Ω ∞   = number of critical points of RBf  of 
index p, i.e., the subset of Crit( RBf ) of index p21;  

 Any deformed boundary operator t∂  induced as a dual by td  on 
( ),p

a WΩ ∞  is carried by the connecting orbits of the negative gradient flow 

RBf−∇  (see previous subsection) from the critical points of RBf  of index p 
down to those of index ( 1p + ).  

In this way, Witten’s deformed cohomology, ( )p
t W , generated by the 

deformed Laplacian, t t t t td dδ δ∆ = + , induces its dual, the deformed homology 
( )t

p W  of the Red-Blue systems-battlespace cobordism n-manifold W. 

4. Conclusions 

Modern warfare, compared with its historical precedents, is marked by a shift 
from large-scale annihilation along defined fronts, and relatively little regard for 

 

 

21Note that in the previous subsection, the points on the manifold W were labeled by p and their 
Morse index by λ . However, in this subsection, the symbol λ  is reserved for the eigenvalues of 
the Laplacian 

t∆ , while p is reserved for the rank of the (co)homology groups. 
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neutral parties caught in the situation, to aims of causing system failure that 
undercuts an opposition’s ability or willingness to fight, simultaneous conflict 
occurring across multiple domains without definable lines, and foundational 
international and national legal and social expectations about human, 
environmental and social consequences of armed conflict. Indeed, in contemporary 
conflict, social and humanitarian concerns can often both motivate confrontation 
and decide operational success. Arguably, this shift has been driven by a complex 
interwoven web of technological developments, social change, and legal, moral 
and ethical constraints, which first came to the fore in the modern sense during 
the soul-searching in post-Napoleonic Europe that simultaneously yielded the 
basis for both the modern professional military force and international 
humanitarian law. The combined effect of these factors is extreme nonlinearity, 
which makes approaches to modeling war and battle that represent simple 
attrition largely obsolete. 

In this paper, we have extended the previously developed kinetic 
TCW-framework, to include non-kinetic effects, by addressing the general 
systems-confrontation, which means that our modeling of armed conflict 
includes interaction not only in the traditional physical Air-Land-Sea domains, 
but also in non-physical cyberspace, electromagnetic, psychological and 
social-network domains. In addition, we extend the TCW framework with the 
ability to represent “Green” neutral parties as richly as the main “Blue” and “Red” 
adversaries, and extend this to many factions, including coalition partners in 
Blue and Red and factions within Green, or even to situations with three or more 
main adversaries. In our formulation, Green may hold the ability to decide 
operational success from conflict between Blue and Red. This paper attempts to 
address this generic scenario representative of modern war and battle conditoins 
using rigorous methods and techniques from modern topology, specifically, by 
extending the kinetic Red-Blue scenario into this more general kinetic + 
non-kinetic Red-Blue-Green scenario. In particular, we have focussed here on 
the question of dramatic changes in the topology of the systems-battlespace, 
which appears as non-equilibrium phase transitions occurring at the battlefield 
at various stages of warfare, and is usually superficially characterized by sudden 
entropy growth. Such sudden changes have been long recognised as central 
features of war and battle; we thus have new modeling machinery with which to 
study their occurrence and effects. 

We have performed a two-level topological analysis of the systems-battlespace. 
We have started gently with a largely intuitive analysis of the systems-battlespace 
topology using visual cobordisms and Morse functions. Then, we performed a 
rigorous topological analysis of the systems-battlespace by deriving its 
(co)homological invariants. Specifically, we derived the Morse-Smale homology 
and the Morse-Witten cohomology of the systems-battlespace manifold. All the 
necessary geometrical and topological background is given in the self-content 
and comprehensive Appendix, which provides the Hodge-de Rham theory 
based on the Stokes theorem. 
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Appendix: From Stokes-De Rham to Hodge Theory 

Here we give a brief introduction to the Stokes-de Rham theory on arbitrary 
smooth manifolds, followed by its extension, the Hodge theory on Riemannian 
manifolds, all three standing at the crossroads of differential geometry, algebraic 
topology and modern physics, thus enriching all three disciplines (see [29]). 

A.1. Stokes Theorem and Differential Forms 

At the core of differential geometry (and its application to algebraic topology) 
lies the celebrated Stokes theorem. This fundamental result of modern 
mathematics (see, e.g. [30]) can be “softly” introduced in the following way. 
Recall from multivariable calculus [31] that two differential forms (integrands in 
multiple integrals called the cochains in topology), A  and dA 22, defined in 
the Euclidean ( ),x y -plane 2  (via two smooth functions 2,P Q∈ ) as: 

1-form: P x Q y= +A d d , and 

2-form: Q P x y
x y

 ∂ ∂
= − ∂ ∂ 

dA d d  

are related by the Green theorem in the closed region 2C∈  with the 
boundary C∂ 23:  

,
C C

Q PP x Q y x y
x y∂

 ∂ ∂
+ = − ∂ ∂ 

∫ ∫∫

d d d d  

which can be rewritten as the Stokes theorem:  

C C∂
=∫ ∫A dA                         (4) 

—valid for any exterior differential p-form A  in n  (as well as for all 
oriented24 smooth n-manifolds). 

