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Abstract

Let 11 be a positive integer. For any integer a, we say that a is idempotent
modulo 21 if 4’ =a(modn). The n-modular Erdés-Burgess constant is the
smallest positive integer ¢ such that any ¢ integers contain one or more
integers, whose product is idempotent modulo n. We gave a sharp lower
bound of the n-modular Erdos-Burgess constant, in particular, we
determined the n-modular Erdos-Burgess constant in the case when n was a
prime power or a product of pairwise distinct primes.
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1. Introduction

Let S be a finite multiplicatively written commutative semigroup with identity
15 . By a sequence over S, we mean a finite unordered sequence of terms from
S where repetition is allowed. For a sequence 7 over S we denote by
7r(T ) €S the product of its terms and we say that 7'is a product-one sequence
if 7(T)=15.1f S is a finite abelian group, the Davenport constant D(S) of
S is the smallest positive integer ¢ such that every sequence 7 over S of
length |T | >/( has a nonempty product-one subsequence. The Davenport
constant has mainly been studied for finite abelian groups but also in more
general settings (we refer to [1] [2] [3] [4] [5] for work in the setting of abelian
groups, to [6] [7] for work in case of non-abelian groups, and to [8] [9] [10] [11]
[12] for work in commutative semigroups).
In the present paper we study the Erdos-Burgess constant I(S ) of §

which is defined as the smallest positive integer ¢ such that every sequence I

over S of length |T |2€ has a non-empty subsequence 7' whose product
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7(T') is an idempotent of S. Clearly, if S happens to be a finite abelian
group, then the unique idempotent of S is the identity 15, whence
1(S)=D(S). The study of I(S) for general semigroups is initiated by a
question of Erdos and has found renewed attention in recent years (e.g., [13] [14]
[15] [16] [17]). For a commutative unitary ring R, let S, be the multiplicative
semigroup of the ring R, and R* the group of units of R, noticing that the
group R isa subsemigroup of the semigoup S,.We state our main result.
Theorem 1.1. Let n>1 be an integer, and let R=7, be the ring of

integers modulon. Then
1(8;)=D(R)+Q(n)-a(n),

where Q(n) is the number of primes occurring in the prime-power
decomposition of n counted with multiplicity, and a)(n) is the number of
distinct primes. Moreover, if n is a prime power or a product of pairwise distinct

primes, then equality holds.

2. Notation

Let & be a finite multiplicatively written commutative semigroup with the
binary operation *. An element a of S is said to be idempotentif a*a=a.
Let E(S) be the set of idempotents of S. We introduce sequences over
semigroups and follow the notation and terminology of Grynkiewicz and others
(cf. [4], Chapter 10] or [6] [18]). Sequences over S are considered as elements
in the free abelian monoid F(S) with basis S. In order to avoid confusion
between the multiplication in S and multiplication in F (S), we denote
multiplication in F (S) by the boldsymbol - and we use brackets for all
exponentiation in F (S ) In particular, a sequence S e F (S ) has the form

T=aa,a,= e a= oal Ml e F(S) (1)

ie[l,/] aeS
where a,---,a, €S are the terms of 7; and v,(T) is the multiplicity of the

termain 7" Wecall |T|=(=)v, (T) thelength of 7. Moreover, if
aeS

T,,T, e F(S) and a,,a,€S,then T,-T, € F(S) haslength
|Tl|+|];|,Tl~a1€f(S) has length |Tl|+1, a,-a, € F(S) is a sequence of
length 2. If aeS and keN,, then a/!=g-.-.ae F(S). Any sequence

T, e F(S) is called a subsequence of T'if v,(7;)<v,(T) for every element
aeS , denoted T,|T . In particular, if 7, #7 , we call T, a proper

subsequence of 7; and let T -Tl[fl] denote the resulting sequence by removing

the terms of 7, from 7.

Let T'be a sequence as in (1). Then
o 7(T)=a,*---*a, isthe product of all terms of 7; and

e [](1)= {H,-EJ“,/ D#Jc [l,f]} — S s the set of subsequence products of

T.
We say that T'is
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e a product-one sequence if 7Z'(T ) =1,

e an idempotent-product sequenceif 7(T)eE(S),
e product-one freeif 15¢[](T),

e idempotent-product freeif E(S)N[](T)=9.

Let n>1 be an integer. For any integer @, we denote a the congruence
class of @ modulo n. Any integer a is said to be idempotent modulo n if
aa=a(modn), ie, aa=a in Z,. A sequence T of integers is said to be
idempotent-product free modulo n provided that 7" contains no nonempty
subsequence T’ with ﬂ(T ') being idempotent modulo n. We remark that
saying a sequence 7 of integers is idempotent-product free modulo =2 is
equivalent to saying the sequence ea is idempotent-product free in the

a|lT
multiplicative semigroup of the ring Z .

