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Abstract 
This article investigates the optimal reciprocal reinsurance strategies when 
the risk is measured by a general risk measure, namely the GlueVaR distor-
tion risk measures, which can be expressed as a linear combination of two tail 
value at risk (TVaR) and one value at risk (VaR) risk measures. When we 
consider the reciprocal reinsurance, the linear combination of three risk 
measures can be difficult to deal with. In order to overcome difficulties, we 
give a new form of the GlueVaR distortion risk measures. This paper not only 
derives the necessary and sufficient condition that guarantees the optimality 
of marginal indemnification functions (MIF), but also obtains explicit solu-
tions of the optimal reinsurance design. This method is easy to understand 
and can be simplified calculation. To further illustrate the applicability of our 
results, we give a numerical example. 
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1. Introduction 

Reinsurance is an effective risk management tool for the insurer to transfer part 
of its risk to the reinsurer. Let X be the original loss, if the insurer cedes a part of 
loss ( )f X  (f is called the ceded loss function, or indemnification function) to 
the reinsurer and pays reinsurance premium ( )f Xδ , then the insurer’s total 
liability ( )

fIT X  contains two parts: one is the retained loss risk  
( ) ( )fI X X f X= −  and the other is the reinsurance premium ( )f Xδ , that is  

( ) ( ) ( ).
fI fT X X f X Xδ= − +                   (1.1) 

The reinsurer’s total liability ( )
fRT X  also contains two parts: one is the 
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ceded loss risk ( ) ( )fR X f X=  and the other is the received reinsurance pre-
mium ( )f Xδ , that is  

( ) ( ) ( ).
fR fT X f X Xδ= −                  (1.2) 

For any [ ]0,1λ ∈ , we define total risks ( )fT X  in the presence of an insurer 
and a reinsurer as  

( ) ( ) ( ) ( )1 .
f ff I RT X T X T Xλ λ= + −              (1.3) 

Due to the development and application of risk measures in finance and in-
surance, many workers formulate the optimal reinsurance problem with Value 
at Risk (VaR) and Tail Value at Risk (TVaR). [1] proposed two optimization 
criterion that minimize total loss of the insurer by the Value at Risk (VaR) and 
the Conditional Tail Expectation (CTE). [2] showed that quota-share and 
stop-loss reinsurance are optimal when they studied a class of increasing convex 
ceded loss functions by VaR and CTE under the expected value principle. Many 
works extended the fundamental results, for example, [3]-[15]. [16] extended the 
conclusion of [15] to the general convex risk measure that satisfied regular inva-
riance. Recently, there has a surge of interest in more generally distortion risk 
measures. [17] discussed the general model of the distortion risk measure and 
assumed that the distortion function is piecewise convex or concave. [18] stu-
died the general model with distortion risk measures under general reinsurance 
premium principles. [19] expended the model of [18] under the cost-benefit 
framework. [20] studied the optimal reinsurance model of [18] without the pre-
mium constraint by a marginal indemnification function (MIF) formula. [21] 
studied the optimal reinsurance with premium constraint by combining the MIF 
formula and the Lagrangian dual method. [22] and [23] studied the optimal 
reinsurance with constraints under the distortion risk measure. 

VaR has been adopted as the standard tool for assessing the risks and calcu-
lating the capital requirements in finance and insurance, however, it has two 
drawbacks in financial industry. One is that the capital requirements can be un-
derestimated and the underestimated may be aggravated when heavy tail losses 
are incorrectly modeled by mild tail distribution. The second one is that the VaR 
may fail the subadditivity. Though TVaR has no these two disadvantages of VaR, 
it has not been widely accepted by practitioners in finance and insurance. In or-
der to overcome this weakness, [24] proposed a new family of risk measures, 
namely GlueVaR distortion risk measures. We take different definitions of VaR 
from [24], therefore, a new definition of GlueVaR has been given in this paper. 

Optimal reinsurance from an insurer’s viewpoint or from a reinsurer’s view-
point has been studied for a long time in the literatures. However, as two parties 
of a reinsurance contract, there has a conflict of interests between an insurer and 
a reinsurer. The optimal reinsurance policy from one party’s perspective may 
not be optimal for another party. Therefore, we consider a reciprocal reinsur-
ance. Motivated by [21] and [24], we want to study the optimal reciprocal rein-
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surance strategy under GlueVaR distortion risk measures with MIF formula. 
The rest of this paper is organized as follows. In Section 2, we give some nota-

tions and proposal a reciprocal reinsurance model. In Section 3, we derive the 
sufficient conditions that guarantee the existence of a reinsurance contract. In 
Section 4, we obtain the specific expression of optimal reinsurance. Section 5 
concludes this paper. 