 

 

22The linear exterior derivative/differential operator d  (also called the coboundary operator, or de 
Rham differential/homomorphism) represents a generalization of ordinary vector differential oper-
ators (grad, div and curl; see [32] [33]) that transforms p-forms w  into (p + 1)-forms dw , with 
the fundamental closure property: the boundary of a boundary is zero (BBZ; see [34] [35]); formally, 
the exterior differential d  is nilpotent: 2 0≡ =d d d . For example, in 3  we have: 1) any scalar 
function ( ), ,f f x y z=  is a 0-form; 2) the gradient f =d w  of any smooth function f is a 1-form 

;f f ff x y z
x y z
∂ ∂ ∂

= = + +
∂ ∂ ∂

w d d d d  3) the curl =a dw  of any smooth 1-form w  is a 2-form 

;R Q P R Q Py z z x x y
y z z x x y

   ∂ ∂ ∂ ∂ ∂ ∂ = = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    
a dw d d d d d d  if 0.f f= ⇒ = =w d a dd ; 4) the 

divergence =b da  of any smooth 2-form a  is a 3-form  

; if 0.A B C x y z
x y z

 ∂ ∂ ∂
= = + + = ⇒ = = ∂ ∂ ∂ 

b da d d d a dw b ddw  For any two smooth functions 

( ), ,f f x y z=  and ( ), ,g g x y z= , the exterior derivative d  (see, e.g. [7] and the references 

therein) obeys Leibniz rule: ( )fg g f f g= +d d d , and chain rule: ( )( ) ( )g f g f f′=d d . 
23The integration domain C is in topology called a chain, and C∂  is a 1D boundary of a 2D chain 
C. In general, C∂  is a (p − 1)-boundary of a p-chain C, governed by the BBZ property: 

( ) 0C∂ ∂ = , or formally 2 0∂ ∂ = ∂ = . Because of the common BBZ property, chains are dual to 
differential forms. 
24An orientation on an n-manifold is given by a nowhere vanishing exterior n-form. 
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The integrands A  and dA  in the Stokes theorem (4) are the special 1D 
and 2D cases of general exterior differential p-forms, which are completely 
antisymmetric covariant tensors of rank p in n  (for p n≤ ). Their “exterior 
calculus” can be introduced in the following “way of physics” where the most 
frequently used Euclidean n  space is 4 . Here in 4 , given the frame: 
{ }i∂ 25 and its dual coframe: { }ixd , we can define the vector space of all p-forms, 
denoted ( )4pΩ   for 4p ≤ , using the exterior derivative operator,  

( ) ( )4 1 4:i p p
i x += ∂ Ω →Ω d d , which is governed by the BBZ closure-property: 

2 0= =d d d ; so that we have the following four p-forms (defined using 
Einstein’s summation convention over repeated indices , , , 4i j n =

): 
1-form-generalizing Green’s 1-form P x Q y+d d :  

( )1 4 .i
iA x= ∈Ω A d  

For example, in 4D electrodynamics, A  represents the electromagnetic 
(co)vector potential. 

2-form-generalizing Green’s 2-form ( )x yQ P x y∂ − ∂ d d :  

( )2 4= ∈Ω B dA , 

with components: 

1
2

i j
ijB x x= ∧B d d , 

or 
j i

j iA x x= ∂ ∧B d d , 

so that 
2 .ij j i i j j i jiB A A A B= − ∂ = ∂ − ∂ = −  

where ∧  represents the exterior product26. 
3-form 

( ) ( )3 40= = = ∈Ω C dB ddA , 

with components: 

1
3!

i j k
ijkC x x x= ∧ ∧C d d d , 

or 

 

 

25In a smooth n-manifold M with local coordinates { }, 1, ,ix i n= 
 and the tangent and cotangent 

bundles, TM  and T M∗ , respectively, we can define the orthonormal basis of vectorfields called 
the frame: { }ii x TM∂ ≡ ∂ ∂ ∈ , and its dual, the orthonormal basis of covector fields (or 1-forms) 

called the coframe: { }ix T M∗∈d . 
26In general, given a p-form ( )p n∈Ω a  and a q-form ( )q n∈Ω b , their anticommutative exte-

rior (or wedge, or Grassman) product is a (p + q)-form ( ) ( )41 pq p q+∧ = − ∧ ∈Ω a b b a ; e.g., if we 

have two 1-forms, i
ia x=a d , and i

ib x=b d , their wedge product ∧a b  is a 2-form a  given by: 

.i j j i
i j j ia b x x b a x x= ∧ = ∧ = − ∧ = − ∧a a b d d d d b a  The exterior product ∧a b  of two p-forms is 

related to the exterior derivative i
i x= ∂d d , by ( ) ( )1 .p

∧ = ∧ + − ∧d a b da b a db  
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[ ]
k i j

k ijB x x x= ∂ ∧ ∧C d d d , 

so that 

[ ]6ijk k ijC B= − ∂ , 

where [ ]ijB  is the skew-symmetric part of ijB . 
For example, in the 4D electrodynamics, B  represents the field strength 

