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Abstract 
In 2012, Gutman and Wagner proposed the concept of the matching energy 
of a graph and pointed out that its chemical applications can go back to the 
1970s. The matching energy of a graph is defined as the sum of the absolute 
values of the zeros of its matching polynomial. Let u and v be the 
non-isolated vertices of the graphs G and H with the same order, respectively. 
Let iw  be a non-isolated vertex of graph iG  where 1,2, ,i k=  . We use 

( )uG k  (respectively, ( )vH k ) to denote the graph which is the coalescence 
of G (respectively, H) and 1 2, , , kG G G  by identifying the vertices u (re-
spectively, v) and 1 2, , , kw w w . In this paper, we first present a new tech-
nique of directly comparing the matching energies of ( )uG k  and ( )vH k , 
which can tackle some quasi-order incomparable problems. As the applica-
tions of the technique, then we can determine the unicyclic graphs with per-
fect matchings of order 2n with the first to the ninth smallest matching ener-
gies for all 211n ≥ . 
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1. Introduction 

Let G be a simple and undirected graph with n vertices and ( )A G  be its adja-
cency matrix. Let 1 2, , , nλ λ λ  be the eigenvalues of ( )A G . Then the energy of 
G, denoted by ( )E G , is defined as [1]  

( )
1

.
n

i
i

E G λ
=

= ∑  

A fundamental problem encountered within the study of graph energy is the 
characterization of the graphs that belong to a given class of graphs having 
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maximal or minimal energy, for example, Trees with extremal energies [2]-[15]; 
Unicyclic graphs with extremal energies [16]-[21]; Bicyclic graphs with extremal 
energies [22] [23] [24] [25]; Tricyclic graphs with extremal energies [26] [27] 
[28]. For more details, they can be found in the recent book [29] and review 
[30]. 

A matching in a graph G is a set of pairwise nonadjacent edges. A matching is 
called k-matching if its size is k. Let ( ),m G k  be the number of k-matching of 
G, where ( ), 0m G k =  for 2k n>     or 0k < . In addition, we assume that 
( ),0 1m G = . 
The matching polynomial of a graph G is defined as  

( ) ( ) ( ) ( )
2

2

0
, 1 , .

n
k n k

k
G G x m G k xα α

  
−

=

= = −∑  

Recently, Gutman and Wagner [31] generalized the concept of graph energy 
and defined the matching energy of a graph G based on the zeros of its matching 
polynomial. 

Definition 1.1. Let G be a simple graph of order n and 1 2, , , nµ µ µ  be the 
zeros of its matching polynomial. Then  

( )
1

.
n

i
i

ME G µ
=

= ∑  

Further, Gutman and Wagner [31] pointed out that the matching energy is a 
quantity of relevance for chemical applications. They arrived at the simple rela-
tion:  

( ) ( ) ( ) ,TRE G E G ME G= −  

where ( )TRE G  is the so-called topological resonance energy of G, in connec-
tion with the chemical applications of matching energy, for more details see [32] 
[33] [34]. 

Similar to the integral formula for the energy of graph, Gutman and Wagner 
[31] have shown a beautiful integral formula for the matching energy of a graph 
G as follows:  

( ) ( )
2

2
20

0

2 1 ln , d .
π

n
k

k
ME G m G k x x

x

  +∞

=

 
=   

 
∑∫               (1) 

Then ( )ME G  is a strictly monotonically increasing function of those num-
bers ( )( ), 0,1, , 2m G k k n=    . In the followings, the method of the qua-
si-order relation “ ” is an important tool of comparing the matching energies 
of a pair of graphs. 

