# On the Modular Erdös-Burgess Constant 

Jun Hao ${ }^{1}$, Haoli Wang ${ }^{2 *}$, Lizhen Zhang ${ }^{1}$<br>${ }^{1}$ Department of Mathematics, Tianjin Polytechnic University, Tianjin, China<br>${ }^{2}$ College of Computer and Information Engineering, Tianjin Normal University, Tianjin, China<br>Email: *bjpeuwanghaoli@163.com

How to cite this paper: Hao, J., Wang, H.L. and Zhang, L.Z. (2019) On the Modular Erdös-Burgess Constant. Open Journal of Discrete Mathematics, 9, 11-16.
https://doi.org/10.4236/ojdm.2019.91003

Received: August 16, 2018
Accepted: December 26, 2018
Published: December 29, 2018
Copyright © 2019 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/


#### Abstract

Let $n$ be a positive integer. For any integer $a$, we say that $a$ is idempotent modulo $n$ if $a^{2} \equiv a(\bmod n)$. The $n$-modular Erdös-Burgess constant is the smallest positive integer $\ell$ such that any $\ell$ integers contain one or more integers, whose product is idempotent modulo $n$. We gave a sharp lower bound of the $n$-modular Erdös-Burgess constant, in particular, we determined the $n$-modular Erdös-Burgess constant in the case when $n$ was a prime power or a product of pairwise distinct primes.


## Keywords

Erdös-Burgess Constant, Davenport Constant, Modular Erdös-Burgess Constant

## 1. Introduction

Let $\mathcal{S}$ be a finite multiplicatively written commutative semigroup with identity $1_{\mathcal{S}}$. By a sequence over $\mathcal{S}$, we mean a finite unordered sequence of terms from $\mathcal{S}$ where repetition is allowed. For a sequence $T$ over $\mathcal{S}$ we denote by $\pi(T) \in \mathcal{S}$ the product of its terms and we say that $T$ is a product-one sequence if $\pi(T)=1_{\mathcal{S}}$. If $\mathcal{S}$ is a finite abelian group, the Davenport constant $\mathrm{D}(\mathcal{S})$ of $\mathcal{S}$ is the smallest positive integer $\ell$ such that every sequence $T$ over $\mathcal{S}$ of length $|T| \geq \ell$ has a nonempty product-one subsequence. The Davenport constant has mainly been studied for finite abelian groups but also in more general settings (we refer to [1] [2] [3] [4] [5] for work in the setting of abelian groups, to [6] [7] for work in case of non-abelian groups, and to [8] [9] [10] [11] [12] for work in commutative semigroups).

In the present paper we study the Erdös-Burgess constant $\mathrm{I}(\mathcal{S})$ of $\mathcal{S}$ which is defined as the smallest positive integer $\ell$ such that every sequence $T$ over $\mathcal{S}$ of length $|T| \geq \ell$ has a non-empty subsequence $T^{\prime}$ whose product
$\pi\left(T^{\prime}\right)$ is an idempotent of $\mathcal{S}$. Clearly, if $\mathcal{S}$ happens to be a finite abelian group, then the unique idempotent of $\mathcal{S}$ is the identity $1_{\mathcal{S}}$, whence $\mathrm{I}(\mathcal{S})=\mathrm{D}(\mathcal{S})$. The study of $\mathrm{I}(\mathcal{S})$ for general semigroups is initiated by a question of Erdös and has found renewed attention in recent years (e.g., [13] [14] [15] [16] [17]). For a commutative unitary ring $R$, let $\mathcal{S}_{R}$ be the multiplicative semigroup of the ring $R$, and $R^{\times}$the group of units of $R$, noticing that the group $R^{\times}$is a subsemigroup of the semigoup $\mathcal{S}_{R}$. We state our main result.

Theorem 1.1. Let $n>1$ be an integer, and let $R=\mathbb{Z}_{n}$ be the ring of integers modulon. Then

$$
\mathrm{I}\left(\mathcal{S}_{R}\right) \geq \mathrm{D}\left(R^{\times}\right)+\Omega(n)-\omega(n)
$$

where $\Omega(n)$ is the number of primes occurring in the prime-power decomposition of $n$ counted with multiplicity, and $\omega(n)$ is the number of distinct primes. Moreover, if $n$ is a prime power or a product of pairwise distinct primes, then equality holds.