2-form Faraday (usually denoted by F ), which satisfys the sourceless magnetic 
Maxwell’s equation,  

Bianchi identity: 0=dB , in components: 

[ ] 0k ijB∂ = , 

where the square bracket [ ]ij  denotes the antisymmetric part of the covariant 
tensor ijB : 

[ ] ( )1 .
2 ij jiijB B B= −  

4-form 

( ) ( )4 40= = ≡ ∈Ω D dC ddB , 

with components: 

1
4!

i j k l
ijklD x x x x= ∧ ∧ ∧D d d d d , 

or 

[ ]
l i j k

l ijkC x x x x= ∂ ∧ ∧ ∧D d d d d , 

so that 

[ ]24 .ijkl l ijkD C= − ∂  

These are all possible p-forms in 4  and D  is called the top-ranked form. 
Generalization to higher-dimensions is straightforward: for 5n = , we have 

the Kaluza-Klein-type Euclidean space 5 , in which the top-ranked form is:  

( ) ( )5 50= = ≡ ∈Ω E dD ddC  

with components: 

1
5!

i j k l m
ijklmE x x x x x= ∧ ∧ ∧ ∧E d d d d d , 

or 

[ ]
m i j k l

m ijklD x x x x x= ∂ ∧ ∧ ∧ ∧E d d d d d , 

so that 

[ ]120ijkl l ijkE D= − ∂ , 

etc. 
In such a way introduced exterior calculus of p-forms enables generalization 

of the Green theorem (and all other integral theorems from vector calculus) to 
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the general Stokes theorem for any p-form w , defined in an oriented domain C 
in the Euclidean space n  as:  

.
C C∂

=∫ ∫w dw                          (5) 

Furthermore, a nonlinear generalization of the Stokes theorem (5) to any 
oriented smooth manifold provides the general machinery for integration on 
smooth manifolds. It is based on the fundamental de Rham’s duality between 
p-forms and p-chains, described in the dual language of (co)cycles and 
(co)boundaries, as follows. 

Notation change: to improve the flow of the paper, we drop boldface letters 
from now on. 

On a smooth n-manifold M, a cycle is a finite p-chain27 ( )pC M∈  such 
that 0C∂ =  and a boundary is a p-chain B such that B C= ∂  for some (p + 
1)-chain ( )1pC M+∈ . Its dual, a cocycle (i.e., a closed form) is a p-cochain 

( )p Mω∈Ω  such that 0dω =  and a coboundary28 (i.e., an exact form) is a 
p-cochain ω  such that dω θ= , for some (p − 1)-cochain ( )1p Mθ −∈Ω . All 
exact forms are closed, i.e., all coboundaries are cocyles ( 0d d ddω θ ω θ= ⇒ = = ) 
and all boundaries are cycles ( 0B C B C= ∂ ⇒ ∂ = ∂∂ = ). Converse is true only 
locally (by the Poincaré lemma29); it holds globally only for contractible 
manifolds (including n  and star-shaped spaces). 

Integration on a smooth manifold M should be thought of as a nondegenerate 
bilinear pairing ,  between p-forms and p-chains (spanning a finite domain 
on M). The duality of p-forms and p-chains on M is based on the de Rham 
period, the cycle,cocycle -pairing:  

Period : : , ,
C

Cω ω= =∫  

where C is a cycle, ω  is a cocycle, and ( ),C Cω ω=  is their inner product 
( ) ( ), : p

pC M Mω Ω × →   (see [30] [32]). From the Poincaré lemma it 
follows that a closed p-form ω  is exact iff , 0C ω = . 

Naturally, this fundamental topological duality is rooted in the Stokes 
theorem (5), as:  

 

 

27A p-chain C is a formal sum of the form: i ii
C c N=∑ , where 

iN  are smooth oriented pD sub-

manifolds of M and 
ic  are coefficients (which can be either integers, real or complex numbers). Its 

boundary C∂  is a (p − 1)-chain, formally defined as: i ii
C c N∂ = ∂∑ . The chains and their bounda-

ries are rigorously defined in simplicial and singular homology theories (see [36] [37]). 
28For this reason, the exterior differential d is also called the coboundary operator. 
29In general, a p-form β  is called closed if its exterior derivative i

id dx= ∂  is equal to zero, 

0dβ = . From this closure-condition one can see that the closed form, which is the kernel of the ex-
terior derivative operator d, is a conserved quantity. Therefore, closed p-forms possess certain inva-
riant properties, corresponding to the conservation laws in physics (see e.g., [38]). Also, a p-form 
β  that is an exterior derivative of some (p − 1)-form α , that is, dβ α= , is called exact, which is 

the image of the exterior derivative operator d. By the Poincaré lemma, exact forms prove to be 
closed automatically: 0d ddβ α= = . Since 2 0d = , every exact form is closed. The converse is only 
partially true by the Poincaré lemma: every closed form is locally exact. In particular, there is a 
Poincaré lemma for contractible manifolds: any closed form on a smooth contractible manifold is 
exact. The Poincaré lemma is a generalization and unification of two well-known facts in vector cal-
culus: 1) If curl 0F = , then locally gradF f= ; 2) If div 0F = , then locally curlF g= , for some 
scalar field f and some vector field g. 
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C C
dω ω