Definition 1.2. Let 1G  and 2G  be two graphs of order n. If  
( ) ( )1 2, ,m G k m G k≤  for all k with 1 2k n≤ ≤    , then we write 1 2G G . 
Furthermore, if 1 2G G  and there exists at least one index j such that 
( ) ( )1 2, ,m G j m G j< , then we write 1 2G G . If ( ) ( )1 2, ,m G k m G k=  for all k, 

then we write 1 2G G . According to the integral formula (1), we have for two 
graphs 1G  and 2G  of order n that  
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( ) ( )1 2 1 2G G ME G ME G⇒ ≤  

( ) ( )1 2 1 2 .G G ME G ME G⇒ <  

In [31], Gutman and Wagner shown that its matching energy coincides with 
its energy if T is a forest. Many properties of the matching energy are analogous 
to those of the graph energy. However, there are some notable differences. Then 
they raised a question: is it true that the matching energy of a graph G coincides 
with its energy if and only if G is a forest? Up to now, the question is still open. 

The study on extremal matching energies is very interesting. In [31], Gutman 
and Wagner characterized the unicyclic graphs with the minimal and maximal 
matching energy. Zhu and Yang [35] determined the unicyclic graphs with the 
first eight minimal matching energies. In [36], Chen and Liu characterized the 
bipartite unicyclic graphs with the first ( )3 4n −    largest matching energies. 
Moreover, Chen et al. [37] determined the unicyclic odd-cycle graphs with the 
second to the fourth maximal matching energies. For bicyclic graph, Ji et al. [38] 
obtained the graphs with the minimal and maximal matching energy. In [39], 
Liu et al. further determined the bicyclic graphs with first five minimal matching 
energies and the second maximal matching energies, respectively. Chen and Shi 
[40] characterized tricyclic graph with maximal matching energy, for more re-
sults about extremal matching energies, see [41]-[47]. 

A fundamental problem encountered within the study of the matching energy 
is the characterization of the graphs that belong to a given class of graphs having 
maximal or minimal matching energy. One of the graph classes that are quite 
interestingly studied is the class of all unicyclic graphs with perfect matchings. 
As far as we are concerned, no results are on this topic. In this paper, we first 
present a new technique of directly comparing the matching energies of ( )uG k  
and ( )vH k  in Section 2 (see Figure 2). As the applications of the technique, 
then we can determine the unicyclic graphs with perfect matchings of order 2n 
with the first to the ninth smallest matching energies for all 211n ≥  in Section 
3. 

For simplicity, if 1G  is isomorphic to 2G , then we write 1 2G G= . If 1G  is 
not isomorphic to 2G , then we write 1 2G G≠ . Let ( )2n  be the set of the 
unicyclic graphs with perfect matchings of order 2n. Let the unicyclic graphs 1A , 

2A , 3A , 4A , *
4A , 5A , 6A , 7A , 8A , 9A  be shown in Figure 1. The following 

theorem is the main result of this paper. 
Theorem 1.1. Let ( )2G n∈  and 211n ≥ . If  

*
1 2 3 4 4 5 6 7 8 9, , , , , , , , ,G A A A A A A A A A A≠ , then  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

*
1 2 3 4 4 5

6 7 8 9

ME A ME A ME A ME A ME A ME A

ME A ME A ME A ME A ME G

< < < = <

< < < < <
.  

2. A New Technique of Directly Comparing the Matching  
Energies of ( )uG k  and ( )vH k   

By Definition 1.2, we can see that the quasi-order method can be used to com-
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pare the matching energies of two graphs. However, if the quantities ( ),m G k  
cannot be compared uniformly, then the common comparing method is invalid, 
and this happens quite often. Recently much effort has been made to tackle these 
quasi-order incomparable problems [35] [39] [40]. 

Let u and v be the non-isolated vertices of the graphs G and H with the same 
order, respectively. Let iw  be a non-isolated vertex of graph iG  where 

1,2, ,i k=  . We use ( )uG k  (respectively, ( )vH k ) to denote the graph which 
is the coalescence of G (repectively, H) and 1 2, , , kG G G  by identifying the 
vertices u (respectively, v) and 1 2, , , kw w w  (see Figure 2). In [14], He et al. 
presented a new method of directly comparing the energies of the bipartite 
graphs ( )uG k  and ( )vH k . In this section, we apply the main idea of this me-
thod to present a new technique of comparing the matching energies of the 
graphs ( )uG k  and ( )vH k  which can be used to tackle these quasi-order in-
comparable problems. 