3. Proof of Theorem 1.1

Lemma 3.1. Let n=pipP...p be a positive integer where r>1,
pl pZ pr p g

k., ky,,k. 21, and p,,p,, -, p, are distinct primes. For any integer a, the
congruence a’ =a(modn) holds if and only if a= O(modpf") or
a= l(modpl."") forevery ie[l,r].

Proof. Noted that a” =a(modn) ifand onlyif p/ divides a(a—1) for all
ie[l,r], since ged(a,a—1)=1, it follows that a’=a(modn) holds if and
only if p/ divides a or a-1, ie, a= O(modpf") or a= l(modp,."") for
every i€ [l,r] , completing the proof.

Proof of Theorem 1. 1. Say

n=plpy - pt, )

where p,,p,,--,p, are distinct primes and k =1 for all ie[l,r]. It is
observed that

Q)= 3k ©

and
w(n)=r. (4)
taking a sequence V of integers of length D(RX ) —1 such that
acF(R 5
a\.l/a € ( ) ( )

and
Te H( .a—j. ®)
aly’
Now we show that the sequence V~[ ° P,[k‘l]] is idempotent-product free

{1.1]
modulo n, supposing to the contrary that V ( o Ipl.[k"_l]J contains a nonempty

ie[l,r
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subsequence W, say W:V'-[ o ]Pz[ﬁ "]j, such that 7(W) is idempotent

ie[l,r
modulo n, where V' is a subsequence of Vand
B, [0,k —1] forall i e[1,r].
It follows that
a(W)y=z(V')pl - pl. (7)

If Z,Bl =0, then W=V" isa nonempty subsequence of V. By (5) and (6),

i=1

there exists some 7 €[l,7] such that z(#)#0(mod p/*) and
7(W)#1(mod pf ). By Lemma 3.1, z(W) is not idempotent modulo n, a
contradiction. Otherwise, 3, >0 for some j e[l,r],say
B e[l -1]. (®)
Since ged(7(V'),p,)=1, it follows from (7) that ged(z(W),p{")=p{* .
Combined with (8), we have that 7 (#)#0(mod p| ) and

z(W)# 1(mod pl ) . By Lemma 3.1, we conclude that 77 (/) is not idempotent

modulo n, a contradiction. This proves that the sequence V( ° p,[k"_]]j is

ie[l,r]

idempotent-product free modulo #. Combined with (3) and (4), we have that

V( ° p[kxl])
ie[l,r] !

Now we assume that n is a prime power or a product of pairwise distinct

A= (V] +1)+ X (k ~1) = D(R")+Q(n)-o(n). (9)

i=

[(S;)2

primes, ie., either r=1 or k =---=k =1 in (2). It remains to show the
equality 1(S,)= D(RX ) +Q(n)-w(n) holds. We distinguish two cases.
Casel. =1 in(2),ie, n =plk‘.
Taking an arbitrary sequence 7 of integers of length
|T| = D(RX)—i-k1 -1= D(Rx)+Q(n)—a)(n), let 7 = P and 7, =T-T"".
a=0(mod p;)

By the Pigeonhole Principle, we see that either |T1|Zk1 or |T2|2D(RX). It

follows either 7Z'(T1)E()(modp1k'), or TEH[ .Ej. By Lemma 3.1, the

all,

sequence 7 is not idempotent-product free modulo z, which implies that

I(SR)SD(RX)+Q(n)—a)(n) . Combined with (9), we have that
1(8;)=D(R*)+Q(n)-o(n).

Case2. ky=---=k =1 in(2),ie, n=pp,--p,.

Then

Q(n)=w(n)=r. (10)

Taking an arbitrary sequence 7 of integers of length |T | =D(RX), by the
Chinese Remainder Theorem, for any term a of 7'we can take an integer a’
such that for each i€ [l,r] ,
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= (11)

,_[1(modp,) if a=0(modp,);
a(mod p;) otherwise.

—
od
all

Note that gcd(a’,n =1 and thus ed'e f(Rx). Since

alT

=|7]=D(R"),

it follows that 1 e H( . E’j, and so there exists a nonempty subsequence W of

all

T such that Ha'zl(modp,.) for each ie[l,r]. Combined with (11), we

alw

derive that 7(W)=0(modp,) or z(W)=1(modp,), where i€[l,r]. By
Lemma 3.1, we conclude that 7Z'(W) is idempotent modulo n. Combined with
(10), we have that I(SR ) < D(RX ) = D(RX)-i-Q(n)—a)(n) . It follows from (9)
that I(S;)= D(RX ) +Q(n)—w(n), completing the proof.

We close this paper with the following conjecture.

Conjecture 3.2. Let n>1 be an integer, and let R =7, be the ring of
integers modulo n. Then 1(S;) = D(RX)+Q(n)—a)(n).
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