∂
=∫ ∫ , symbolically written as: , ,C C dω ω∂ =          (6) 

where C∂  is the boundary of the p-chain C oriented on M coherently with C. 
While the boundary operator ∂  is a global operator, the coboundary operator d 
is local, and thus more suitable for applications. The dual BBZ-closure property:  

2 20 0,d d d≡ = ⇔ ∂ ∂ ≡ ∂ =   

is proved using the Stokes’ theorem (6), in period notation as:  
0 00

2 20 , , , 0,C C d C dω ω ω
= ==

= ∂ = ∂ = =
 



 

or, in integral notation as: 

2
20 0.

C C C
d dω ω ω

∂ ∂
= = = =∫ ∫ ∫  

A.2. De Rham’s (Co)chain Complex and (Co)homology 

In the Euclidean 3D space 3  we have the following short exact sequence30, 
called short de Rham cochain complex:  

( ) ( ) ( ) ( )0 3 1 3 2 3 3 3
grad curl div0 0.d d d→Ω →Ω →Ω →Ω →     

Using the BBZ-closure property: 30d d = ∈  , we obtain the standard 
identities from vector calculus:  

( ) ( )curl grad 0 and div curl 0.= =  

As a duality in 3 , we also have another short exact sequence, called short 
chain complex:  

( ) ( ) ( ) ( )3 3 3 3
0 1 2 30 0.∂ ∂ ∂← ← ← ← ←        

Its own BBZ-closure property: 30∂ ∂ = ∈   implies the following three 
boundaries:  

( ) ( ) ( )1 0 1 2 1 2 3 2 3, , ,C C C C C C C C C
∂ ∂ ∂

= ∂ = ∂ = ∂    

where 0 0C ∈  is a 0-boundary (or, a point), 1 1C ∈  is a 1-boundary (or, a 
line), 2 2C ∈  is a 2-boundary (or, a surface), and 3 3C ∈  is a 3-boundary (or, 
a hypersurface). Similarly, the de Rham complex implies the following three 
coboundaries:  

( ) ( ) ( )0 1 0 1 2 1 2 3 2, , ,
d d d

C C d C C C d C C C d C= = =    

where 0 0C ∈Ω  is 0-form (or, a function), 1 1C ∈Ω  is a 1-form, 2 2C ∈Ω  is a 
2-form, and 3 3C ∈Ω  is a 3-form. 

 

 

30A short exact sequence of three vector spaces, or groups ( ), ,A B C , is governed by two linear 

maps, or homomorphisms, :f A B→  (which is injective, or “one-to-one” map) and :g B C→  

(which is surjective, or “onto” map), and is written: 0 0f gA B C→ → → → , so that 
( ) ( )Im KerB f g= = , that is, the middle space/group is both the image of the previous map and the 

kernel of the subsequent map. In general, a (long) exact sequence is a sequence of maps/homomor- 
phisms: 

1:i i if A A+→  between a sequence of spaces/groups ( )iA  that satisfies the exactness con-
dition: ( ) ( )1Im Keri if f += . 
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These two short (co)homological constructions are, according to de Rham 
[32], generalized to any smooth n-manifold M, as the following two (mutually 
dual) long complexes:  
 The de Rham cochain complex A•  given by (see [29]):  

( ) ( ) ( ) ( )
( )

0 1 2 3: 0

0,

d d d

d d n

A M M M M

M

• → Ω →Ω →Ω →Ω

→⋅⋅⋅→Ω →
 

satisfying the closure property on M: 2 0d d d≡ = , where ( )n nA M A•= Ω ∈  
is the vector space over   of all finite cochains ω  on the manifold M and 

( ) ( )1:n n nd d M M+= Ω →Ω . 
 The chain complex A•  given by (see [36] [37]): 

( ) ( ) ( ) ( )
( )

0 1 2 3: 0

0,n

A M M M M

M

∂ ∂ ∂
•

∂ ∂

← ← ← ←

←⋅⋅⋅← ←

   


 

satisfying the closure property on M: 2 0∂ ∂ ≡ ∂ = , where ( )n nA M A•= ∈  is 
the vector space over   of all finite chains C on the manifold M and 

( ) ( )1:n n nM M+∂ = ∂ →  .  
The de Rham cochain complex A•  generates the de Rham cohomology, the 

functional space of closed p-forms modulo exact (p-1)-forms on a smooth 
manifold. More precisely, the subspace of all closed p-forms (or, cocycles) on a 
smooth manifold M, denoted by ( ) ( )p p

dZ M M⊂ Ω , is the kernel, ( )Ker d , of 
the exterior derivative d-operator (also called the de Rham d-homomorphism31); 
the sub-subspace of all exact p-forms (or, coboundaries) on M is the image, 

( )Im d , denoted by ( ) ( )p p
d dB M Z M⊂ . The quotient vector space32 

( ) ( )Ker Imd d , defined as33: 