In this paper, we assume that  

( ) ( ) ( )
2

2

0
, , .

n
n k

k
G G x m G k xα α

  
−

=

= = ∑                (2) 

By Equation (2), we can immediately obtain the following results.  
Lemma 2.1. If two graphs G and H are disjoint, then  

( ) ( ) ( ).G H G Hα α α= ⋅  
  

Lemma 2.2. ([35]) Let ( ) ( )( ),G V G G=   be a graph. If u is a vertex of G, 
then  

( ) ( )
( )

( ).
uv G

G x G u G u vα α α
∈

= − + − −∑  



 

The coalescence of two graphs G and H with respect to vertex u in G and ver-
tex v in H, denoted by u vG H⋅  (sometimes abbreviated as G H⋅ ), is the graph 
obtained by identifying the vertices u and v. Zhu and Yang [35] shown the re-
currence relation of ( )G Hα ⋅  in the following. For convenience of the reader, 
we present a full proof.  

Lemma 2.3. ([35]) Let G H⋅  be the coalescence of two graphs G and H with 
respect to vertex u in G and vertex v in H. Then  

( ) ( ) ( ) ( ) ( ) ( )( ).G H G H v G u H x H vα α α α α α⋅ = − + − − −       

Proof. Using Lemmas 2.1 and 2.2, we can show  

( ) ( )
( )

( )
( )

( )

( ) ( )
( )

( ) ( )

( )
( ) ( )

( )
( )

( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( ) ( )( ).

uw G vt H

uw G

vt H

uw G vt H

G H x G H u G H u w G H v t

x G u H v G u w H v

G u H v t

x G u G u w H v G u H v t

G H v G u H x H v

α α α α

α α α α

α α

α α α α α

α α α α α

∈ ∈

∈

∈

∈ ∈

⋅ = ⋅ − + ⋅ − − + ⋅ − −

= − ⋅ − + − − ⋅ −

+ − ⋅ − −

 
= − + − − ⋅ − + − ⋅ − −  
 

= ⋅ − + − ⋅ − −

∑ ∑

∑

∑

∑ ∑
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Figure 1. The graphs in ( )2n  with the first to the ninth smallest matching energies. 

For each graph iA , the dashed lines denote the copies of 3P  attached to the maximal 
degree vertex. 
 

 
Figure 2. The graphs ( )uG k  and ( )vH k . 

 
From Lemma 2.3, we can get the recurrence relations of the graphs 

( )( )uG kα  and ( )( )vH kα  which is a generalization of the formula for 
( )G Hα ⋅ . 
Lemma 2.4. Let ( )uG k  and ( )vH k  be defined as above (see Figure 2). 

Then we have the followings.  

1) ( )( ) ( ) ( ) ( ) ( )
( )11

;
k k

i
u i i

ii i i

G
G k G w G G u kx

G w
α

α α α α
α==

  
= − + − −    −  

∑∏


   



 

2) ( )( ) ( ) ( ) ( ) ( )
( )11

.
k k

i
v i i

ii i i

G
H k G w H H v kx

G w
α

α α α α
α==

  
= − + − −    −  

∑∏


   



 

Proof. 1) We prove the result by induction on k. When 1k = , by Lemma 2.3 
we have  
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( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 11 ,uG G G G G w G u G x G wα α α α α α α= ⋅ = − + − − −        

which implies that the result holds. We assume that the result holds for 1k −  in 

what follows. For simplicity, we write ( )
( )1

k i
k i

i i

G
h kx

G w
α

α=
= −

−∑




. By Lemmas 

2.1 and 2.3, we can show  

( )( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )(( ) ( )

1

1
1

1

1
1

1
1

1

1 1
u u k

u k k u k k k

k

i i k k k
i

k

i i k k k
i

k

i i k k k
i

G k G k G

G k G w G k u G x G w

G w G G u h G w

G w G u G x G w

G w G G u h G w

α α

α α α α α

α α α α

α α α α

α α α α

−

−
=

−

=

−

−
=

= − ⋅

= − − + − − − −

= − + − −

+ − − − −

= − + − −

∏

∏

∏

 

    