2. The Model 
2.1. Preliminaries and Notations 

Definition 2.1. (Distortion risk measure or distorted expectation) A distortion 
function is a non-decreasing function [ ] [ ]: 0,1 0,1g →  such that ( )0 0g =  
and ( )1 1g = . The distortion risk measure or distorted expectation of the ran-
dom variable X associated with distortion function g, notation ( )g X , is de-
fined as  

( ) ( )( ) ( )( )0

0
1 d d .g X XX g S x x g S x x

∞

−∞
 = − + ∫ ∫            (2.1) 

The most well-known examples of distortion risk measures are the VaR and 
TVaR, if we define the distortion functions, respectively, as follows  

( ) { }xg xα α>=                         (2.2) 

and  

( ) { } { } ,x x
xg xβ β ββ ≤ >= +                     (2.3) 

then the distorted expectation ( )g X  can be equivalently expressed as  

( ) ( ){ } ( )1VaR inf : XX x P X x Sα α α−= > ≤ =           (2.4) 

and  

( ) ( ) ( )1
0 0

1 1TVaR VaR d d .q XX X q S q q
α α

α α α
−= =∫ ∫          (2.5) 

Definition 2.2. (GlueVaR distortion risk measure) Given the confidence le-
vels 1 α−  and 1 β− , when the distortion function for GlueVaR is specified to 
the following function  

( )

[ ]

( ) [ ]

[ ]

1 2

1

,
2 1,

1

, 0, ,

, , ,

1, ,1 ,

h h

h x x

h hg x h x x

x

β α

β
β

β β α
α β

α

 × ∈
 −=  + × − ∈ −


∈

          (2.6) 

with [ ], 0,1α β ∈ , α β> , [ ]1 0,1h ∈ , and [ ]2 1,1h h∈ , then the corresponding 
distortion risk measure g  is the GlueVaR distortion risk measure, which is 
denoted by ( )1 2,

,GlueVaRh h Xβ α . 
Remark 2.1. If the following notation is used,  
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2 1
1 1

2 1
2

3 2

,

,

1 ,

h hh

h h

h

ω β
α β

ω α
α β

ω

− = − × − − = × −


= −

                    (2.7) 

then the distortion function ( )1 2,
,

h hg xβ α  in (2.6) may be rewritten as  

( ) ( ) ( ) ( )1 2,
, 1 , 2 , 3 , ,h h

T T Vg x g x g x g xβ α β α αω ω ω= + +          (2.8) 

where ( ),Tg xβ , ( ),Tg xα  and ( ),Vg xα  are the distortion functions corres-
ponding to the ( )TVaR Xβ , ( )TVaR Xα  and ( )VaR Xα , respectively. 
Therefore, GlueVaR is a risk measure that can be expressed as a linear combina-
tion of three risk measures as follows,  

( ) ( ) ( ) ( )1 2,
, 1 2 3GlueVaR TVaR TVaR VaR ,h h X X X Xβ α β α αω ω ω= + +    (2.9) 

where [ ]0,1iω ∈  for 1,2,3i = , and 1 2 3 1ω ω ω+ + = . 
Example 2.1. Assume that initial risk X follows an exponential distribution 

with parameter 0.001, then ( ) ( )VaR 1000lnXα α= − ,  
( ) ( )TVaR 1000ln 1000Xα α= − + . When 1 0.2ω = , 2 0.3ω =  and 3 0.5ω = , 

the values of VaR, TVaR and GlueVaR at different confidence levels are calcu-
lated in Table 1.  

Given α  and β , the values in Table 1 indicate that GlueVaR is more con-
servative than VaR. Note that ( ) ( )1 2,

,VaR GlueVaRh hX Xα β α≤ , which means that 
GlueVaR may overcome the VaR’s shortage of underestimating risks. On the 
other hand, GlueVaR is not, unlike TVaR, overly conservative. It seems clear 
that GlueVaR, a new risk measure based on distortion functions, can be valuable 
in the scope of finance and insurance. 

Definition 2.3. (Marginal indemnification function) (See [[20], Definition 2]) 
For any indemnification function ( )f X , the associated marginal indemnifica-
tion is a function [ ]0,1h∈  such that  

( ) ( )
0

d , 0.
x

f x h t t x= ≥∫                  (2.10) 

2.2. Model Set-Up 

Based on the notations of the preceding subsection, we will introduce a reci-
procal reinsurance model to study the optimal strategy which considers the in-
terests of both an insurer and a reinsurer. 

