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Abstract 

Relative risk is a popular measure to compare risk of an outcome in the ex-
posed group to the unexposed group. By applying the delta method and Cen-
tral Limit Theorem, [1] derives two approximate confidence intervals for the 
relative risk, and [2] approximates the confidence interval for the relative risk 
via the likelihood ratio statistic. Both of these approximations require sample 
size to be large. In this paper, by adjusting the likelihood ratio statistic ob-
tained by [2], a new method is proposed to obtain the confidence interval for 
the relative risk. Simulation results showed that the proposed method is ex-
tremely accurate even when the sample size is small. 
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1. Introduction 

Consider two groups of subjects: exposure group (i = 1) and control group (i = 
2). Let ni be the number of subjects in group i with ip  being the risk of a spe-
cific outcome in group i. Then the random variable iX , which is the number of 
subjects that give the specific outcome in group i, is distributed as Binomial ( in , 

ip ). As defined in [3] and [4], the relative risk of the outcome in the exposure 
group versus the control group is 1 2p pθ = . Note that θ  can be any nonneg-
ative real number. When 1θ < , it suggests that the exposure being considered 
is associated with a reduction in risk, and 1θ >  suggests that the exposure is 
associated with an increase in risk. 1θ =  is generally of interest because it sug-
gests that the exposure has no impact on risk. In general, pi is unknown, but we 
observed xi. Then pi can be estimated by ˆ i i ip x n= . And, therefore, an estimate 
of the relative risk based on the observed sample is 1 2

ˆ ˆ ˆp pθ = . 
Relative risk is a popular measure used in biomedical studies because it is easy 

to compute and interpret, and it is included in standard statistical software 
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output (e.g., in R and SAS). [5] gives a detailed discussion on the application of 
relative risk to failure time data. [6] applies relative risk to study populations 
with differing disease prevalence. [7] compares relative risk with odds ratio, and 
absolute risk reduction in comparing the effectiveness of certain treatments. 

To illustrate the concept of relative risk, let us consider the following example. 
[1] examined the Physicians’ Health Study, which analyzed whether taking aspi-
rin regularly will reduce cardiovascular disease. Data of the study are reported in 
Table 1. 

Out of 11,037 physicians taking aspirin over the course of the study, 104 of 
them had heart attacks. Similarly 189 of 11,034 physicians in the placebo group 
had heart attacks. Based on this dataset, the relative risk of having heart attacks 
among physicians is 

( ) ( )
( ) ( )

5 99 5 99 10933ˆ 0.55.
18 171 18 131 10845

θ
+ + +

= =
+ + +

 

Thus, physicians who took aspirin over the course of the study have 0.55 times 
the risk of having a heart attack as physicians who were in the placebo group. 
This suggests that taking aspirin is associated with a reduction in the risk of 
heart attacks among physicians as they are about half as likely to have a heart at-
tack as physicians who did not take aspirin throughout the study. 

Although reporting a point estimate of relative risk is important, it does not 
provide information about the variations arising from the observed data. Hence, 
in practice, a ( )1 100%α−  confidence interval for θ  is usually reported and 
recommended (see [8]). A standard approximated ( )1 100%α−  confidence 
interval for θ  is given in [1], which is widely implemented in statistical soft-
ware. [2] proposed an alternate way of approximating a ( )1 100%α−  confi-
dence interval for θ  via the likelihood ratio statistic. It is well-known that both 
methods are not accurate when the sample size is small. In this paper, by adjust-
ing the likelihood ratio statistic obtained by [2], a new method is proposed to 
obtain the confidence interval for the relative risk. Simulation results show that 
the proposed method is extremely accurate even when the sample size is small. 

2. Methology 

Let iX , i = 1, 2, be independent random variables distributed as Binomial ( in , 

ip ). Then the relative risk is defined as 1 2p pθ = . A standard estimator of θ  
is ( ) ( )1 1 2 2

ˆ X n X nΘ = . With realizations 1x  and 2x , a standard estimate of 
θ  is ( ) ( )1 1 2 2

ˆ x n x nθ = . [1] considered the parameter lnψ θ= . The corres-
ponding estimator of ψ  is ˆ ˆlnΨ = Θ . By applying the delta method, we have 
 
Table 1. Cross-classification of aspirin use and heart attack. 