   

   

   

 

( ) ( ) ( )( ))

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

1

1
1

1
1

1
1

k k k

k
k

i i k k k
i k k

k
k

i i k
i k k

k
k

i i k
i k k

G u G G w

G
G w G w G G u h G u x

G w

G
G w G G u h G u x

G w

G
G w G G u h x

G w

α α α

α
α α α α α

α

α
α α α α

α

α
α α α

α

−

−
=

−
=

−
=

+ − − −

  
= − − + − + − −    −  

  
= − + − + − −    −  

  
= − + − + −   − 

∏

∏

∏

  



    





   





  



( ) ( ) ( )( )
1

k

i i k
i

G w G G u hα α α
=


 


= − + −∏   

 

Then we can see that the result holds. 
2) The proof is similar to 1).  
The following lemma illustrates an integral formula for the difference of the 

matching energies of two graphs with the same order which was obtained by 
Zhu and Yang [35].  

Lemma 2.5. ([35]) Let ( ),G xα  and ( ),H xα  be the matching polynomials 
of two graphs G and H with the same order, respectively. Then  

( ) ( ) ( )
( )0

,2 ln d .
π ,

G x
ME G ME H x

H x
α
α

+∞
− = ∫





 

Let 0x > . For simplicity, we write  

( )
( )

( ) ( )
( )1 1

.
k k

i i i i
k

i ii i i i

G G x G w
h kx

G w G w
α α α

α α= =

− −
= − =

− −∑ ∑
  

 

 

From Lemma 2.2, we have 0kh >  and l kh h<  holds for any positive integer 
l k< . 

In what follows, we define two sets M and cM  as follows:  

( ) ( ) ( ) ( ){ }0 | 0M x G u H G H vα α α α= > − − − >     
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( ) ( ) ( ) ( ){ }0 | 0 .cM x G u H G H vα α α α= > − − − ≤     

It is easily checked that ( )0,cM M = +∞ . Furthermore, we write  

( ) ( ) ( )
( ) ( )

k
k

k

G h G u
m x

H h H v
α α
α α

+ −
=

+ −

 

 

 

( ) ( )
( )

.
G u

m x
H v

α
α

−
=

−





 

Combining Lemma 2.4 with Lemma 2.5, we can present a new technique for 
directly comparing the matching energies of two graphs ( )uG k  and ( )vH k  
in the following theorem.  

Theorem 2.2. Let M, cM , ( )km x  and ( )m x  be defined as above. For all 
positive integers 1 l k≤ < , we have  

( ) ( ) ( )( ) ( )( )( )
( ) ( )

πln d ln d
2

ln d ln d .

cl u vM M

c lM M

m x x m x x ME G k ME H k

m x x m x x

+ ≤ −

≤ +

∫ ∫

∫ ∫
 

Proof. By some calculations, we can obtain that  

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

.

k l
k l

k l

k l

k l

G h G u G h G u
m x m x

H h H v H h H v

h h G u H G H v
H h H v H h H v

α α α α
α α α α

α α α α

α α α α

+ − + −
− = −

+ − + −

− − − −
=

+ − + −

   

   

   

   

 

( ) ( ) ( ) ( )
( ) ( )

( )
( )

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

.

k
k

k

k

G h G u G u
m x m x

H h H v H v

G u H G H v
H h H v H v

α α α
α α α

α α α α

α α α

+ − −
− = −

+ − −

− − − −
=

+ − −

  

  

   

  

 

Thus, If x M∈ , then ( ) ( ) ( )l km x m x m x≤ ≤ . If cx M∈ , then  
( ) ( ) ( )k lm x m x m x≤ ≤ . 
Moreover, by Lemmas 2.4 and 2.5, we have  

( )( ) ( )( )( )
( ) ( ) ( )

0

π
2

ln d ln d ln d .

u v

ck k kM M

ME G k ME H k

m x x m x x m x x
+∞

−

= = +∫ ∫ ∫
 

Then the result can be obtained immediately.  
Next, we use the new technique to compare the matching energies of the qua-

si-order incomparable graphs 5A  and 6A , 8A  and 9A  (see Figure 1), re-
spectively. Denote by kC  and kP  the cycle of length k and the path of length 