Problem 1 (Optimization model of a reciprocal reinsurance)  

( )( ) ( )( )1 2 1 2
*

, ,
, ,GlueVaR min GlueVaR ,h h h h

ff f
T X T Xβ α β α∈

=


        (2.11) 

where   = { ( )f x : ( )f x  and ( )fI x  are non-decreasing and  
( ) ( )

0
d

x
f x h t t= ∫ , ( )0 1h t≤ ≤ }. 

Our objective is to find the optimal ceded loss function ( )*f X  and to cha-
racterize the corresponding ( )( )1 2, *

,GlueVaRh h f Xβ α . 
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Table 1. VaR, TVaR and GlueVaR of initial risk X. 

β  0.01 0.03 0.05 0.07 0.09 

α  0.02 0.04 0.06 0.08 0.10 

( )TVaR Xβ  5605.2 4506.6 3995.7 3659.3 3407.9 

( )TVaR Xα  4912.0 4218.9 3813.4 3525.7 3302.6 

( )VaR Xα  3912.0 3218.9 2813.4 2525.7 2302.6 

( )1 2,
,GlueVaR h h Xβ α  4550.6 3776.4 3349.9 3052.4 2823.7 

3. Existence of Optimal Reinsurance Strategy 

Lemma 3.1 For any ceded loss functions ( )f X , ( )( )1 2,
,GlueVaRh h f Xβ α  can be 

expressed as  

( )( )
( )( ) ( )( ) ( )( ) ( )

1 2,
,

1 , 2 , 3 ,0

GlueVaR

d ,

h h

T X T X V X

f X

g S x g S x g S x h x x

β α

β α αω ω ω
∞
 = + + ∫

    (3.1) 

where [ ]0,1iω ∈  for 1,2,3i = , and 1 2 3 1ω ω ω+ + = .  
Proof. As proved in Lemma 2.1 of Zhuang et al. (2016), for any distortion 

function g,  

( )( ) ( ) ( )
0

d .g Xf X g S t f t
∞

=   ∫  

Obviously, ( )( )1 2,
,GlueVaRh h f Xβ α  may be rewritten as (3.1).   

Lemma 3.2 For any [ ]0,1λ ∈  and ceded loss function ( )f X , total risks 
( )fT X  can be expressed as  

( )( ) ( ) ( ) ( )( ) ( )1 2 1 2, ,
, , 0

GlueVaR GlueVaR 1 2 d ,h h h h
f XT X X S x h x xβ α β αλ λ ϕ

∞
= + − ∫ (3.2) 

where 

( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )1 , 2 , 3 , 1X T X T X V X XS x g S x g S x g S x S xβ α αϕ ω ω ω ρ= + + − + . 

Proof. From definitions of ( )
fIT X  and ( )

fRT X , ( )fT X  can be rewritten 
as  

( ) ( ) ( ) ( )1 2 .f fT X X f X Xλ λ δ = + − −               (3.3) 

By the comonotonic additivity of the distortion risk measures, total risks 
( )fT X  under the GlueVaR distortion risk measures can be expressed as  

( )( ) ( ) ( ) ( )( )
( ) ( )

1 2 1 2 1 2, , ,
, , ,GlueVaR GlueVaR 1 2 GlueVaR

1 2 .

h h h h h h
f

f

T X X f X

X
β α β α β αλ λ

λ δ

= + −

− −
(3.4) 

Based on the fact that  

( ) ( ) ( )( ) ( ) ( ) ( )
0

1 1 ,f XX E f X S x h x dxδ ρ ρ
∞

= + = + ∫          (3.5) 

with the expressions (3.1), (3.4) and (3.5), we get  

( )( )
( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( ) ( )

1 2

1 2

,
,

,
, 1 ,0

2 , 3 ,

GlueVaR

GlueVaR 1 2

1 d .

h h
f

h h
T X

T X V X X

T X

X g S x

g S x g S x S x h x x

β α

β α β

α α

λ λ ω

ω ω ρ

∞
= + − 

+ + − + 

∫
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Lemma 3.3 Let *h  be the optimal marginal indemnification function, then it 
satisfies  

( )( )
( ) ( ) ( )( ) ( )

1 2

1 2

,
,

, *
, 0

min GlueVaR

GlueVaR 1 2 d .

h h
ff

h h
X

T X

X S x h x x

β α

β αλ λ ϕ

∈

∞
= + − ∫
          (3.6) 

Suppose that ( ) ( )* *
0

d
x

f x h z z= ∫  for [ )0,x∈ ∞ . Then *h  solves (3.6) if 

and only if *f  solves (2.11).  