## 2. Notation

Let $\mathcal{S}$ be a finite multiplicatively written commutative semigroup with the binary operation ${ }^{*}$. An element $a$ of $\mathcal{S}$ is said to be idempotent if $a * a=a$. Let $\mathrm{E}(\mathcal{S})$ be the set of idempotents of $\mathcal{S}$. We introduce sequences over semigroups and follow the notation and terminology of Grynkiewicz and others (cf. [4], Chapter 10] or [6] [18]). Sequences over $\mathcal{S}$ are considered as elements in the free abelian monoid $\mathcal{F}(\mathcal{S})$ with basis $\mathcal{S}$. In order to avoid confusion between the multiplication in $\mathcal{S}$ and multiplication in $\mathcal{F}(\mathcal{S})$, we denote multiplication in $\mathcal{F}(\mathcal{S})$ by the boldsymbol and we use brackets for all exponentiation in $\mathcal{F}(\mathcal{S})$. In particular, a sequence $\mathcal{S} \in \mathcal{F}(\mathcal{S})$ has the form

$$
\begin{equation*}
T=a_{1} a_{2} \cdots \cdots a_{\ell}=\underset{i \in[1, \ell]}{\bullet} a_{i}=\underset{a \in \mathcal{S}}{\bullet} a^{\left[\mathrm{v}_{a}(T)\right]} \in \mathcal{F}(\mathcal{S}) \tag{1}
\end{equation*}
$$

where $a_{1}, \cdots, a_{\ell} \in \mathcal{S}$ are the terms of $T$, and $\mathrm{v}_{a}(T)$ is the multiplicity of the term a in $T$. We call $|T|=\ell=\sum_{a \in \mathcal{S}} \mathrm{v}_{a}(T)$ the length of $T$. Moreover, if
$T_{1}, T_{2} \in \mathcal{F}(\mathcal{S})$ and $a_{1}, a_{2} \in \mathcal{S}$, then $T_{1} \cdot T_{2} \in \mathcal{F}(\mathcal{S})$ has length
$\left|T_{1}\right|+\left|T_{2}\right|, T_{1} \cdot a_{1} \in \mathcal{F}(\mathcal{S})$ has length $\left|T_{1}\right|+1, \quad a_{1} \cdot a_{2} \in \mathcal{F}(\mathcal{S})$ is a sequence of length 2. If $a \in \mathcal{S}$ and $k \in \mathbb{N}_{0}$, then $a^{[k]}=\underbrace{a \cdots \cdots a}_{k} \in \mathcal{F}(\mathcal{S})$. Any sequence $T_{1} \in \mathcal{F}(\mathcal{S})$ is called a subsequence of $T$ if $\mathrm{v}_{a}\left(T_{1}\right) \leq \mathrm{v}_{a}(T)$ for every element $a \in \mathcal{S}$, denoted $T_{1} \mid T$. In particular, if $T_{1} \neq T$, we call $T_{1}$ a proper subsequence of $T$, and let $T \cdot T_{1}^{[-1]}$ denote the resulting sequence by removing the terms of $T_{1}$ from $T$.

Let $T$ be a sequence as in (1). Then

- $\pi(T)=a_{1} * \cdots * a_{\ell}$ is the product of all terms of $T$, and
- $\prod(T)=\left\{\prod_{j \in J} a_{j}: \varnothing \neq J \subset[1, \ell]\right\} \subset \mathcal{S}$ is the set of subsequence products of T.

We say that $T$ is

- a product-one sequence if $\pi(T)=1_{\mathcal{S}}$,
- an idempotent-product sequence if $\pi(T) \in \mathrm{E}(\mathcal{S})$,
- product-one free if $1_{\mathcal{S}} \notin \prod(T)$,
- idempotent-product free if $\mathrm{E}(\mathcal{S}) \cap \prod(T)=\varnothing$.

Let $n>1$ be an integer. For any integer $a$, we denote $\bar{a}$ the congruence class of $a$ modulo $n$. Any integer $a$ is said to be idempotent modulo $n$ if $a a \equiv a(\bmod n)$, i.e., $\overline{a a}=\bar{a}$ in $\mathbb{Z}_{n}$. A sequence $T$ of integers is said to be idempotent-product free modulo $n$ provided that $T$ contains no nonempty subsequence $T^{\prime}$ with $\pi\left(T^{\prime}\right)$ being idempotent modulo $n$. We remark that saying a sequence $T$ of integers is idempotent-product free modulo $n$ is equivalent to saying the sequence $\bullet \bar{a}$ is idempotent-product free in the multiplicative semigroup of the ring $\mathbb{Z}_{n}^{a \mid T}$.