1k − , respectively. 
Lemma 2.6. If 6n ≥ , then ( ) ( )5 6ME A ME A< .  
Proof. Let G be the graph obtained by attaching a pendent edge to a vertex u 

of 5C . Let H be the graph obtained by attaching a pendent edge and a pendent 
path of length 2 to the vertices w and v of 3C , respectively. Let 

1 2 3 3nG G G P−= = = =  and iw  be the pendent vertex of iG . Then 
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( ) 53uG n A− =  and ( ) 63vH n A− =  (see Figure 1). By some calculations, we 
can show  

( ) 6 4 26 8 1G x x xα = + + +  

( ) ( )4 23 1G u x x xα − = + +  

( ) 6 4 26 7 1H x x xα = + + +  

( ) ( )( )2 31 2 .H v x x xα − = + +  

It follows that  

( ) ( ) ( ) ( ) 7 5 32 9 9 .G u H G H v x x x xα α α α− − − = − − − −     

This implies that M = ∅  and ( )0,cM = +∞ . By Theorem 2.2 and some 
calculations using the software MATLAB, we have  

( ) ( )( )

( )( ) ( )( )( )
( )

( ) ( )
( ) ( )

5 6

30
22 8 6 4 2

30 2 6 4 2

π
2
π 3 3
2

ln d

1 10 23 12 1
ln d

1 9 13 1

0.0248 0.

u v

ME A ME A

ME G n ME H n

m x x

x x x x x
x

x x x x

+∞

+∞

−

= − − −

≤

+ + + + +
=

+ + + +

− <

∫

∫



 

Thus, ( ) ( )5 6ME A ME A< .  
Lemma 2.7. If 211n ≥ , then ( ) ( )8 9ME A ME A< .  
Proof. Let G be the graph obtained by attaching two pendent paths of length 2 

to the same vertex of 4C . Let H be the graph obtained by first attaching a pen-
dent edge to each vertex of 3C  and then attaching a pendent path of length 2 to 
one vertex of 3C . Let u be the vertex of degree 4 in G and v be the vertex of de-
gree 3 in H, respectively. Let 1 2 4 3nG G G P−= = = =  and iw  be the pendent 
vertex of iG . Then ( ) 84uG n A− =  and ( ) 94vH n A− =  (see Figure 1). By 
some calculations, we can get the followings.  

( ) 8 6 4 28 17 12 2G x x x xα = + + + +  

( ) ( ) ( )22 31 2G u x x xα − = + +  

( ) 8 6 4 28 15 8 1H x x x xα = + + + +  

( ) ( )6 4 25 5 1 ,H v x x x xα − = + + +  

which implies that  

( ) ( ) ( ) ( ) ( ) ( )23 2 6 4 21 8 11 1 .G u H G H v x x x x xα α α α− − − = − + + + +     

It follows that M = ∅  and ( )0,cM = +∞ . By Theorem 2.2 and some calcu-
lations using the software MATLAB, we have  
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( ) ( )( )

( )( ) ( )( )( )
( )

( ) ( )
( ) ( )

8 9

2070
2082 6 4 2

2060 2 10 8 6 4 2

5

π
2
π 4 4
2

ln d

1 214 424 2
ln d

1 216 1055 1055 216 1

7.43 10 0.

u v

ME A ME A

ME G n ME H n

m x x

x x x x
x

x x x x x x

+∞

+∞

−

−

= − − −

≤

+ + + +
=

+ + + + + +

− × <

∫

∫



 

Consequently, ( ) ( )8 9ME A ME A< .  

3. Minimal Matching Energies of Unicyclic Graphs with  
Perfect Matchings of Order 2n  

In this section, we will determine the unicyclic graphs with perfect matchings of 
order 2n with the first to the ninth smallest matching energies (i.e., to prove 
Theorem 1.1). 