Proof. This follows from the same arguments used in the proof to Proposition 
2.1 of Zhuang et al. (2016).   

Theorem 3.1 For [ ]0,1λ ∈ , ( )*h x  solves 3.6 if and only if it satisfies the 
followings.  

1). If 10
2

λ≤ < , then  

( )
( )( )

[ ] ( )( )
( )( )

*

1, 0,

0,1 , 0,

0, 0.

X

X

X

S x

h x S x

S x

ϕ

ξ ϕ

ϕ

 <
= ∈ =


>

            (3.7) 

2). If 1
2

λ = , then  

( ) [ ]* 0,1 .h x ξ= ∈                     (3.8) 

3). If 1 1
2

λ< ≤ , then  

( )
( )( )

[ ] ( )( )
( )( )

*

0, 0,

0,1 , 0,

1, 0.

X

X

X

S x

h x S x

S x

ϕ

ξ ϕ

ϕ

 <
= ∈ =


>

            (3.9) 

Proof. Note that minimizing ( )( )1 2,
,GlueVaRh h

fT Xβ α  is equivalent to mini-
mizing ( ) ( )( ) ( )

0
1 2 dXS x h x xλ ϕ

∞
− ∫  of (3.2). In the next, we will prove the re-

sults from three cases. 

1). For the cases 10
2

λ≤ < , 1 2 0λ− > . 

a) If ( )( ) 0XS xϕ < , then the minimum ( ) ( )( ) ( )
0

1 2 dXS x h x xλ ϕ
∞

− ∫  is at-
tained at ( ) 1h x = .  

b) If ( )( ) 0XS xϕ = , then ( ) ( )( ) ( )
0

1 2 d 0XS x h x xλ ϕ
∞

− =∫  for any 
( ) [ ]0,1h x ξ= ∈ . 
c) If ( )( ) 0XS xϕ > , then the minimum ( ) ( )( ) ( )

0
1 2 dXS x h x xλ ϕ

∞
− ∫  is at-

tained at ( ) 0h x = .  

2). For the cases 1
2

λ = , ( ) ( )( ) ( )
0

1 2 d 0XS x h x xλ ϕ
∞

− =∫  for any  

( ) [ ]0,1h x ξ= ∈ . 

3). For the cases 1 1
2

λ< ≤ , 1 2 0λ− < . 
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a) If ( )( ) 0XS xϕ < , then the minimum ( ) ( )( ) ( )
0

1 2 dXS x h x xλ ϕ
∞

− ∫  is at-
tained at ( ) 0h x = .  

b) If ( )( ) 0XS xϕ = , then ( ) ( )( ) ( )
0

1 2 d 0XS x h x xλ ϕ
∞

− =∫  for any  
( ) [ ]0,1h x ξ= ∈ . 
c) If ( )( ) 0XS xϕ > , then the minimum ( ) ( )( ) ( )

0
1 2 dXS x h x xλ ϕ

∞
− ∫  is at-

tained at ( ) 1h x = .   

4. Explicit Solutions 

In Section 3, we have derived the optimal marginal indemnification function *h . 
It seems very concise but we can not obtain the optimal reinsurance strategy *f  
directly. In this section, we want to derive the optimal reinsurance contract *f  
bases on optimal marginal indemnification function *h . 

Let ( )Xt S x=  and denote ( ) ( )( )Xt S xψ ϕ= , we have  

( ) ( ) ( ) ( ) ( )1 , 2 , 3 , 1 ,T T Vt g t g t g t tβ α αψ ω ω ω ρ= + + − +          (4.1) 

where  

( ) { } { }, ,T x x
xg xβ β ββ ≤ >= +                     (4.2) 

( ) { } { }, ,T x x
xg xα α αα ≤ >= +                     (4.3) 

( ) { }, .V xg xα α>=                         (4.4) 

With the expression (4.1)-(4.4), ( )tψ  may be reexpressed as  

( )
[ ]
( ]
( ]

1

2 1

3

, 0, ,

, , ,

1, ,1 ,

k t

t k t

k t

β

ψ ω β α

α




= +
 +

                   (4.5) 

which has two positive zeros,  

( )
1

1 2
2

1, ,
1 1

t tωα
ρ α ω ρ

= =
+ − +

 

where  

( )1 2
1 1 ,k ω ω

ρ
β α

= + − +                     (4.6) 

( )2
2 1 ,k ω

ρ
α

= − +                      (4.7) 

( )3 1 .k ρ= − +                         (4.8) 

Theorem 4.1 For any ceded loss function ( )f x ∈ , if 1
2

λ = , then  

( ) [ ]* , 0,1 .f x xξ ξ= ∈  

Proof. From (2.10) and (3.8), we can derive above results easily.   

