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Abstract 
The recent introduction by Belafhal et al. [Opt. and Photon. J. 5, 234-246 
(2015)] of mth-order Olver beams as a novel class of self-accelerating nondif-
fracting solutions to the paraxial equation is a direct contradiction to the se-
minal work of Berry and Balazs who determined that the infinite-energy Airy 
wave packet is the only accelerating nondiffracting solution to the (1 + 1)D 
Schrödinger equation. It is shown in this note that the work of Belafhal et al. 
is valid only for 0m = , which coincides with the Airy solution. 
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1. Introduction 

Extensive studies of self-accelerating beams have been made recently. The basic 
such beam is the Airy solution 
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governed by the paraxial equation 
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in free space. Here, 0x X X=  and ( )2
0z Z kX=  are, respectively, dimen-

sionless transverse and longitudinal variables, defined in terms of the original 
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variables X and Z, the wavenumber k, and a scaling factor 0X  with units of 
meters. The complexification 12z z i a→ − , where 1a  is a positive parameter, 
ensures the square integrability (finite energy) of the input function ( ),0xψ  
and, hence, of ( ),x zψ  for 0z > . The finite-energy version of the solution 
given in Equation (1) was first formulated analytically by Siviloglou and Chris-
todoulides [1] and subsequently demonstrated experimentally by Siviloglou et al. 
[2]. Their work was motivated by the infinite-energy (nonspreading) accelerat-
ing Airy solution to the Schrödinger equation introduced by Berry and Balazs [3] 
in the context of quantum mechanics. A full wave theoretical analysis of the Airy 
beam has been undertaken by Kaganovsky and Heyman [4]. An Airy beam is 
slowly diffracting; it can retain its intensity over several diffraction lengths while 
bending laterally along a parabolic path even though its centroid is constant. 
Another feature, which has been demonstrated both analytically and experi-
mentally, is that an Airy beam propagating in free space can perform ballistic 
dynamics akin to those of projectiles moving under the action of gravity. 

Both bending Airy beams and accelerating Airy wavepackets are characterized 
by self-healing properties; they tend to reform in spite of the severity of imposed 
perturbations; this is due to the reinforcement of the main lobe by the side lobes. 
The robustness of such beams has been studied in the presence of material dis-
persion [5], deterministic inhomogeneities (see [6] and references therein), and 
turbulent environments [7] [8]. These exotic properties suggest various physical 
applications, such as Airy beam-mediated particle cleaning and vacuum electron 
acceleration. A recent review of the theory, generation and applications of Airy 
beams has been published by Hu et al. [9]. 

2. Critical Comments on Accelerating Olver Beams 

Belafhal et al. [10] have reported a new class of “accelerating” (more precisely, 
nonlinearly self-bending) nondiffracting solutions of the free-space parabolic 
equation [cf. Equation (2)] in terms of the Olver functions 
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which, in turn, are related to the solutions of the ordinary differential equation  
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Specifically, the authors state that a novel class of nondiffracting solutions to 
Equation (2) is given as follows: 
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The first equality above is correct. The integral expression does, indeed, satisfy 
the parabolic Equation (2) for all values of m, as the authors have shown in 
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Appendix B of Ref. [10]. However, the second equality above is incorrect. It 
holds only for 0m = , which yields the well-known Airy beam solution given in 
Equation (1). This affects the statements in Equations (3) and (4), Equation (A-1) 
and Equations (B-6) and (B-7) in Ref. [10]. A general proof of our assertion can 
be provided by using the ansatz  

( )
3 2
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2 12 4
xz s zx z i W xψ

    
= − −    
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into the parabolic Equation (2). As a result, one obtains the ordinary differential 
equation 
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d 0; ,
4d
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ξ
− = = −                   (7) 

a solution of which is the Airy function; specifically, ( ) ( ) ( )02πW Ai Oξ ξ ξ= = . 
This is in contradiction to the second equality in Equation (5) in which the Olver 
functions are related to the solutions to Equation (4) for 0m > .  

The authors give in Equation (24) of Ref. [10] the spectra of exponentially 
apodized initial conditions ( ),0m xψ  as follows:  

( ) ( ) ( ) ( ),0 exp ,m m mx O x ax O iaψ λ= ↔ +            (8) 

for m = 0, 1 and 2. Here, ( )mO λ  denotes the Fourier transform of the Olver 
function ( )mO x . For 0z ≥ , one obtains, then,  
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The wave function ( )0 ,x zψ  is the well-known Airy beam and contains finite 
energy for a positive parameter a. The Fourier representations of the wavefunc-
tions ( ),m x zψ  given by the integral expressions above do not yield analytical 
solutions for 0m > . The expressions for m = 1 and 2 could justifiably be called 
Olver beams (but not necessarily accelerating Olver beams) because they are as-
sociated with apodized fourth-order diffusion (super diffusion) and fifth-order 
Airy (hyper Airy) functions, respectively, at 0z = . However, a careful examina-
tion is needed in order to establish whether the exponential apodization is suffi-
cient for ensuring finite energy. It turns out that the Airy beam ( )1 ,x zψ  con-
tains finite energy only for 0a < . The choice of appropriate apodization for 

( )2 ,x zψ  requires careful examination. 
Due to their complexity, the wave functions ( ),m x zψ  for m = 1 and 2 can be 

examined only numerically. The authors allude to such a program in Sec. 4, 
where they propose hologram masks. However, it is not clear whether the inte-
grations given in Equation (9) above, which are required for 0z > , have been 
carried out, and what is the basis for the plots in Figure 3 of Ref. [10]. Why do 
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the plots for the fourth-order ( )1m =  and sixth-order ( )3m =  super diffusion, 
characterized essentially by single lobes, appear multi-lobed under finite-energy 
(apodised) conditions? 

