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Abstract 
Let n be a positive integer. For any integer a , we say that a  is idempotent 
modulo n if ( )2 moda a n≡ . The n-modular Erdös-Burgess constant is the 

smallest positive integer   such that any   integers contain one or more 
integers, whose product is idempotent modulo n. We gave a sharp lower 
bound of the n-modular Erdös-Burgess constant, in particular, we 
determined the n-modular Erdös-Burgess constant in the case when n was a 
prime power or a product of pairwise distinct primes. 
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1. Introduction 

Let   be a finite multiplicatively written commutative semigroup with identity 
1 . By a sequence over  , we mean a finite unordered sequence of terms from 
  where repetition is allowed. For a sequence T over   we denote by 
( )Tπ ∈  the product of its terms and we say that T is a product-one sequence 

if ( ) 1Tπ =  . If   is a finite abelian group, the Davenport constant ( )D   of 
  is the smallest positive integer   such that every sequence T over   of 
length T ≥   has a nonempty product-one subsequence. The Davenport 
constant has mainly been studied for finite abelian groups but also in more 
general settings (we refer to [1] [2] [3] [4] [5] for work in the setting of abelian 
groups, to [6] [7] for work in case of non-abelian groups, and to [8] [9] [10] [11] 
[12] for work in commutative semigroups). 

In the present paper we study the Erdös-Burgess constant ( )I   of   
which is defined as the smallest positive integer   such that every sequence T 
over   of length T ≥   has a non-empty subsequence T ′  whose product 
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( )Tπ ′  is an idempotent of  . Clearly, if   happens to be a finite abelian 
group, then the unique idempotent of   is the identity 1 , whence 
( ) ( )I D=  . The study of ( )I   for general semigroups is initiated by a 

question of Erdös and has found renewed attention in recent years (e.g., [13] [14] 
[15] [16] [17]). For a commutative unitary ring R, let R  be the multiplicative 
semigroup of the ring R, and R×  the group of units of R, noticing that the 
group R×  is a subsemigroup of the semigoup R . We state our main result. 

Theorem 1.1. Let 1n >  be an integer, and let nR =   be the ring of 
integers modulon. Then  

( ) ( ) ( ) ( )I D ,R R n nω×≥ +Ω −  

where ( )nΩ  is the number of primes occurring in the prime-power 
decomposition of n counted with multiplicity, and ( )nω  is the number of 
distinct primes. Moreover, if n is a prime power or a product of pairwise distinct 
primes, then equality holds. 

2. Notation 

Let   be a finite multiplicatively written commutative semigroup with the 
binary operation *. An element a  of   is said to be idempotent if a a a∗ = . 
Let ( )E   be the set of idempotents of  . We introduce sequences over 
semigroups and follow the notation and terminology of Grynkiewicz and others 
(cf. [4], Chapter 10] or [6] [18]). Sequences over   are considered as elements 
in the free abelian monoid ( )   with basis  . In order to avoid confusion 
between the multiplication in   and multiplication in ( )  , we denote 
multiplication in ( )   by the boldsymbol ⋅  and we use brackets for all 
exponentiation in ( )  . In particular, a sequence ( )∈    has the form  

[ ]

( ) ( )v
1 2

1,

a T
i

i a
T a a a a a  

∈ ∈
= ⋅ ⋅ = = ∈• •






               (1) 

where 1, ,a a ∈


   are the terms of T, and ( )va T  is the multiplicity of the 

term a in T. We call ( )va
a

T T
∈

= = ∑



 the length of T. Moreover, if  

( )1 2,T T ∈   and 1 2,a a ∈ , then ( )1 2T T⋅ ∈   has length  

( )1 2 1 1,T T T a+ ⋅ ∈   has length 1 1T + , ( )1 2a a⋅ ∈   is a sequence of 

length 2. If a∈  and 0k ∈ , then [ ] ( )k

k
a a a= ⋅ ⋅ ∈



   . Any sequence 

( )1T ∈   is called a subsequence of T if ( ) ( )1v va aT T≤  for every element 
a∈ , denoted 1 |T T . In particular, if 1T T≠ , we call 1T  a proper 

subsequence of T, and let [ ]1
1T T −⋅  denote the resulting sequence by removing 

the terms of 1T  from T. 

