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1. Introduction

In recent years, many people pay attention to the fractional Laplacian. One of the
reasons for this comes from the fact that this operator naturally arises in several
phenomena like flames propagation and geophysical fluid dynamics, or in ma-
thematical finance. About the Fractional Sobolev space we can refer [1] [2]. In

this work, we consider the problem

(-A) u+g(u)=f(x), xeQ,

(1.1)
u=0, xeRV\Q.

where se (0,1) , N>2s, QeR" isabounded domain with Lipschitz boun-
dary. (—A)" as the fractional Laplacian, which defined as

(=) u(x)=ay PV.|, Mdy, (1.2)

N+2s
=yl
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where
o r N+2s
1—c0s(§1)} S 2
ay, = — | =2t (1.3)
ol el
It is worthy to point out that
lirr(}aN)S :O:lin?aN)x, (1.4)

we can refer [3].
For se (0,1), we can also define the fractional Laplacian (—A)s as the oper-
* thatis, for ue S(]RN)

F((-a) u)(&)= 1" Fu)(£), @5)

where we denote by S (RN ) the class of all Schwartz functions in R" .

ator given by the Fourier multiplier |§

We introduce the Sobolev space

H(RY)={ue 2 (RY):|g[ F(u)(£) e 2 (RV)} (1.6)
and the space H; (Q)
Hy (Q)={ueH (Q),u=0acxeR"\Qf, (1.7)

endowed with the norm

o =| 1, OO0, -
> |x-y]

where D, =RYxR¥\CQxCQ, CQ=RY\Q. This space allows us to deal
with the problems proposed in a bounded domain Q, as we need. The pair
(Hg (Q)’”'"Hg(a)) yields a Hilbert space [4]. Moreover, it can be seen that

(-A) :Hy (Q)—> H ™ (Q) (1.9)

is a continuous operator.
Theorem 1.1. Let g:R — R be an increasing locally Lipschitz continuous
2N

function. Let [ e L"(Q),m> 1o Then (1.1) have a unique solution
+2s

ueH, (Q) . Moreover,
g(u)e Ll (Q).

2. Preliminaries

In this section, we give some basic results of fractional Sobolev space H, (Q)
that will be used in the next section.
Definition 2.1 We say that u € H; (Q) is a weak solution to (1.1) if we have

(u(x)-u(¥))(e(x)-2(»))
Il »

D ddy + [ g(u)pdv=[_fedx, (2.10)
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forany @eH; (Q)NL"(Q).
Lemma 2.1. [5] Let N>1 and se (0,1) .Then forall ue H*® (Q) we have

dxdy, (2.11)

L [P )2 dE=ay, Hw

where a,  is the constant defined in (1.3).
Proof. Fixed ywe change coordinates z=x—y and apply Plancherel.
Recalling that (u (-+ z))A (£)=€"7i(&) we obtain

“‘ |u - N+23| drdy = J‘(J‘|Z|—(N+2s) el _1|2dz) 12((:)

& > with

. 2 o
etr(o-«? _ l| der—Zs ldr

fde )

The integral in brackets is of the form ¢,

EY
cN s _[0 J‘SNfl

= 2.[:( sV | - (ZE)N/Z p W22 g

(N-2)/2
where J(N—Z) )2 is the Bessel function of the first kind of order (N —2)/ 2, we

(2.13)

(r)) F g,

can refer [6].
Recall that |SN’1|:2nN/2/F(N/2). The formula (1.3) for ¢, =a,, now

follows from

I((N-22)/4)

© _z _»(N-2)/2 -1 _(N-2)/2 Az
o7 (Y (1) =270 (N2) AR Y dr =2 (v e2)” (2.14)
for N/2<Rez< (N+4)/2 , we can see[5].
Lemma 2.2. [7] For s€(0,1), N >2s, there exists a positive constant
C=C(N,s),forany ueD’ (RN),we have
2
2 |u(x)—u( )|
"u"LZI(]RN) = C'URNXRN Wdﬁi (2.15)

where 2) = is called fractional critical Sobolev exponent. In particular,

—2s
if ueH;(Q) then

)|2

S 216

Lemma 2.3. (Egorov’s theorem) [8] Let fn be a sequence of functions and £
be a function defined on £, with meas(E) <+ . Assume that f, — f a.e. in
E. Then for every & >0 there exists a measurable subset A of £'such that
meas(E\A)<¢& and f, — f uniformly on Aas n—o.