Consider the second expression in Equation (5), viz.,  

( )
3 2

, exp .
2 12 4m m
zx z zx z i O xψ

    
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It has been shown in this note that this does not represent a solution of the pa-
rabolic Equation (2), unless 0m = . Is it possible, however, that there exists 
another type of equation the solutions of which can be expressed as in Equation 
(10) for all values of m? Such an equation does exist and it is given as follows: 
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Introducing the ansatz given in Equation (6) into Equation (11), one obtains the 
ordinary differential equation 
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which has been studied extensively by Olver [11]. The solutions ( )mW ξ  are re-
lated to the Olver functions; for example,  

( ) ( )2 3
3 0 3 2 .W Oξ ξ =                         (13) 

Since Equation (12) above is identical to Equation (1) in Ref. [10], with ( )f t  
given in Equation (6), the specific result in Equation (13) above indicates that 
Equation (6) in [10] is invalid. 

3. Critical Comments on Accelerating Olver-Gauss Beams 

Hennani et al. [12] have used the Fresnel diffraction formula for a paraxial 
ABCD optical system, viz., 
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in order to determine the output due to the input Olver-Gauss function  
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Here, 0ω  is a normalization parameter with units of length, and 0 0,a b  are 
positive dimensionless parameters used to ensure finite energy. The main result 
is given in Equation (7) of Ref. [12], viz., 
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Unfortunately, this result is incorrect, in general, because it is based on a varia-
tion of the expression given in Equation (5); specifically,  
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This formula and, as consequence, Equation (16), is valid only for 0n = . In this 
case, the solution in Equation (16) corresponds to a finite-energy accelerating 
Airy-Gauss beam which has been studied previously (see, e.g., Ez-Zariy et al. 
[13]). All the other cases examined analytically and numerically for different 
ABCD parameters in Ref. [12] are incorrect. 

The free-space version of Equation (16) corresponding to the optical ABCD 
matrix 

1
,

0 1
A B z
C D
   

=   
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                         (18) 

with z the direction of propagation, has been used by Hennani et al. [14] in or-
der to study the action of the radiation forces produced by a highly focused fi-
nite-energy Olver-Gaussian beam on a Rayleigh dielectric sphere. For the rea-
sons detailed above, the numerical results presented by the authors are valid only 
for the case 0n = . 

4. Concluding Remarks 

In the seminal work of Berry and Balazs [3] it was determined that the infi-
nite-energy Airy wave packet is the only self-accelerating nondiffracting solution 
to the (1 + 1)D Schrödinger equation. Within the framework of optics, Sivilog-
lou and Christodoulides [1] rendered the Airy beam given in Equation (1) phys-
ically realizable by appropriate apodization of the initial wave function, viz., 
( ) ( ) 1,0 ea xx Ai xψ = , with a positive parameter 1a .  
The introduction by Belafhal et al. [10] of the Olver beams as a novel class of 

self-accelerating nondiffracting solutions to the paraxial Equation (2) is a direct 
contradiction to the work of Berry and Balazs. It has been shown in this note 
that the work in [10] is valid only for 0m = , which coincides with the Airy so-
lution. Unfortunately, the mistakes in [10] have been carried over to the work by 
Hennani et al. [12] on the propagation of Olver-Gauss functions through an 
optical ABCD system, and by Hennani et al. [14] on the action of the radiation 
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forces produced by a highly focused finite-energy Olver-Gaussian beam on a 
Rayleigh dielectric sphere. 

In closing, it should be pointed out that the Olver functions  

( ) ( )1 1d exp ; 3, ,
2π 3mO x a i i x m a

m
γλ λ λ γ

∞

−∞
 = + = + =  +∫      (19) 

can be considered as “incomplete” elementary catastrophe integrals; the latter 
are defined as  

( ) ( ) ( )
2

1
d exp , ; , .

n jn

n n n j
jR

C q iP q P q q
n j
λ λλ λ λ

−

=

= = +   ∑∫
          (20) 

( )3C q x=  is precisely equal to ( )0O x  and corresponds to the fold catastro-
phe. ( )nC q  for n = 4, 5 and 6 are the cusp, swallowtail and butterfly catastro-
phes, respectively. The dynamics of the cusp, swallowtail and the butterfly opti-
cal catastrophes have been studied in terms of solutions to the 3D paraxial equa-
tion [15] [16] [17]. There exist more complicated catastrophe integrals than 
those in Equation (20); for example, the hyperbolic umbilic. Self-accelerating 
solutions of the 3D paraxial equation associated with this catastrophe have been 
determined recently [18] [19]. 
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