Group 
Heart Attack 

Fatal Non-fatal No attack 

Placebo 18 171 10,845 

Aspirin 5 99 10,933 
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( ) ( )ˆ ˆln lnE E θ ψΨ = Θ ≈ =  and ( ) ( ) 2
1

1 1ˆ ˆvar var ln .i
i i in p n=

 
Ψ = Θ ≈ − 

 
∑  

Therefore, an estimate of ψ  is ˆˆ lnψ θ= , and the estimated variance of Ψ̂  is 

 ( ) 2 2
1 1

1 1 1 1ˆvar .
ˆi i

i i i i in p n x n= =

   
Ψ ≈ − = −   

   
∑ ∑  

Hence, when 1n  and 2n  are large, by the Central Limit Theorem, an approx-
imate ( )1 100%α−  confidence interval for lnψ θ=  is: 

 ( )  ( )( )2 2
ˆ ˆˆ ˆln var , ln varz zα αθ θ− Ψ + Ψ  

where 2zα  is the ( ) th1 2 100α−  percentile of the standard normal distribu-
tion. Since ψ  and θ  are one-one correspondence, we have an approximate 
( )1 100%α−  confidence interval for θ  is 

 ( )  ( )2 2ˆ ˆˆ ˆln var ln var
e ,e .

z zα αθ θ− Ψ + Ψ 
 
 

 

The above interval is directly available from R using the riskratio() command. 
Since Θ̂  is a biased estimator of θ , [1] suggests using a modified estimator 

for θ , which takes the form 

( ) ( )
( ) ( )

1 1

2 2

0.5 0.5
0.5 0.5

X n
X n

+ +
Θ =

+ +
  and lnΨ = Θ  . 

The estimated variance of lnΨ = Θ   is 

 ( ) 2
1

1 1var .
0.5 0.5i

i ix n=

 
Ψ ≈ − + + 

∑  

Thus, the corresponding approximate ( )1 100%α−  confidence interval for θ  
is 

 ( )  ( )2 2ln var ln vare ,ez zα αθ θ− Ψ + Ψ 
 
 

  

. 

[2] proposed to construct an approximate ( )1 100%α−  confidence interval 
for θ  based on the likelihood ratio statistic. Since iX  are independently dis-
tributed as Binomial ( in , ip ), the joint log-likelihood function is 

( ) ( ) ( )
2

1 2
1

, ln ln 1 .i i i i i
i

l p p x p n x p
=

 = + − − ∑  

The point ( )1 2ˆ ˆ,p p  that maximizes the log-likelihood function is known as the 
maximum likelihood estimate (MLE) of ( )1 2,p p , which can be obtained by 
solving 

( )1 2

1

,
0

l p p
p

∂
=

∂
 and 

( )1 2

2

,
0

l p p
p

∂
=

∂
. 

In this case, the MLE of ( )1 2,p p  is ( ) 1 2
1 2

1 2

ˆ ˆ, ,
x xp p
n n

 
=  
 

. Moreover, for a given 

θ  value, the point ( )1 2,p p   that maximized the log-likelihood function subject 
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to the constraint 1

2

 
p
p

θ=




 is known as the constrained MLE of ( )1 2,p p . [2] 

gives a numerical algorithm to obtain ( )1 2,p p  . However, by applying the La-
grange multiplier technique, we have the explicit closed form of the constrained 
MLE:  

1 2p pθ=   

and 

( ) ( ) ( ) ( ) ( )( )
( )

2
1 2 2 1 1 2 2 1 1 2 1 2

2
1 2

    4

2

n x n x n x n x x x n n
p

n n

θ θ θ

θ

+ + + − + + + − + +      =
+

  

The observed likelihood ratio statistic is 

( ) ( ) ( )1 2 1 2ˆ ˆ2 , ,w l p p l p pθ = −    . 