Let T be a sequence as in (1). Then  
• ( ) 1T a aπ = ∗ ∗



  is the product of all terms of T, and  

• ( ) [ ]{ }: 1,jj JT a J
∈

= ∅ ≠ ⊂ ⊂∏ ∏    is the set of subsequence products of 

T.  
We say that T is  
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• a product-one sequence if ( ) 1Tπ =  ,  
• an idempotent-product sequence if ( ) ( )ETπ ∈  ,  
• product-one free if ( )1 T∉∏ ,  
• idempotent-product free if ( ) ( )E T = ∅∏ .  

Let 1n >  be an integer. For any integer a , we denote a  the congruence 
class of a  modulo n. Any integer a  is said to be idempotent modulo n if 

( )modaa a n≡ , i.e., aa a=  in n . A sequence T of integers is said to be 
idempotent-product free modulo n provided that T contains no nonempty 
subsequence T ′  with ( )Tπ ′  being idempotent modulo n. We remark that 
saying a sequence T of integers is idempotent-product free modulo n is 
equivalent to saying the sequence 

|a T
a•  is idempotent-product free in the 

multiplicative semigroup of the ring n . 

3. Proof of Theorem 1.1 

Lemma 3.1. Let 1 2
1 2

rk k k
rn p p p=   be a positive integer where 1r ≥ , 

1 2, , , 1rk k k ≥ , and 1 2, , , rp p p  are distinct primes. For any integer a , the 
congruence ( )2 moda a n≡  holds if and only if ( )0 mod ik

ia p≡  or 
( )1 mod ik

ia p≡  for every [ ]1,i r∈ .   
Proof. Noted that ( )2 moda a n≡  if and only if ik

ip  divides ( )1a a −  for all 
[ ]1,i r∈ , since ( )gcd , 1 1a a − = , it follows that ( )2 moda a n≡  holds if and 

only if ik
ip  divides a  or 1a − , i.e., ( )0 mod ik

ia p≡  or ( )1 mod ik
ia p≡  for 

every [ ]1,i r∈ , completing the proof.  
Proof of Theorem 1. 1. Say  

1 2
1 2 ,rk k k

rn p p p=                          (2) 

where 1 2, , , rp p p  are distinct primes and 1ik ≥  for all [ ]1,i r∈ . It is 
observed that  

( )
1

r

i
i

n k
=

Ω = ∑                           (3) 

and  

( ) .n rω =                            (4) 

taking a sequence V of integers of length ( )D 1R× −  such that  

( )
|a V

a R×∈•                           (5) 

and  

|
1 .

a V
a ∉ • 

 
∏                          (6) 

Now we show that the sequence 
[ ]

[ ]1

1,

ik
i

i r
V p −

∈

 
⋅ 
 
•  is idempotent-product free 

modulo n, supposing to the contrary that 
[ ]

[ ]1
1,

ik
i

i r
V p −

∈

 ⋅ • 
 

 contains a nonempty 
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subsequence W, say 
[ ]

[ ]
1,

i
i

i r
W V p β

∈

 ′= ⋅ • 
 

, such that ( )Wπ  is idempotent 

modulo n, where V ′  is a subsequence of V and  

[ ] [ ]0, 1 for all 1, .i ik i rβ ∈ − ∈  

It follows that  

( ) ( ) 1
1 .r

rW V p pβ βπ π ′=                      (7) 

If 
1

0
r

i
i
β

=

=∑ , then W V ′=  is a nonempty subsequence of V. By (5) and (6), 

there exists some [ ]1,t r∈  such that ( ) ( )0 mod tk
tW pπ ≡/  and  

( ) ( )1 mod tk
tW pπ ≡/ . By Lemma 3.1, ( )Wπ  is not idempotent modulo n, a 

contradiction. Otherwise, 0jβ >  for some [ ]1,j r∈ , say  

[ ]1 11, 1 .kβ ∈ −                         (8) 

Since ( )( )1gcd , 1V pπ ′ = , it follows from (7) that ( )( )1 1
1 1gcd , kW p pβπ = . 