In what follows, we denote by ( )M G  a perfect matching of a graph G. Let 
( ) 0Ĝ G M G S= − − , where 0S  is the set of isolated vertices in ( )G M G− . We 

call Ĝ  the capped graph of G and G the original graph of Ĝ . For example, the 
capped graphs of 1 2 3 5, , ,A A A A  are shown in Figure 3. 

Let ( )2G n∈ . Denote by ( )G  the edge set of G. It is easy to see that 

( ) ( ) ( )ˆG G M G=   . Thus each k-matching Ω  of G can be partitioned into 

two parts: Ω = Φ Ψ , where ( )ĜΦ ⊆   and ( )M GΨ ⊆ . Let ( ) ( )2k
jr G  be 

the number of ways to choose k independent edges in G such that just j edges are 

in Ĝ . We agree that ( ) ( )0
0 1r G =  and ( ) ( ) ( )2 0 0k

jr G k= < . For example:  

( ) ( )2
0

k n
r G

k
 

=  
 

 and ( ) ( )2
1

2
1

k n
r G n

k
− 

=  − 
. 

Then we have  

( ) ( ) ( ) ( ) ( )2 2

0 2
, ,

k k
k k

j j
j j

m G k r G p r G
= =

= = +∑ ∑               (3) 

where  
2

.
1

n n
p n

k k
−   

= +   −   
 

This is the main method to compute ( ),m G k  of a graph G in what follows. 
 

 
Figure 3. The capped graphs of 1 2 3, ,A A A  and 5A . For each graph, the 
dashed lines denote the copies of 2P  attached to the maximal degree vertex. 
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Let nX  be the star of order n. Let nY  be the graph of order n obtained by 
attaching 3n −  pendent edges to a pendent vertex of 3P . Let nZ  be the graph 
of order n obtained from 4 1 2 3 4P v v v v=  by attaching 5n −  and one pendent 
edges to 2v  and 3v , respectively. In [2] and [31], the following results were 
shown. 

Lemma 3.1. ([2]) Let T be a tree of order 5n ≥ . Then  
( ) ( ) ( ) ( ), , , ,n n nm X k m Y k m Z k m T k≤ ≤ ≤ , and the equalities do not hold for all 

k, where , ,n n nT X Y Z≠  and 0 2k n≤ ≤    .  
Lemma 3.2. ([31]) Suppose that G is a connected graph and T is an induced 

subgraph of G such that T is a tree and T is connected to the rest of G only by a 
cut vertex v. If T is replaced by a star of the same order, centered at v, then the 
quasi-order decreases (unless T is already such a star).  

Let l
nS  be the unicyclic graph of order n obtained by attaching n l−  pen-

dent edges to one vertex of lC . 
Lemma 3.3. ([43]) Let G be a unicyclic graph of order n with a cycle of length 

l. If l
nG S≠ , then l

nG S .  
Let 3

nR  be the graph of order n obtained by attaching 4n −  and one pen-
dent edges to 1v  and 2v  of 3 1 2 3 1C v v v v= , respectively. Let ( )3 , ,C a b c  be the 
unicyclic graph obtained by attaching , ,a b c  pendent edges to 1 2 3, ,v v v  of 

3 1 2 3 1C v v v v= , respectively. Let 3
nQ  be the graph of order n obtained by attach-

ing 4n −  pendent edges to the pendent vertex of ( )3 1,0,0C . The graphs 3
nS , 

3
nR  and 3

nQ  are shown in Figure 4. 
Lemma 3.4. Let G be a unicyclic graph of order 9n ≥ . If 3 3,n nG S R≠ , then 
( ), 2 2 6m G n≥ − .  
Proof. Let G be a unicyclic graph with the unique cycle of length l. We con-

sider the following cases. 
Case 1: 5l ≥ . 
By Lemma 3.10, we have l

nG S . Then  
( ) ( ) ( )( ) ( ), 2 , 2 2 3 5 2 6l

nm G m S n l l n n≥ ≥ − − ≥ − ≥ − . 
Case 2: 4l = . 
Using Lemma 3.10, we can show 4

nG S . So, ( ) ( )4, 2 , 2 2 6nm G m S n≥ = − . 
Case 3: 3l = . 
Denote by ( )Gd u  the degree of the vertex u in G. Let 3 1 2 3 1C v v v v=  be the 

unique cycle of the unicyclic graph G and ( ) ( ){ }| 3, 1, 2,3i G iN G v d v i= ≥ = . 
 