( ) ( )
( )

{ }
( ){ }

( ) ( )
( ) ( )

1

1

Ker :-cocycles
: ,

1 -coboundaries Im :

p pp
dp

d p p p
d

d M MZ M p
H M

B M p d M M

+

−

 Ω →Ω = = =
−  Ω →Ω 

(7) 

 

 

31Given two groups ( ),G ∗  and ( ),H ⋅ , a group homomorphism from ( ),G ∗  to ( ),H ⋅  is a func-

tion :h G H→  such that for all ,x y G∈  we have the identity: ( ) ( ) ( ).h x y h x h y∗ = ⋅ . Therefore, 
h maps the identity element 

Ge  of G to the identity element 
He  of H (and it also maps inverses to 

inverses in the sense that ( ) ( ) 11h x h x −− = ). Hence, we say that h is compatible with the group 

structure. The kernel, ( )Ker h , of a group homomorphism :h G H→  consists of all those ele-

ments of G which are sent by h to the identity element 
He  of H, that is: ( ) ( ){ }Ker : Hh x G h x e= ∈ = . The 

image, ( )Im h , of a group homomorphism :h G H→  consists of all elements of G which are sent 

by h to H, that is: ( ) ( ){ }Im :h h x x G= ∈ . 
32A quotient space in topology is obtained by identifying (or, “gluing”) certain points (specified by a 
certain equivalence relation) of a given manifold. In our case, the equivalence relation is 
“(co)homologous”, which means belonging to the same (co)homology class. 
33Cohomology classifies topological spaces by comparing two subspaces of pΩ : 1) the space of p- 
cocycles, ( ) Kerp

pZ M d= , and 2) the space of p-coboundaries, ( ) 1Imp
pB M d −=  so that every 

p-coboundary is a p-cocycle: ( ) ( ) ( ) ( )2
1 10 Im Ker .p p

p p p pd d d d B M Z M d− −= = ⇒ = ⊂ =
;  

Whether the converse of this statement is true, according to Poincaré lemma, depends on the partic-
ular topology of the manifold. If every p-cocycle is a p-coboundary, so that pB  and pZ  are equal, 
then the cochain complex is exact at ( )p MΩ . Otherwise, the pth cohomology group  

( ) ( ) ( )=p p pH M Z M B M  measure the failure of exactness (see, e.g. [39] and the references 
therein). 
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is called the pth de Rham cohomology group of a manifold M, which is a 
topological invariant of M. Two p-cocycles ( ), p Mα β ∈Ω  are cohomologous, 
or belong to the same cohomology class, [ ] ( )p

dH Mα ∈ , if they differ by a (p − 
1)-coboundary, ( )1pd Mα β θ −− = ∈Ω . The dimension ( )dim p

p db H M =    
of the de Rham cohomology group ( )p

dH M  of the manifold M is called the 
Betti number pb . 

Its dual, the chain complex A•  generates the chain homology, the functional 
space of p-cycles modulo (p + 1)-boundaries on a smooth manifold. The 
subspace of all p-cycles on a smooth manifold M is the kernel, ( )Ker ∂ , of the 
∂ -operator, denoted by ( ) ( )p pZ M M∂ ⊂  , and the sub-subspace of all 
p-boundaries on M is the image, ( )Im ∂ , of the ∂ -operator (also called the ∂
-homomorphism), denoted by ( ) ( )p pB M M∂ ⊂  . Two p-cycles 1 2, pC C ∈  
are homologous, if they differ by a (p + 1)-boundary ( )1 2 1pC C B M+− = ∂ ∈ . 
Then 1C  and 2C  belong to the same homology class, [ ] ( )pC H M∂∈ , where 

( )pH M∂  is the homology group of the manifold M, the quotient vector space 
( ) ( )Ker Im∂ ∂ , defined as:  

( ) ( )
( )

{ }
( ){ }

( ) ( )
( ) ( )

1

1

Ker :-cycles
: ,

1 -boundaries Im :
p pp

p
p p p

M MZ M p
H M

B M p M M

∂
−∂

∂
+

 ∂ → = = =
+  ∂ → 

 

 
 

where pZ  is the vector space of cycles and p pB Z⊂  is the vector space of 
boundaries on M. The dimension ( )dimp pb H M∂ =    of the dual homology 
group ( )pH M∂  is, by the de Rham theorem34, the same Betti number pb . 

If we know the Betti numbers for all (co)homology groups of the manifold M, 
then we can calculate the Euler-Poincaré characteristic of M as:  

( ) ( )
0

1 .
n p

p
p

M bχ
=

= −∑  

The de Rham cohomology (7) serves as the “model” for all other 
cohomologies (see [29]). For example, the complexification of ( )p

dH M  on a 
complex manifold  , based on the decomposition of the exterior derivative in 
terms of Dolbeault’s operators: d = ∂ + ∂ 35, (see Appendix in [4]), is the 
Dolbeault cohomology group, ( ),p qH∂  , the quotient vector space 

( ) ( )Ker Im∂ ∂ , defined as:  

( )
( ){ }

( ){ }
( ) ( )
( ) ( )

, , 1
,

, 1 ,

Ker :, -cocycles
.