Theorem 4.2 For 10
2

λ≤ < , and any ceded loss function ( )f x ∈ , optim-
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al reinsurance contracts *f  to Problem 1 are given as follows: 

1). If 1 0k >  and 2 0k ≥ , then ( ) ( )* 1
2Xf x x S t−= ∧ . 

2). If 1 0k >  and 2 0k < , then  

( )
( ) ( )
( ) ( )( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

1
2

* 1 1 1 1
2 1

1
1

, 0,

, 0, 0.

, 0, 0,

X

X X X X

X

x S t

f x x S t x S S t S

x S t

ψ α

α α ψ α ψ α

ψ α ψ α

−

− − − −

+

−

 ∧ ≥
= ∧ + − ∧ − < + >


∧ < + ≤  
3). If 1 0k = , then  

( )
( ) ( )( ) ( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )

1 1 1 1 1
2*

1 1

, 0,

, 0.

X X X X X

X X

x S t x S S S x S
f x

x S x S

α β α ξ β ψ α

β ξ β ψ α

− − − − −

+ +

− −

+

 ∧ + − ∧ − + − + >= 
∧ + − + ≤

 

4). If 1 0k < , then  

( )
( ) ( )( ) ( )

( )

1 1
2*

, 0,

, 0.
X Xx S t x S

f x
x

α ψ α

ψ α

− −

+
 ∧ + − + >= 

+ ≤
 

Proof. Analyse the optimal reinsurance contract with (3.7) for the case  
10
2

λ≤ < . From (4.5)-(4.8), clearly 1 2 3k k k> >  and 3 0k < . Note that  

( ) ( )ψ β ψ β= + , but ( ) ( )ψ α ψ α< + , which means that ( )tψ  is disconti-
nuous at the point t α= . Therefore, we consider the followings.  

1). When 1 0k > , there has three cases about 2k , which are 2 0k > , 2 0k =  
and 2 0k < . 

a) If 2 0k > , then ( ) 0ψ α > . 2t  exists since ( ) ( ) 0ψ α ψ α+ > >  and 
( )1 0ψ ρ= − < . Note that ( ) 0tψ >  in ( )20, t , ( ) 0tψ <  in ( ]2 ,1t  as Figure 

1. With the expression (3.7), we have that ( )* 1h x =  for ( )( )1
20, Xx S t−∈ , 

( )* 0h x =  for ( )( )1
2 ,Xx S t−∈ ∞  as Figure 2, thus ( ) ( )* 1

2Xf x x S t−= ∧ . 
b) If 2 0k = , then ( ) 0ψ α > . Similar to 1), ( ) ( )* 1

2Xf x x S t−= ∧ . 
c) When 2 0k < , ( )ψ α  has three cases ( ) 0ψ α > , ( ) 0ψ α =  and 
( ) 0ψ α < . Since ( )tψ  is discontinuous at the point t α= , we have to con-

sider the cases of ( )ψ α + . 
i) If ( ) 0ψ α ≥ , then ( ) 0ψ α + > . Therefore, 2t  exists. ( ) 0tψ >  in ( )20, t , 
( ) 0tψ <  in ( ]2 ,1t . Furthermore, ( )* 1h x =  for ( )( )1

20, Xx S t−∈ , ( )* 0h x =  
for ( )( )1

2 ,Xx S t−∈ ∞ , so ( ) ( )* 1
2Xf x x S t−= ∧ .  

ii) If ( ) 0ψ α < , then 1t  exists. If ( ) 0ψ α + > , then 2t  exists since 
( )1 0ψ < . Note that ( ) 0tψ >  in ( )10, t  and ( ]2, tα+ , ( ) 0tψ <  in ( ]1,t α  

and ( ]2 ,1t . Furthermore, ( )* 1h x =  for ( )( ) ( ) ( )( )1 1 1
2 10, ,X X Xx S t S S tα− − −∈  , 