 
Figure 4. The graphs 3

nS , 3
nR  and 3

nQ  in Lemma 3.4. For each graph, the 
dashed lines denote the copies of 2P  attached to the maximal degree vertex. 
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Subcase 3.1: ( ) 1N G = . 
Without loss of generality, we can assume that ( )1 3Gd v ≥ . Let T be the 

rooted tree of order 2n −  with the root 1v  in G. If 2nT X −= , then 3
nG Q=  

( 3
nG S≠ ). Then ( ), 2 3 11 2 6m G n n= − > − . If 2nT Y −= , then  

( ) ( ) ( ) ( ) ( )2, 2 3 ,2 2 3 5 2 2 6nm G n m Y n n n−≥ − + + = − + − + = − . If 2 2,n nT X Y− −≠ , 
then by Lemma 3.8 we have  
( ) ( ) ( ) ( ) ( ) ( )2, 2 3 ,2 3 ,2 3 2 6 3 15 2 6nm G n m T n m Z n n n n−≥ − + ≥ − + = − + − = − ≥ − . 

Subcase 3.2: ( ) 2N G = . 
Without loss of generality, we can assume that ( )1 3Gd v ≥  and ( )2 3Gd v ≥ . 

Let 1T  and 2T  be the rooted tree with the root 1v  and 2v  in G, respectively. 
If 1 2T P=  or 2 2T P= , then by Lemma 3.9 we can show  
( ) ( )3, 2 , 2 2 7nm G m R n≥ = − . Since 3

nG R≠ , we have ( ), 2 2 6m G n≥ − . 
If 1 2T P≠  and 2 2T P≠ , then by Lemma 3.9 we have ( )3 , ,0G C a b  

( 3a b n+ = − ). Thus,  
( ) ( )( ) ( )3, 2 , ,0 , 2 3 2 5 3 13 2 6m G m C a b a b ab n n n n≥ ≥ + + ≥ − + − = − > − . 
Subcase 3.3: ( ) 3N G = . 
According to Lemma 3.9, we have ( )3 , ,G C a b c  ( 3a b c n+ + = − ). Then 

we have 

( )

( )

, 2
3 1 1 1
3 2 3 3

3 12 2 6.

m G a b c ab bc ac
n a b b c a c
n n
n n

≥ + + + + +

≥ − + + − + + − + + −

= − + − −

= − > −

 

Thus we have completed the proof.  
Lemma 3.5. Let ( )2G n∈  and 9n ≥ . If  

*
1 2 3 4 4 5 6 7 8 9, , , , , , , , ,G A A A A A A A A A A≠ , then ( )ˆ , 2 2 6m G n≥ − .  

Proof. We consider the following cases. 
Case 1: Ĝ  is a connected graph. 
Subcase 1.1: Ĝ  is a tree. 
It can easily be verified that 1G A=  as 1

ˆ
nG X +=  and *

3 4 4 6, , ,G A A A A=  as  

1
ˆ

nG Y += . Thus, 1 1
ˆ ,n nG X Y+ +≠ . By Lemma 3.8, we have  

( ) ( )1
ˆ , 2 , 2 2 6nm G m Z n+≥ = − . 

Subcase 1.2: Ĝ  is a connected unicyclic graph. 
It can be shown that 2G A=  as 3ˆ

nG S=  and 9G A=  as 3ˆ
nG R= . Therefore, 

3 3ˆ ,n nG S R≠ . According to Lemma 3.11, we have ( )ˆ , 2 2 6m G n≥ − . 
Case 2: Ĝ  is a unconnected graph. 
Subcase 2.1: Ĝ  is only composed of trees. 
It can be checked that 5 7 8, ,G A A A=  as 2

ˆ
nG X P=  . Then, 2

ˆ
nG X P≠  . 