Lemma 2.4. (Vitali) [9] Let f, be asequence of functions and fbe a function
in 17 (Q) . Assume that

1) f,—>f aein Q;

2) if Eis a measurable subset of (), and we have

lim 77 =0, (2.17)

n1eaS(E)~>0 E
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uniformly with respect n. Where meas(E) means measure representing E.
Then f, - f in L(Q).
Proof. Fixed ¢£>0,let EcQ bea measurable set, we have

flr-1<] ﬁ,—f|p+2”’1j(fn”+|f|"). (2.18)

Q rRM\Q E

Using assumption (2), we know that there exists &, (£)>0 such that, if
meas(E) <6, (&), then forany neN we have

07,

E

Since [ e€L’(Q) there exists J,(&)>0 such that if meas(E)<3,(&),
then

<e. (2.19)

A" <e. (2.20)

In conclusion the second term of the right-hand side of (2.18) is less than
2”& . Let us study the first one. We set & =min{5, (£).5, ()}, and use Egorov’s
theorem, there exist v, € N and a measurable set E, — Q such that

meas(E,)< &, and

Q\E,

f=f<e, (2.21)

for any 7 > v, .Choosing E = Ein(2.18), we get the result.
Lemma 2.5. (Stampacchia) [10] Let Hbe a Hilbert space, a: HxH —» R isa
continuous and linear form in the second variable such that

1)for feR",any y,,w,,we H, we have

(v )-a(wr )| < Bl -l @22)

2) for a positive constant G, any ,,y, € H we have
a(y,.v, =) —a(Wap, —v,) 2 Cly, —ws | (2.23)
Lemma 2.6. (Hélder inequality) [11] Let pand gare dual indicators, stisfies
1/p+1/g=1,
where 1< p<w,if feL’(Q),and geL’(Q), then the product of
(fg)(x)=f(x)g(x) the defined function belongs to L (), and we have
[, fzdx| < [ |71l < 7], e, (224)
If and only if there is a real constant m that makes the following formula hold
fe=¢"|1|le- (2.25)

The first unequal sign of (2.24) is established. If fnot constant equals 0,then
the second unequal sign of (2.24) is established, if and only if there exists a con-

stant 77 € R, such that
1)if 1< p<oo,then |g(x)|z?7|f(x)|pi1 uae Q).
2)if p=1,then |g(x)|£77 pae.eQ,and when f(x)#0,wehave
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g () =7
3)if p=oo,then |f(x)|£77 pae.eQ,and when g(x)#0,we have
|7 (%) =7

3. Proof of Theorem 1.1

Theorem 3.1. Let g:R — R be an increasing function, and gis Lipschitz con-
tinuous, that is, there exists a positive constant g such that for any s,7eR

we have
g (s)~g (o)< pls—1], (3.1)

2N
N+2s
Proof. We define the following form on H, (Q)x H, (Q) :

Let fel” (Q),m > . Then (1.1) exists a unique solution u € H (Q) .

a(u,w)= HDQ (u(x)—u(y))(w(x)— w(y)) dxdy+JQg(u)wdx. (3.2)

N+2s
x-)]

Using Hoélder inequality and (3.1) we have

u(x)-u(y) w(x)-w(y

|a(u,w)|S_UDQ ( ) N;(Za) ( ) N;gs)dxdy+jg[,u|u|+g(0):||w|dx, (3.3)
ol T f

that is, a is well defined. By the definition of a, we know that a is continuous and

linear in the second variable. If w, —w in H, (), then

I ((x) =2 () (, ()= w, ()

|x_y|N+2s dxdy
(3.4)
g et
[, () wdr— [ g(u)wdx. (3.5)
Since
|a(u],w)—a(u2,w)|
I, P
. =]
1T, (u, (X)_uic(f)y)(;fz(sx)_ w(y)) dxdy +Ug[g(ul )—g(uz)]wdx‘ (3.6)