, 1 -coboundaries Im :

p q p q
p q

p q p q

p q
H

p q

+

∂ −

 ∂ Ω →Ω = =
−  ∂ Ω →Ω 

 


 
 

A.3. Hodge Theory Basics 

Specialization of the exterior Stokes-de Rham theory, from arbitrary smooth 

 

 

34The de Rham theorem states that the period map: n
n dH H∂ × →  given by [ ] [ ]( ), ,C Cω ω→  

for 
nC Z ∂∈  and n

dZω∈  is a bilinear nondegenerate map which establishes the duality of the 
(co)homology groups 

nH ∂  and n
dH  and the equality of the Betti numbers: n

nb b= . 
35The closure relation between these three derivative operators reads: 

( ) ( ) ( )2 2i i i 0.d ∂∂ = ∂ + ∂ ∂∂ = ∂ ∂ − ∂∂ =  
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manifolds to a compact (i.e., closed and bounded), oriented Riemannian 
n-manifold M with the metric tensor ijg 36, enables definition of the Hodge 
operators (star, inner product, codifferential, Laplacian and adjoints) and the 
subsequent formulation of the Hodge decomposition theorem, as follows. 

Hodge star  . The Hodge star operator ( ) ( ): p n pM M−Ω →Ω  maps any 
p-form α  into its dual ( )n p− -form α  on an n-manifold M. It is the 
linear operator defined locally in the coframe { }iie dx M∈  as:  

( ) ( )2, 1.i j ke e e∧ = =   

The star   commutes with the exterior product ∧  and depends on the 
Riemannian metric ijg g=  on M, as well as on the orientation (reversing 
orientation would change the sign). For any two p-forms ( ), p Mα β ∈Ω , the 
star   is defined by the following four properties [32] [40]:  
 ( ) ( )1 p n pα α−= −  ; 
 0 0α α α∧ = ⇒ ≡ ; 
 ( ) ( ) ( )1 2 1 2c c c cα β α β+ = +   ; and 
 α β β α∧ = ∧  , which can be written as a pairing: ,α β µ .  

Here, µ  is the volume form, defined in local coordinates { }ix  on an 
n-manifold M as:  

( ) ( )1det  1 ,n
ijg dx dxµ = ∧ ∧ =                  (8) 

so that the total volume, ( )vol M  on M, is given by:  

( ) ( )vol 1 .
M

M = ∫   

For example, in Euclidean 3  space with global Cartesian ( ), ,x y z  
coordinates, we have:  

, , ,dx dy dz dy dz dx dz dx dy= ∧ = ∧ = ∧    

so that the Hodge dual here corresponds to the standard cross-product in 3 . 
Also, in 4D electrodynamics (expanded below), the 2-form Faraday F has the 

dual 2-form Maxwell F  (see [34]), which satisfies the electric Maxwell 
equation:  

dual Bianchi identity: d F J=  , 

where J  is the 3-form dual of the current 1-form J. 
Hodge inner product. For any two p-forms ( ), p Mα β ∈Ω  with compact 

support on an n-manifold M, the bilinear, positive-definite and symmetric 
Hodge 2L -inner product ( ),α β  is defined as:  

( ) ( ) ( ), , 1 , ,
M M M

α β α β α β β α β α= ∧ = = ∧ =∫ ∫ ∫           (9) 

( ) ( ) ( ) ( ), 0 and , 0 iff 0; , , .α α α α α α β α β≥ = = =   

Thus, operation (9) turns the space ( )p MΩ  into an infinite-dimensional 

 

 

36On a Riemannian n-manifold M, the metric 
ijg g=  is defined in any local frame { }i M∂ ∈  by 

( , 1, ,i j n=  ): ( ), , 0.ij i j ij k ijg g gδ= ∂ ∂ = ∂ =  
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inner-product space. From (9) it follows that for every p-form ( )p Mα ∈Ω  we 
can define the norm functional:  

( ) ( )2 , , 1 ,
M M

α α α α α α α= = ∧ =∫ ∫   

for which the Euler-Lagrange equation becomes the Laplace equation: 0α∆ = . 
For example, the free Maxwell electromagnetic field, F dA=  (where 

i
iA A dx=  is the electromagnetic potential 1-form) has the standard Lagrangian 

(see, e.g. [7] [8] [41]):  

( ) ( )1
2

A F F= ∧  , with the corresponding action: ( ) 1
2

S A F F= ∧∫  , 

which can be rewritten, using the Hodge 2L -inner product (9), as:  

( ) ( )1 ,
2

S A F F= . 