## 3. Proof of Theorem 1.1

Lemma 3.1. Let $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$ be a positive integer where $r \geq 1$, $k_{1}, k_{2}, \cdots, k_{r} \geq 1$, and $p_{1}, p_{2}, \cdots, p_{r}$ are distinct primes. For any integer $a$, the congruence $a^{2} \equiv a(\bmod n)$ holds if and only if $a \equiv 0\left(\bmod p_{i}^{k_{i}}\right)$ or $a \equiv 1\left(\bmod p_{i}^{k_{i}}\right)$ for every $i \in[1, r]$.

Proof. Noted that $a^{2} \equiv a(\bmod n)$ if and only if $p_{i}^{k_{i}}$ divides $a(a-1)$ for all $i \in[1, r]$, since $\operatorname{gcd}(a, a-1)=1$, it follows that $a^{2} \equiv a(\bmod n)$ holds if and only if $p_{i}^{k_{i}}$ divides $a$ or $a-1$, i.e., $a \equiv 0\left(\bmod p_{i}^{k_{i}}\right)$ or $a \equiv 1\left(\bmod p_{i}^{k_{i}}\right)$ for every $i \in[1, r]$, completing the proof.

Proof of Theorem 1. 1. Say

$$
\begin{equation*}
n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}} \tag{2}
\end{equation*}
$$

where $p_{1}, p_{2}, \cdots, p_{r}$ are distinct primes and $k_{i} \geq 1$ for all $i \in[1, r]$. It is observed that

$$
\begin{equation*}
\Omega(n)=\sum_{i=1}^{r} k_{i} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega(n)=r . \tag{4}
\end{equation*}
$$

taking a sequence $V$ of integers of length $\mathrm{D}\left(R^{\times}\right)-1$ such that

$$
\begin{equation*}
\underset{a \mid V}{\bullet} \bar{a} \in \mathcal{F}\left(R^{\times}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{1} \notin \prod(\underset{a \mid V}{\bullet} \bar{a}) . \tag{6}
\end{equation*}
$$

Now we show that the sequence $V \cdot\left(\underset{i \in[1, r]}{\bullet} p_{i}^{\left[k_{i}-1\right]}\right)$ is idempotent-product free

subsequence $W$, say $W=V^{\prime} \cdot\left(\underset{i \in[1, r]}{\bullet} p_{i}^{\left[\beta_{i}\right]}\right)$, such that $\pi(W)$ is idempotent modulo $n$, where $V^{\prime}$ is a subsequence of $V$ and

$$
\beta_{i} \in\left[0, k_{i}-1\right] \text { for all } i \in[1, r] .
$$

It follows that

$$
\begin{equation*}
\pi(W)=\pi\left(V^{\prime}\right) p_{1}^{\beta_{1}} \cdots p_{r}^{\beta_{r}} . \tag{7}
\end{equation*}
$$

If $\sum_{i=1}^{r} \beta_{i}=0$, then $W=V^{\prime}$ is a nonempty subsequence of $V$. By (5) and (6), there exists some $t \in[1, r]$ such that $\pi(W) \not \equiv 0\left(\bmod p_{t}^{k_{t}}\right)$ and $\pi(W) \not \equiv 1\left(\bmod p_{t}^{k_{t}}\right)$. By Lemma 3.1, $\pi(W)$ is not idempotent modulo $n$, a contradiction. Otherwise, $\beta_{j}>0$ for some $j \in[1, r]$, say

$$
\begin{equation*}
\beta_{1} \in\left[1, k_{1}-1\right] . \tag{8}
\end{equation*}
$$

Since $\operatorname{gcd}\left(\pi\left(V^{\prime}\right), p_{1}\right)=1$, it follows from (7) that $\operatorname{gcd}\left(\pi(W), p_{1}^{k_{1}}\right)=p_{1}^{\beta_{1}}$. Combined with (8), we have that $\pi(W) \not \equiv 0\left(\bmod p_{1}^{k_{1}}\right)$ and $\pi(W) \not \equiv 1\left(\bmod p_{1}^{k_{1}}\right)$. By Lemma 3.1, we conclude that $\pi(W)$ is not idempotent modulo $n$, a contradiction. This proves that the sequence $V \cdot\left({ }_{i \in[1, r]} p_{i}^{\left[k_{i}-1\right]}\right)$ is idempotent-product free modulo $n$. Combined with (3) and (4), we have that

$$
\begin{equation*}
\mathrm{I}\left(\mathcal{S}_{R}\right) \geq\left|V \cdot\left(\underset{i \in[1, r]}{\bullet} p_{i}^{\left[k_{i}-1\right]}\right)\right|+1=(|V|+1)+\sum_{i=1}^{r}\left(k_{i}-1\right)=\mathrm{D}\left(R^{\times}\right)+\Omega(n)-\omega(n) . \tag{9}
\end{equation*}
$$