N+2s N+2s ‘

o=l 2 e

< e a2, "Hg @) ”W"Hg(g) + ey —u "LZ(Q) ”w”LZ(Q) )

0. (t, —u ) () = (t, 0, ) () (wl)(x)—(WZ)(y)LUQ[g(ul)_g(uz)]wdx\

the last inequality following from Hoélder inequality and (3.1), by lemma 2.2

|a(u1, w) —a(uz,w)| < (1 +uC? )”u1 —u, ||H3(Q) ||W"H5(n) . (3.7)
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Since

a(uy,u, —u,)—a(uy,u; —u,)

-, |(ul_u2)|(2;|(5i23”2)(”' e+ [ ()]G - )x
by (3.1)
[ [(u)-g(u)](m —u,)dx>0, (3.9)
then

a(u,uy —uy )= a(uy,u, —uy ) > |u, —u, ’ (3.10)

Hj(Q)
We know that a satisfies lemma 2.4 from (3.2) and (3.10), the result follows

from lemma 2.4.

We define the following function, for £ >0:

—k, s <k,
|s| <k, (3.11)

T, (s)=1s,
k, s>k

Proof of theorem 1.1: First, we proof the existence of a solution by approxima-
tion. Let g, (¢)=7,(g(¢)), By theorem 3.1 we know that there exists
u, € Hy (Q) be the solution to problems

AV u +g (u)=f(x), xeQ,
() 1,8, ()= (4 o)
u, =0, xeRY\Q.
Weuse u, asa test function in (3.12), we get
2
u, H8(9)+Igungn (un)dxzj.gfundx. (3.13)
Then use Holder inequality on the right-hand side implies
2
u, H3(@) + 78 (un)dx
W Vo 0 (3.14)
N+2s 2 v = .
S[L:f - de (JQ” dx)z‘ =715 0 b -
L. . 2 2N .
Because g is increasing, then |lu, i) S” f o oy a2 ) - This means

u

n

(@) is uniformly bounded. We can deduce there exists u, —u weakly in
0

H; (Q) and a.e., since ||u,, "26( a) 20, by (3.13) there exists a positive constant C

such that

Qung,,(un)deC, (3.14)

for every n.
Now we prove g, (un) - g(u) in L (Q) . Since gis continuous in Q then
it is clear that g, (u,) > g(u) ae. in Q.If Eis a subset of Q, for reR"

have
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J.|gn (un) J. gn (un) + J‘ gﬂ (Mn)
E {AEE ‘u x) } {er:‘u,,(x)M‘}
SJ.gn (t)|+— I ung(un) (3.15)
E t {er:‘u”(x)N‘}
< |g(t)|meas(E)+%,
combining (3.14), for 7€ R" we have
lim (u,) <— < (3.16)

meas(E)—)O = [

Using lemma 2.4, we know that g, (u,) —> g(u) in L (Q) .. Then for any

g Hy (QNL(Q)
we from

I, (u, (x)~u, (_y))|1(viﬁ2(sx)—¢(y))dxdy+jggn (u,)pdx=[_ fgdx (3.17)
get

H (“(x)_”(J/))(¢(x)_¢( ))

dedy+[ g(u)gdx=[ fodc. (3.18)

Finally we prove the solution of problem (1.1) is unique. We assume u, and

u, aretwo solutions, u, #u,,wetake u, —u, asa test function

J'J‘DQ (“1 (x)-u, (y))[(ul —uy ) (x)=(, —u, )(y)]

dxdy+jﬂg(u,)(u, —uz)dx

|x_y N+2s (3'19)
:J'Qf(u1 —uz)dx
= = PUATEAE
X—y .
=J.Qf(ul —uz)dx
We can deduce from (3. 19) and (3.20)
J.J.Dﬂ |:Ml (x)_ul (y +L|‘2 |:|N|;21:1 uz uz)(y)] dxdy a1
x— .
= Iﬂ(g(ul )_g(uz ))(ul —lUy )dx
This means
||u1 —u, "26'(9) = J.Q(g(ul)—g(u2 ))(”1 —u, )dx . (3.22)
By the monotonicity of g we know
Ig(g(ul)—g(u2))(u,—uz)deO. (3.23)

Combining (3.22) and (3.23) we know u, =u, ae.in Q.
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