Let 1Ĝ  be the coalescence of all trees in a way such that 1 1 1
ˆ ,n nG X Y+ +≠ . It is 

clear that ( ) ( )1
ˆ ˆ, 2 , 2m G m G> . Similar to Subcase 1.1, we have  

( )ˆ , 2 2 6m G n> − . 
Subcase 2.2: Ĝ  is composed of trees and unicyclic graphs. 
Let 2Ĝ  be the coalescence of all trees and unicyclic graphs in a way such that 

3 3
2

ˆ ,n nG S R≠ . It is obvious that ( ) ( )2
ˆ ˆ, 2 , 2m G m G> . Similar to Subcase 1.2, we 
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have ( )ˆ , 2 2 6m G n> − . 
Then we have completed the proof.  
From Lemma 3.5, we can immediately derive the following result. 
Lemma 3.6. Let ( )2G n∈  and 9n ≥ . If  

*
1 2 3 4 4 5 6 7 8 9, , , , , , , , ,G A A A A A A A A A A≠ , then 9G A .  

Proof. By Equation (3) and Lemma 3.12, when 2k ≥ , we can get  

( ) ( ) ( ) ( ) ( )

( ) ( )

2 2
2

2
,

4 4ˆ , 2 2 6 .
2 2

k
k k

j
j

m G k p r G p r G

n n
p m G p n

k k

=

= + ≥ +

− −   
≥ + ≥ + −   − −   

∑
 

Furthermore, by some calculations we have  

( ) ( )9

4
, 2 7 .

2
n

m A k p n
k
− 

= + −  − 
 

Then we can see that 9G A .  
Combining Lemma 2.6 with Lemma 2.7, we can show the followings.  
Lemma 3.7. If 211n ≥ , then  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

*
1 2 3 4 4 5

6 7 8 9

ME A ME A ME A ME A ME A ME A

ME A ME A ME A ME A

< < < = <

< < < <
.  

Proof. Using Equation (4) and some calculations, we can get  

( )1,m A k p=  

( ) ( )2

4
, 3

2
n

m A k p n
k
− 

= + −  − 
 

( ) ( )3

4
, 2

2
n

m A k p n
k
− 

= + −  − 
 

( ) ( )4

3 4
, 3

2 2
n n

m A k p n
k k
− −   

= + + −   − −   
 

( ) ( )*
4

3 4
, 3

2 2
n n

m A k p n
k k
− −   

= + + −   − −   
 

( )5

3 4
( , ) 2 3

2 2
n n

m A k p n
k k
− −   

= + + −   − −   
 

( ) ( )6

3
, 3

2
n

m A k p n
k
− 

= + −  − 
 

( ) ( )7

3
, 1

2
n

m A k p n
k
− 

= + −  − 
 

( ) ( )8

2 3
, 2

2 2
n n

m A k p n
k k
− −   

= + + −   − −     

( ) ( )9

4
, 2 7 .

2
n

m A k p n
k
− 

= + −  − 
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It implies that 1 2 3 4 5A A A A A     and 6 7 8A A A  . From Lemmas 2.6 
and 2.7, the result can be easily obtained.  

Proof of Theorem 1.1:  
Proof. The result can follow immediately by Lemmas 3.13 and 3.14. 

4. Conclusions  

In this paper, we first present a new technique of directly comparing the match-
ing energies of ( )uG k  and ( )vH k , which can tackle some quasi-order in-
comparable problems. As the applications of the technique, we then determine 
the unicyclic graphs with perfect matchings of order 2n with the first to the 
ninth smallest matching energies for all 211n ≥ . Furthermore, we can consider 
characterizing the extremal graphs with maximal or minimal matching energy 
for other classes of graphs, e.g. graphs with different parameters. These are our 
work in the future. 

The results presented in this paper are for a fixed graph. In reality, most of the 
graphs or networks are evolving. Some graph invariants have been studied in 
this setting, e.g. the Estrada index of evolving graphs [48]; Laplacian Estrada and 
normalized Laplacian Estrada indices of evolving graphs [49]. Then we can con-
sider studying the matching energy of evolving graphs in the future. 
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