Now we assume that $n$ is a prime power or a product of pairwise distinct primes, i.e., either $r=1$ or $k_{1}=\cdots=k_{r}=1$ in (2). It remains to show the equality $\mathrm{I}\left(\mathcal{S}_{R}\right)=\mathrm{D}\left(R^{\times}\right)+\Omega(n)-\omega(n)$ holds. We distinguish two cases.

Case 1. $r=1$ in (2), i.e., $n=p_{1}^{k_{1}}$.
Taking an arbitrary sequence $T$ of integers of length $|T|=\mathrm{D}\left(R^{\times}\right)+k_{1}-1=\mathrm{D}\left(R^{\times}\right)+\Omega(n)-\omega(n)$, let $T_{1} \underset{\substack{a \mid T \\ a \equiv 0\left(\bmod p_{1}\right)}}{0} a$ and $T_{2}=T \cdot T_{1}^{[-1]}$. By the Pigeonhole Principle, we see that either $\left|T_{1}\right| \geq k_{1}$ or $\left|T_{2}\right| \geq \mathrm{D}\left(R^{\times}\right)$. It follows either $\pi\left(T_{1}\right) \equiv 0\left(\bmod p_{1}^{k_{1}}\right)$, or $\overline{1} \in \prod\left({ }_{a \mid T_{2}}^{\bullet} \bar{a}\right)$. By Lemma 3.1, the sequence $T$ is not idempotent-product free modulo $n$, which implies that $\mathrm{I}\left(\mathcal{S}_{R}\right) \leq \mathrm{D}\left(R^{\times}\right)+\Omega(n)-\omega(n)$. Combined with (9), we have that $\mathrm{I}\left(\mathcal{S}_{R}\right)=\mathrm{D}\left(R^{\times}\right)+\Omega(n)-\omega(n)$.

Case 2. $k_{1}=\cdots=k_{r}=1$ in (2), i.e., $n=p_{1} p_{2} \cdots p_{r}$.
Then

$$
\begin{equation*}
\Omega(n)=\omega(n)=r . \tag{10}
\end{equation*}
$$

Taking an arbitrary sequence $T$ of integers of length $|T|=\mathrm{D}\left(R^{\times}\right)$, by the Chinese Remainder Theorem, for any term $a$ of $T$ we can take an integer $a^{\prime}$ such that for each $i \in[1, r]$,

$$
a^{\prime} \equiv \begin{cases}1\left(\bmod p_{i}\right) & \text { if } a \equiv 0\left(\bmod p_{i}\right)  \tag{11}\\ a\left(\bmod p_{i}\right) & \text { otherwise }\end{cases}
$$

Note that $\operatorname{gcd}\left(a^{\prime}, n\right)=1$ and thus $\underset{a \mid T}{\bullet} \bar{a}^{\prime} \in \mathcal{F}\left(R^{\times}\right)$. Since $\left|{ }_{a \mid T}^{\bullet} \bar{a}^{\prime}\right|=|T|=\mathrm{D}\left(R^{\times}\right)$, it follows that $\overline{1} \in \prod\left(\underset{a \mid T}{\bullet} \bar{a}^{\prime}\right)$, and so there exists a nonempty subsequence $W$ of $T$ such that $\prod_{a \mid W} a^{\prime} \equiv 1\left(\bmod p_{i}\right)$ for each $i \in[1, r]$. Combined with (11), we derive that $\pi(W) \equiv 0\left(\bmod p_{i}\right)$ or $\pi(W) \equiv 1\left(\bmod p_{i}\right)$, where $i \in[1, r]$. By Lemma 3.1, we conclude that $\pi(W)$ is idempotent modulo $n$. Combined with (10), we have that $\mathrm{I}\left(\mathcal{S}_{R}\right) \leq \mathrm{D}\left(R^{\times}\right)=\mathrm{D}\left(R^{\times}\right)+\Omega(n)-\omega(n)$. It follows from (9) that $\mathrm{I}\left(\mathcal{S}_{R}\right)=\mathrm{D}\left(R^{\times}\right)+\Omega(n)-\omega(n)$, completing the proof.