With the regularity conditions given in [9], the Wilks Theorem can be applied, 
and hence, ( )W θ  is asymptotically distributed as the chi-square distribution 
with 1 degree of freedom, 2

1χ . Therefore, the approximate ( )1 100%α−  con-
fidence interval for θ  obtained in [2] is 

( ){ }2
1,: w αθ θ χ<  

where 2
1,αχ  is the ( ) th1 100α−  percentile of the 2

1χ  distribution.  
It is well-known that the above methods are not very accurate when the sam-

ple size is small. Although ( )W θ  is asymptotically distributed as 2
1χ  distribu-

tion, except in special cases, ( ) 1E W θ ≠   , which is the mean of the 2
1χ  dis-

tribution. [10] proposed a scale transformation of ( )W θ , such that the mean of 
the transformed statistics is the mean of the 2

1χ  distribution. This transformed 
statistic is known as the Bartlett corrected likelihood ratio statistic. Mathemati-
cally, let the Bartlett corrected likelihood ratio statistic be 

( ) ( )
( )

W
W

E W
θ

θ
θ

∗ =
  

. 

Then ( )W θ∗  is asymptotically distributed as 2
1χ  distribution and 

( ) 1E W θ∗  =  . However, the explicit form of ( )E W θ    is only available in a 
few well-defined problems.  

In this paper, I propose to use the following algorithm to approximate 
( )E W θ    and hence the observed Bartlett corrected likelihood ratio statistic 

( )w θ∗ . 
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Note that the key step of the algorithm is Step 4 where we simulate new data 
from the Binomial distribution where the parameter is chosen to be the con-
strained MLE obtained in Step 2. The reason is that we are trying to obtain a 
sampling distribution of the likelihood ratio statistic ( )W θ , which is a function 
of the θ  value given in Step 2. Hence, constrained MLE is used in Step 4. 

As a final note in this section, the method by [2] is a computationally inten-
sive method because, to obtain the required confidence limits, we need to find 
the smallest θ  value and also the largest θ  value such that ( ) 2

1,w αθ χ= . The 
same needs to be done for the proposed method. However, the [1] methods have 
a closed form expression of the confidence limits, so they are easier to calculate 
and are available in statistical software. 

3. Results 

Our first example is to revisit the dataset discussed in previous section. Table 2 
recorded the 95% confidence interval for the relative risk obtained by the me-
thod discussed in this paper. Since the sample sizes are very large, it is not sur-
prising that all the intervals are very close to each other. 

As for our second example, the number of divorces during 2006 in a random 
sample of Army Reserve and Army Guard couples is reported in [11]. The data 
are presented in Table 3.  

The estimated relative risk is 12 324ˆ 1.51
7 286

θ = = , which indicates that the di-

vorce rate for Army Reserve personnel is higher than the divorce rate of the  
 
Table 2. 95% confidence interval for the relative risk of having heart attacks among phy-
sicians taking aspirin versus physicians taking a placebo. 

Method 95% confidence interval for θ 

Agresti’s method without adjustment (0.4337, 0.6978) 

Agrest’s method with adjustment (0.4348, 0.6990) 

Zhou’s method (0.4323, 0.6961) 

Proposed method (0.4333, 0.6955) 

 
Table 3. The number of divorces during 2006 in a random sample of Army Reserve and 
Army Guard couples. 

Personal Number of couples Number of divorces 

Reserve 324 12 

Guard 286 7 
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Army Guard. Table 4 recorded the 95% confidence interval for the relative risk 
obtained by the method discussed in this paper. Despite the sample sizes being 
relatively large, the results are still quite different.  

For this example, we also calculated the probability that the true relative risk 
is as extreme or more extreme than the estimated relative risk by the four me-
thods discussed in this paper. The results are plotted in Figure 1(a) for small 
true relative risk and Figure 1(b) for large true relative risk. The plots clearly 
showed that the four methods give different results especially when the true rel-
ative risk is large.  

Hence, it is important to investigate which method is more accurate when 
sample size is small. The following simulation studies were performed. 
 

 
 

Note that the proportion of samples with 0θ  less than the lower confidence 
limit is known as the lower error proportion, the proportion of samples with 0θ
larger than the upper confidence limit is known as the upper error proportion, 
and the proportion of samples with 0θ  falling within the confidence interval is 
known as the central coverage proportion. Moreover, the average absolute bias is 
defined as 

lower error proportion 0.025 upper error proportion 0.025
2

− + −
, 

which is a measure of bias of the 95% confidence interval. The nominal values 
for the lower error proportion, central coverage proportion, upper error propor-
tion, and average absolute bias are 0.025, 0.95, 0.025, and 0, respectively. 