Hodge codifferential δ . 
The Hodge dual (or, formal adjoint) to the exterior derivative  

( ) ( )1: p pd M M+Ω →Ω  on a Riemannian n-manifold M is the linear 
codifferential operator ( ) ( )1: p pM Mδ −Ω →Ω , a generalization of the 
standard divergence, defined by [32] [40]:  

( ) ( ) ( )1 11 , so that 1 .n p npd dδ δ+ += − = −     

That is, if the dimension n of the manifold M is even, then dδ = −   . 
Applied to any p-form ( )p Mω∈Ω , the codifferential δ  gives:  

( ) ( ) ( )1 1 11 , 1 .n p npd d d dδω ω δ ω ω+ + += − = −     

If fω =  is a 0-form (i.e., a scalar function) then 0fδ = . If a p-form α  is 
a codifferential of a (p + 1)-form β , that is α δβ= , then β  is called the 
coexact form. A p-form α  is called coclosed if 0δα = ; then α  is closed (i.e., 

0d α = ) and conversely. 
The Hodge codifferential δ  satisfies the following three rules: 

 2 0δ δ δδ δ= = = , the same as: 2 0d d dd d= = = ; 
 ( ) 11 p dδ += −  ; ( )1 p dδ = −  ; 
 d dδ δ=  ; d dδ δ=  . 

In addition, if α  is a p-form (i.e., ( )p Mα ∈Ω ) and β  is a (p + 1)-form 
(i.e., ( )1p Mβ +∈Ω ) then the following identity holds for the Hodge 2L -inner 
product:  

( ) ( ), , .dα β α δβ=  

The standard application of (co)differentials is classical electrodynamics, in 
which the gauge field is an electromagnetic potential 1-form (which is a 
connection on a ( )1U -bundle):  

A A dx A dx dfµ µ
µ µ= = + , (f is an arbitrary scalar field); 

with the corresponding electromagnetic field 2-form (the curvature of the 
connection A) F dA= , in components given by (see Appendix A.1) 
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1 , with .
2

F F dx dx F A Aµ ν
µν µν ν µ µ ν= ∧ = ∂ − ∂  

Electrodynamics is governed by the Maxwell equations37, which in exterior 
formulation read:  

0 and 4dF F Jδ π= = −  

which in tensor components reads: 

[ ], 0 and , 4 ,F F Jµ
µν µµν η π= = −  

where the comma-subscript denotes the partial derivative and the electric 
current 1-form J J dxµ

µ=  is conserved, by the electric continuity equation:  

0Jδ = , in components: , 0J µ
µ = . 

Hodge Laplacian ∆ . 
The codifferential δ  can be coupled with the exterior derivative d to 

construct the Hodge Laplacian operator ( ) ( ): p pM M∆ Ω →Ω , which is a 
harmonic generalization of the Laplace-Beltrami operator38, given by39:  

( )2 .d d d d dδ δ δ δ δ∆ = + = + = + 
               (10) 

The Laplacian ∆  satisfies the following three rules: 
 ;dδ δ δ δ∆ = ∆ =  
 ;d d d dδ∆ = ∆ =   
 .∆ = ∆   

We remark here that Ed Witten considered in [24] the deformed differential 
operators, td  and tδ , obtained by multiplication/composition with etf  (for 
some Morse function f and a real parameter 0t ≥ ):  

e etf tf
td d−=   , with adjoints: e etf tf

tδ δ −=   ,            (11) 

and deformed Laplacian: t t t t td dδ δ∆ = + . 
For 0t = , 0∆ = ∆  is the Hodge Laplacian (10), whereas for t →∞ , one has 

the following expansion (in a flat neighborhood on an oriented compact 
Riemannian manifold M with local coordinates ix ):  

2
22

,
, ,j

t ii j
i j

ft df t dx
x x
∂  ∆ = ∆ + + ∂ ∂ ∂∑                (12) 

where 
2

i j

f
x x
∂
∂ ∂

 represents the Hessian of the Morse function f and , j
i dx ∂   is  

 

 

37The first, sourceless Maxwell equation, 0dF = , gives vector magnetostatics and magnetodynam-
ics, Magnetic Gauss’ law: div 0=B , Faraday’s law: curl 0t∂ + =B E . The second Maxwell equation 

with source, F Jδ =  (or, d F J= −  ), gives both vector electrostatics and electrodynamics, 
Electric Gauss’ law: div 4πρ=E , Ampère’s law: curl 4t π∂ − = −E B j . 
38Applied to a scalar function f on a Riemannian manifold M with metric 

ijg g= , the Lap-

lace-Beltrami differential operator reads: 
( )

( )( )2 1 det .
det

ij
i jf g g f

g
∇ = ∂ ∂   

39Note that the difference 
Dd δ− = ∂  is called the Dirac operator. Its square ( )22

D d δ∂ = −  also 
equals the Hodge Laplacian: 2

D∆ = ∂ . 
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the commutator of the frame { }i∂  and the coframe { }jdx 40 in M. This 
becomes very large for t →∞ , except at the critical points of f, i.e., where 

0df = . Therefore, the eigenvalues of t∆  will concentrate near the critical 
points of f for t →∞ , and we get an interpolation between de Rham 
cohomology and Morse cohomology. Witten’s deformation is considered in the 
subsection 3.2 above. 