We close this paper with the following conjecture.
Conjecture 3.2. Let $n>1$ be an integer, and let $R=\mathbb{Z}_{n}$ be the ring of integers modulo $n$. Then $\mathrm{I}\left(\mathcal{S}_{R}\right)=\mathrm{D}\left(R^{\times}\right)+\Omega(n)-\omega(n)$.

## Acknowledgements

This work is supported by NSFC (Grant No. 61303023, 11301381, 11501561).

## Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

## References

[1] Gao, W. and Geroldinger, A. (2006) Zero-Sum Problems in Finite Abelian Groups: A Survey. Expositiones Mathematicae, 24, 337-369. https://doi.org/10.1016/j.exmath.2006.07.002
[2] Geroldinger, A. and Halter-Koch, F. (2006) Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory. Pure Appl. Math., Vol. 278, Chapman \& Hall/CRC.
[3] Geroldinger, A. and Ruzsa, I. (2009) Combinatorial Number Theory and Additive Group Theory. In Advanced Courses in Mathematics CRM Barcelona, Springer, Birkhäuser. https://doi.org/10.1007/978-3-7643-8962-8
[4] Grynkiewicz, D.J. (2013) Structural Additive Theory, Developments in Mathematics. Vol. 30, Springer, Cham. https://doi.org/10.1007/978-3-319-00416-7
[5] Tao, T. and Van Vu, H. (2006) Additive Combinatorics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511755149
[6] Cziszter, K., Domokos, M. and Geroldinger, A. (2016) The Interplay of Invariant Theory with Multiplicative Ideal Theory and with Arithmetic Combinatorics, Multiplicative Ideal Theory and Factorization Theory. Springer, Berlin, 43-95.
[7] Gao, W., Li, Y. and Peng, J. (2014) An Upper Bound for the Davenport Constant of Finite Groups. Journal of Pure and Applied Algebra, 218, 1838-1844. https://doi.org/10.1016/j.jpaa.2014.02.009
[8] Wang, G. (2015) Davenport Constant for Semigroups II. Journal of Number Theory, 153, 124-134. https://doi.org/10.1016/j.jnt.2015.01.007
[9] Wang, G. (2017) Additively Irreducible Sequences in Commutative Semigroups. Journal of Combinatorial Theory, Series A, 152, 380-397. https://doi.org/10.1016/j.jcta.2017.07.001
[10] Wang, G. and Gao, W. (2008) Davenport Constant for Semigroups. Semigroup Forum, 76, 234-238. https://doi.org/10.1007/s00233-007-9019-3
[11] Wang, G. and Gao, W. (2016) Davenport Constant of the Multiplicative Semigroup of the Ring $\mathbb{Z}_{n_{1}} \oplus \cdots \oplus \mathbb{Z}_{n_{r}}$. arXiv:1603.06030
[12] Zhang, L., Wang, H. and Qu, Y. (2017) A Problem of Wang on Davenport Constant for the Multiplicative Semigroup of the Quotient Ring of $\mathbb{F}_{2}[x]$. Colloquium Mathematicum, 148, 123-130. https://doi.org/10.4064/cm6707-6-2016
[13] Burgess, D.A. (1969) A Problem on Semi-Groups. Studia Sci. Math. Hungar., 4, 9-11.
[14] Gillam, D.W.H., Hall, T.E. and Williams, N.H. (1972) On Finite Semigroups and Idempotents. Bulletin of the London Mathematical Society, 4, 143-144. https://doi.org/10.1112/blms/4.2.143
[15] Wang, G. (2019) Structure of the Largest Idempotent-Product Free Sequences in Semigroups. Journal of Number Theory, 195, 84-95. https://doi.org/10.1016/j.jnt.2018.05.020
[16] Wang, G. (2018) Erdös-Burgess Constant of the Direct Product of Cyclic Semigroups. arXiv:1802.08791.
[17] Wang, H., Hao, J. and Zhang, L. (2018) On the Erdös-Burgess Constant of the Multiplicative Semigroup of a Factor Ring of $\mathbb{F}_{q}[x]$. International Journal of Number Theory. (To Appear)
[18] Grynkiewicz, D.J. (2013) The Large Davenport Constant II: General Upper Bounds. Journal of Pure and Applied Algebra, 217, 2221-2246.
https://doi.org/10.1016/j.jpaa.2013.03.002