Table 5 records the lower error proportion, central coverage proportion, and 
upper error proportion for a sample of simulation studies that I have performed. 
Results for other combinations of 1 1 2, ,n p n  and 2p  are very similar and are 
available upon request. 
 
Table 4. 95% confidence interval for the relative risk of divorce in the Army Reserve ver-
sus the Army Guard. 

Method 95% confidence interval for θ 

Agresti’s method without adjustment (0.6040, 3.7908) 

Agresti’s method with adjustment (0.6035, 3.5881) 

Zhou’s method (0.6174, 4.0177) 

Proposed method (0.6244, 3.8329) 
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Table 5. Lower error proportion (le), central coverage proportion (cc), upper error pro-
portion (ue), and absolute average bias (aab) of the 95% confidence interval for θ with N 
= 10,000 and M = 200. 

n1 p1 n2 p2 Method le cc ue aab 

10 0.4 10 0.6 1 0.0324 0.9676 0 0.0162 

    2 0.0324 0.9676 0 0.0162 

    3 0.0246 0.9555 0.0199 0.0028 

    4 0.0280 0.9488 0.0232 0.0024 

10 0.5 10 0.5 1 0.0070 0.9868 0.0062 0.0184 

    2 0.0070 0.9868 0.0062 0.0184 

    3 0.0237 0.9527 0.0236 0.0013 

    4 0.0244 0.9508 0.0248 0.0004 

20 0.3 25 0.6 1 0.0367 0.9605 0.0028 0.0170 

    2 0.0447 0.9535 0.0018 0.0214 

    3 0.0287 0.9433 0.0280 0.0034 

    4 0.0247 0.9485 0.0268 0.0011 

20 0.8 25 0.8 1 0.0196 0.9678 0.0126 0.0089 

    2 0.0196 0.9678 0.0126 0.0089 

    3 0.0200 0.9582 0.0218 0.0041 

    4 0.0242 0.9466 0.0292 0.0025 

20 0.7 25 0.3 1 0.0054 0.9612 0.0334 0.0140 

    2 0.0030 0.9605 0.0365 0.0168 

    3 0.0234 0.9535 0.0231 0.0018 

    4 0.0270 0.9486 0.0244 0.0013 

50 0.2 50 0.6 1 0.0321 0.9556 0.0123 0.0099 

    2 0.0409 0.9501 0.0090 0.0160 

    3 0.0222 0.9498 0.0280 0.0029 

    4 0.0230 0.9495 0.0275 0.0023 

50 0.7 100 0.4 1 0.0220 0.9492 0.0288 0.0034 

    2 0.0207 0.9505 0.0288 0.0041 

    3 0.0253 0.9454 0.0293 0.0023 

    4 0.0260 0.9465 0.0275 0.0018 

Note: Method 1 = Agresti’s method without adjustment, Method 2 = Agresti’s method with adjustment, 
Method 3 = Zhou’s method, and Method 4 = Proposed method. 
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(a) 

 
(b) 

Figure 1. (a) and (b) show probability that the true relative risk is as extreme or more ex-
treme than the estimated relative risk. 
 

From Table 5, the two methods by [1] do not give satisfactory results. While 
one can argue that they have decent central coverage proportion when the sam-
ple sizes are large, they also have asymmetric tail errors. Moreover, although the 
aim of the adjusted method in [1] is a bias adjustment to the standard point es-
timator, it has little effect on the central coverage proportion, and it has adverse 
effect on the tail errors proportion. [2] method gives good central coverage 
proportion, but the tail errors are asymmetric. The proposed method outper-
formed the other three methods discussed in this paper regardless of the sample 
sizes. 
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4. Conclusion 

In this paper, we demonstrated via simulations that the two methods discussed 
in [1], which are implemented in most standard statistical software, do not have 
good central coverage properties and the tail errors are extremely asymmetric, 
particularly when the sample sizes are small. Thus, practitioners should interpret 
confidence intervals obtained from standard statistical software with caution, 
especially when the sample sizes are small. The likelihood ratio method pro-
posed in [2] has good central coverage, but the tail errors are asymmetric, which 
is still an improvement over [1] methods. In comparison, the proposed modifi-
cation of the likelihood ratio method outperforms the other three methods in 
terms of both central coverage and tail error symmetry even when the sample 
sizes are small. 
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