( )* 0h x =  for ( ) ( )( ) ( )( )1 1 1
2 1, ,X X Xx S t S S tα− − −∈ ∞ , so  

( ) ( ) ( )( ) ( ) ( )( )* 1 1 1 1
2 1X X X Xf x x S t x S S t Sα α− − − −

+
= ∧ + − ∧ − .  

iii) If ( ) 0ψ α < , then 1t  exists. When ( ) 0ψ α + ≤ , ( ) 0tψ >  in ( )10, t , 
( ) 0tψ <  in ( ]1,1t . Furthermore, ( )* 1h x =  for ( )( )1

10, Xx S t−∈ , ( )* 0h x =  
for ( )( )1

1 ,Xx S t−∈ ∞ , so ( ) ( )* 1
1Xf x x S t−= ∧ .  

2). When 1 0k = , from (4.6) and (4.7), we obtain that 2 0k <  and ( ) 0ψ α < . 
Next, we consider the cases of ( )ψ α + . 
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Figure 1. 1 0k > , 2 0k > . 

 

 

Figure 2. 
10
2

λ≤ < . 

 
a) When ( ) 0ψ α + > , we can derive that ( ) 0tψ >  in ( )2, tα , ( ) 0tψ =  in 

[ ]0,β , and ( ) 0tψ <  in ( ],β α  and ( ]2 ,1t . Furthermore, ( )* 1h x =  for 

( )) ( ) ( )( )1 1 1
20, ,X X Xx S t S Sα β− − −∈   , ( )* 0h x =  for ( ) ( )( )1 1

2 ,X Xx S t S α− −∈ , and 

( )*h x ξ=  for ( ) )1 ,Xx S β−∈ ∞ . Therefore,  

( ) ( ) ( )( ) ( ) ( )( ) ( )( )* 1 1 1 1 1
2X X X X Xf x x S t x S S S x Sα β α ξ β− − − − −

+ +
= ∧ + − ∧ − + − . 

b) When ( ) 0ψ α + ≤ , ( ) 0tψ =  in [ ]0,β  and ( ) 0tψ <  in ( ],1β .  

Furthermore, ( )* 1h x =  for ( ))10, Xx S β−∈  , and ( )*h x ξ=  for  

( ) )1 ,Xx S β−∈ ∞ . Therefore, ( ) ( ) ( )( )* 1 1
X Xf x x S x Sβ ξ β− −

+
= ∧ + − .  

3). When 1 0k < , note that 2 0k <  and ( ) 0ψ α < . There has three cases for 
( )ψ α + .  
a) When ( ) 0ψ α + > , ( ) 0tψ >  in ( )2, tα  and ( ) 0tψ <  in other cases. 

Furthermore, ( )* 1h x =  for ( )( ) ( )( )1 1
20, ,X Xx S t S α− −∈ ∞ , ( )* 0h x =  for 

( ) ( )( )1 1
2 ,X Xx S t S α− −∈ . Therefore, ( ) ( ) ( )( )* 1 1

2X Xf x x S t x S α− −

+
= ∧ + − .  

b) If ( ) 0ψ α + ≤ , then ( ) 0tψ <  in ( )0,1 . Therefore, ( )* 1h x =  when 
( )0,x∈ ∞ , ( )*f x x= .   

Theorem 4.3 For 1 1
2

λ< ≤ , and any ceded loss function ( )f x F∈ , optimal 

reinsurance contracts *f  to Problem 1 are given as follows: 

1). If 1 0k >  and 2 0k ≥ , then ( ) ( )( )* 1
2Xf x x S t−

+
= − . 

2). If 1 0k >  and 2 0k < , then  
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( )

( )( ) ( )

( )( ) ( ) ( )( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

1
2

* 1 1 1 1
2 2 1

1
1

, 0,

, 0, 0,

, 0, 0.

X

X X X X

X

x S t

f x x S t S S t x S t

x S t

ψ α

α ψ α ψ α

ψ α ψ α

−

+

− − − −

+ +

−

+

 − ≥

= − ∧ − + − < + >


− < + ≤

 

3). If 1 0k = , then  

( )
( )( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( )

1 1 1 1
2 2*

1

, 0,

, 0.

X X X X

X

x S t S S t x S
f x

x S

α ξ β ψ α

ξ β ψ α

− − − −

+ +

−

+

 − ∧ − + − + >= 
− + ≤

 

4). If 1 0k < , then  

( )
( )( ) ( ) ( )( ) ( )

( )

1 1 1
2 2*

, 0,

0, 0.
X X Xx S t S S t

f x
α ψ α

ψ α

− − −

+
 − ∧ − + >= 

+ ≤
 

Proof. Analyse the optimal reinsurance contract with (3.9) for the case 
1 1
2

λ< ≤ . 