Combined with (8), we have that ( ) ( )1
10 mod kW pπ ≡/  and  

( ) ( )1
11 mod kW pπ ≡/ . By Lemma 3.1, we conclude that ( )Wπ  is not idempotent 

modulo n, a contradiction. This proves that the sequence 
[ ]

[ ]1
1,

ik
i

i r
V p −

∈

 ⋅ • 
 

 is 

idempotent-product free modulo n. Combined with (3) and (4), we have that  

( )
[ ]

[ ] ( ) ( ) ( ) ( ) ( )1

1, 1
I 1 1 1 D .i

r
k

R i i
i r i

V p V k R n nω− ×

∈ =

 ≥ ⋅ + = + + − = +Ω −• 
 

∑  (9) 

Now we assume that n is a prime power or a product of pairwise distinct 
primes, i.e., either 1r =  or 1 1rk k= = =  in (2). It remains to show the 
equality ( ) ( ) ( ) ( )I DR R n nω×= +Ω −  holds. We distinguish two cases. 

Case 1. 1r =  in (2), i.e., 1
1
kn p= . 

Taking an arbitrary sequence T of integers of length  

( ) ( ) ( ) ( )1D 1 DT R k R n nω× ×= + − = +Ω − , let 
( )1

1
|

0 mod
a T

a p

T a
≡

= •  and [ ]1
2 1T T T −= ⋅ . 

By the Pigeonhole Principle, we see that either 1 1T k≥  or ( )2 DT R×≥ . It 

follows either ( ) ( )1
1 10 mod kT pπ ≡ , or 

2|
1

a T
a ∈ • 

 
∏ . By Lemma 3.1, the 

sequence T is not idempotent-product free modulo n, which implies that 

( ) ( ) ( ) ( )I DR R n nω×≤ +Ω − . Combined with (9), we have that 

( ) ( ) ( ) ( )I D .R R n nω×= +Ω −  

Case 2. 1 1rk k= = =  in (2), i.e., 1 2 rn p p p=  . 
Then  

( ) ( ) .n n rωΩ = =                        (10) 

Taking an arbitrary sequence T of integers of length ( )DT R×= , by the 
Chinese Remainder Theorem, for any term a  of T we can take an integer a′  
such that for each [ ]1,i r∈ ,  
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( ) ( )
( )

1 mod if 0 mod ;
mod otherwise.

i i

i

p a p
a

a p
 ≡′ ≡ 


               (11) 

Note that ( )gcd , 1a n′ =  and thus ( )
|a T
a R×′∈•  . Since ( )

|
D

a T
a T R×′ = =• , 

it follows that 
|

1
a T

a ′∈ • 
 

∏ , and so there exists a nonempty subsequence W of 

T such that ( )
|

1 mod i
a W

a p′ ≡∏  for each [ ]1,i r∈ . Combined with (11), we 

derive that ( ) ( )0 mod iW pπ ≡  or ( ) ( )1 mod iW pπ ≡ , where [ ]1,i r∈ . By 

Lemma 3.1, we conclude that ( )Wπ  is idempotent modulo n. Combined with 

(10), we have that ( ) ( ) ( ) ( ) ( )I D DR R R n nω× ×≤ = +Ω − . It follows from (9) 

that ( ) ( ) ( ) ( )I DR R n nω×= +Ω − , completing the proof.  

We close this paper with the following conjecture. 
Conjecture 3.2. Let 1n >  be an integer, and let = nR   be the ring of 

integers modulo n. Then ( ) ( ) ( ) ( )I DR R n nω×= +Ω − .  
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