A p-form α  is called harmonic iff: ( )0  0, 0dα α δα∆ = ⇔ = = . 
Thus, α  is harmonic in a compact domain D M⊂  iff α  is both closed 

and coclosed in D. Every harmonic form is both closed and coclosed; as a proof, 
we have: 

( ) ( ) ( ) ( ) ( )0 , , , , , .d d d dα α α δα α δ α δα δα α α= ∆ = + = +  

Since ( ), 0β β ≥  for any form β  then ( ),δα δα  and ( ),d dα α  must 
vanish separately; 

Hence, 0dα =  and 0δα = 41. 
All harmonic p-forms on a smooth manifold M form the vector space 
( )pH M∆ . 

As an example, to translate the notions from standard vector calculus in 3 , 
we first identify scalar functions with 0-forms, field intensity vectors with 
1-forms, flux vectors with 2-forms and scalar densities with 3-forms. Then we 
have the following correspondence: 

Grad →  d: on 0-forms; curl →  d : on 1-forms; 
Div →  δ : on 1-forms; div grad →  ∆ : on 0-forms; 
Curl curl-grad div →  ∆ : on 1-forms. 
We remark here that exact and coexact p-forms ( dα β=  and ω δβ= ) are 

mutually orthogonal with respect to the 2L -inner product (9). The orthogonal 
complement consists of forms that are both closed and coclosed, i.e., of 
harmonic forms ( 0γ∆ = ). 

Hodge adjoints and self-adjoints. If α  is a p-form and β  is a (p + 
1)-form then we have [32] [40]:  

( ) ( ) ( ) ( ), , and , , .d dα β α δβ δα β α β= =           (13) 

This relation is usually interpreted as saying that the two exterior differentials, 
d and δ , are mutually adjoint (or, dual). This identity follows from the fact that 
for the volume form µ  given by (8) we have 0dµ =  and thus: 

( ) 0
M

d α β∧ =∫  . 
Relation (13) also implies that the Hodge Laplacian ∆  is self-adjoint (or, 

self-dual), formally: ( ) ( ), ,α β α β∆ = ∆ , which is obvious, since either side is 
( ) ( ), ,d dα β δα δβ+ . Furthermore, since ( ), 0α α∆ ≥ , with ( ), 0α α∆ =  only 
when 0α∆ = , the Laplacian ∆  is a positive-definite, self-adjoint elliptic 

 

 

40Note that in [24] Witten actually uses the commutator ,i ja a∗    of the fermion creation and an-

nihilation operators in (the Heisenberg picture of) supersymmetric quantum mechanics. 
41Also, given a p-form λ , there is another p-form η  such that the equation: η λ∆ =  is satisfied 
iff for any harmonic p-form γ  we have ( ), 0γ λ = . 
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operator. 
Hodge decomposition theorem. Now we have all the necessary ingredients 

to formulate the celebrated Hodge decomposition theorem (HDT), which states: 
on a compact orientable Riemannian n-manifold M, any exterior p-form (with 
n p≥ ) can be written as a unique sum of an exact form, a coexact form, and a 
harmonic form. Formally, for any p-form ( )p Mω∈Ω , there is a unique exact 
(p − 1)-form ( )1p Mα −∈Ω , a unique coexact (p + 1)-form ( )1p Mβ +∈Ω  and 
a harmonic p-form ( )p Mγ ∈Ω , such that:  

anyform exact coexact harmonic
HDT : .dω α δβ γ= + +  

For the proof, see [32] [40]. 
In physics community, the exact form dα  is called longitudinal, while the 

coexact form δβ  is called transversal, so that they are mutually orthogonal. 
Thus any form can be orthogonally decomposed into a sum of: 1) a harmonic 
form, 2) a longitudinal form, and 3) a transversal form42. 

Since γ  is harmonic, 0dγ = . Also, by Poincaré lemma, ( ) 0d dα = . In case 
ω  is a closed p-form: 0dω = , then the coexact term δβ  in HDT is absent, so 
we have the short Hodge decomposition: dω α γ= + , hence ω  and γ  differ 
by dα . In de Rham’s terminology, ω  and γ  belong to the same 
cohomology class [ ] ( )pH Mω ∈ . Now, by the de Rham theorems it follows 
that if C is any p-cycle, then we have:  

, , ,
C C

C Cω γ ω γ= ⇔ =∫ ∫  

that is, γ  and ω  have the same periods .  More precisely, if ω  is any closed 
p-form, then there exists a unique harmonic p-form γ  with the same periods as 
those of ω  (see [32] [33]). 

Our final statement in this section is the Hodge-Weyl theorem [32] [40], 
which states that every de Rham cohomology class [ ] ( )pH Mω ∈  has a unique 
harmonic representative ( )pH Mγ ∆∈ . In other words, the space ( )pH M∆  of 
harmonic p-forms on a Riemannian manifold M is isomorphic to the de Rham 
cohomology group (7), or ( ) ( )p p

dH M H M∆ ≅ . This means that the harmonic 
part γ  of the HDT depends only on the topology of the manifold M. In this 
way, Hodge theory provides the efficient methodology for computing de Rham’s 
cohomology and its dual-singular homology. 

 

 

 

42For example, in fluid dynamics, any vector-field v can be decomposed into the sum of two vec-
tor-fields, one of which is divergence-free, and the other that is curl-free. 
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