1). When 1 0k > , there has three cases about 2k . 
a) If 2 0k > , then ( ) 0ψ α > . Since ( ) ( ) 0ψ α ψ α+ > >  and ( )1 0ψ ρ= − < , 

then 2t  exists. Therefore, ( ) 0tψ >  in ( )20, t  and ( ) 0tψ <  in ( ]2 ,1t  as 
Figure 1. With the expression (3.9), we have that ( )* 0h x =  for 

( )( )1
20, Xx S t−∈  and ( )* 1h x =  for ( )( )1

2 ,Xx S t−∈ ∞  as Figure 3, so 
( ) ( )( )* 1

2Xf x x S t−

+
= − . 

b) If 2 0k = , then ( ) 0ψ α > . Similar to 1), ( ) ( )( )* 1
2Xf x x S t−

+
= − . 

c) When 2 0k < , ( )ψ α  has three cases ( ) 0ψ α > , ( ) 0ψ α =  and 
( ) 0ψ α < . Since ( )tψ  is discontinuous at the point t α= , we have to con-

sider the cases of ( )ψ α + . 
i) If ( ) 0ψ α ≥ , then ( ) 0ψ α + > , 2t  exists since ( )1 0ψ ρ= − < . Note that 
( ) 0tψ >  in ( )20, t  and ( ) 0tψ <  in ( ]2 ,1t . Furthermore, ( )* 0h x =  for 

( )( )1
20, Xx S t−∈ , ( )* 1h x =  for ( )( )1

2 ,Xx S t−∈ ∞ , so ( ) ( )( )* 1
2Xf x x S t−

+
= − .  

ii) If ( ) 0ψ α <  and ( ) 0ψ α + > , then 1t  and 2t  exists. Clearly ( ) 0tψ >  
in ( )10, t  and ( ]2, tα+ , ( ) 0tψ <  in ( ]1,t α  and ( ]2 ,1t . Furthermore, 

( )* 0h x =  for ( )( ) ( ) ( )( )1 1 1
2 10, ,X X Xx S t S S tα− − −∈  , ( )* 1h x =  for  

( ) ( )( ) ( )( )1 1 1
2 1, ,X X Xx S t S S tα− − −∈ ∞ , so  

( ) ( )( ) ( ) ( )( ) ( )( )* 1 1 1 1
2 2 1X X X Xf x x S t S S t x S tα− − − −

+ +
= − ∧ − + − .  

iii) If ( ) 0ψ α <  and ( ) 0ψ α + ≤ , then 1t  exists. Clearly, ( ) 0tψ >  in 
( )10, t  and ( ) 0tψ <  in ( ]1,1t . Furthermore, ( )* 0h x =  for ( )( )1

10, Xx S t−∈ , 
( )* 1h x =  for ( )( )1

1 ,Xx S t−∈ ∞ , so ( ) ( )( )* 1
1Xf x x S t−

+
= − .  

2). When 1 0k = , from (4.6) and (4.7), we obtain that 2 0k <  and ( ) 0ψ α < . 
Next, we consider the cases of ( ) 0ψ α + > . 

a) When ( ) 0ψ α + > , we can derive that ( ) 0tψ >  in ( )2, tα , ( ) 0tψ =  in 
[ ]0,β , and ( ) 0tψ <  in ( ],β α  and ( ]2 ,1t . Furthermore, ( )* 0h x =  for 

( )) ( ) ( )( )1 1 1
20, ,X X Xx S t S Sα β− − −∈   , ( )* 1h x =  for ( ) ( )( )1 1

2 ,X Xx S t S α− −∈ , and 
( )*h x ξ=  when ( ) )1 ,Xx S β−∈ ∞ . Therefore,  
( ) ( )( ) ( ) ( )( ) ( )( )* 1 1 1 1

2 2X X X Xf x x S t S S t x Sα ξ β− − − −

+ +
= − ∧ − + − .  
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b) When ( ) 0ψ α + ≤ , ( ) 0tψ =  in [ ]0,β  and ( ) 0tψ <  in ( ],1β . Fur-
thermore, ( )* 0h x =  for ( ))10, Xx S β−∈  , and ( )*h x ξ=  for  

( ) )1 ,Xx S β−∈ ∞ . Therefore, ( ) ( )( )* 1
Xf x x Sξ β−

+
= − .  

3). When 1 0k < , note that 2 0k <  and ( ) 0ψ α < . There has three cases for 
( )ψ α + .  
a) When ( ) 0ψ α + > , ( ) 0tψ >  in ( )2, tα  and ( ) 0tψ <  in other cases. 

Furthermore, ( )* 0h x =  for ( )( ) ( )( )1 1
20, ,X Xx S t S α− −∈ ∞ , ( )* 1h x =  for 

( ) ( )( )1 1
2 ,X Xx S t S α− −∈ . Therefore, ( ) ( )( ) ( ) ( )( )* 1 1 1

2 2X X Xf x x S t S S tα− − −

+
= − ∧ − .  

b) If ( ) 0ψ α + ≤ , then ( ) 0tψ <  in ( )0,1 . Therefore, ( )* 0h x =  when 
( )0,x∈ ∞ , ( )* 0f x = .   

Example 4.1. Similar to Example 2.1, we assume the risk is measured by the 
GlueVaR risk measures under the expectation premium principle, for [ ]0,1λ ∈ , 

[ ]0,1ξ ∈ , [ ]0,1iω ∈ , 1,2,3i =  and 1 2 3 1ω ω ω+ + = , optimal reinsurance con-
tracts are given as follows. 

From the reinsurer’s point of view, as Case 1 in Table 2, the optimal reinsur-
ance strategy can be in form of limited quota-share, ( )* 405.47f x x= ∧ , which 
means that if initial loss X less than 405.47, the case that an insurer ceded all loss 
to a reinsurer is optimal, and if initial loss X more than 405.47, the case that an 
insurer ceded 405.47 to a reinsurer is optimal. 

From the insurer’s point of view, as Case 6 in Table 2, the optimal reinsurance 
strategy ( )* 0f x = , which means that an insurer should retain all loss to 
achieve itself optimality. 

 

 

Figure 3. 
1 1
2

λ< ≤ . 

 
Table 2. Optimal ceded loss function. 

Case α  β  1ω  2ω  3ω  λ  ρ  ( )*f x  

1 0.05 0.01 0.20 0.30 0.50 0.00 0.50 405.47x ∧  

2 0.10 0.05 0.10 0.05 0.85 0.20 1.00 ( )2995.73 2995.73x xξ
+

∧ + −  

3 0.15 0.10 0.15 0.10 0.75 0.40 2.00 ( )1099.61 1897.12x x
+

∧ + −  

4 0.20 0.15 0.40 0.20 0.40 0.60 1.50 ( )916.29x
+

−  

5 0.25 0.20 0.50 0.20 0.30 0.80 2.00 ( ) ( )1099.61 286.68 1609.44x xξ
+ +

− ∧ + −  

6 0.30 0.25 0.60 0.10 0.30 1.00 3.00 0 
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From the perspectives of an insurer and a reinsurer, as Cases 2 - 5. Note that 
Cases 2 and 5 include the parameter [ ]0,1ξ ∈ , which means that reinsurance 
contracts can be different forms when the loss risk has been minimized. Case 3 
means that the stop-loss after quota-share reinsurance (which is to say a 
stop-loss will be applied after a quota-share reinsurance) is optimal. Case 4 
means that stop-loss reinsurance is optimal. 

5. Conclusion 

This article has studied the optimal reciprocal reinsurance with the GlueVaR 
distortion risk measures under the expected value premium principle. The Glu-
eVaR distortion risk measure is a linear combination of two TVaR and one VaR 
with different confidence levels, which adds the difficulty than the case of only 
one VaR or the case of only one TVaR when we derive the optimal reinsurance 
contract. In this paper, we have expressed GlueVaR as a linear combination of 
three distortion risk measures with different distortion functions. Therefore, we 
can use MIF formula to deal with the complex optimization problems easily. The 
results indicate that depending on the risk measures’s level of confidence (α  
and β ), the safety loading ( ρ ) for the reinsurance premium, weight ( λ ) of an 
insurer in the reciprocal reinsurance model and the proportions ( 1 2,ω ω  and 

3ω ) of the three risk measures in the definition of GlueVaR, the optimal rein-
surance can be in the forms of quota-share, stop-loss, change-loss, or their com-
bination, for example, stop-loss after quota-share. This paper has not considered 
the practical constraints, such as risk constraints or reinsurance premium con-
straints, which can be studied at a later time. 
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