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Abstract 

In this work, the authors proposed a four parameter potentiated lifetime 
model named as Transmuted Exponentiated Moment Pareto (TEMP) distri-
bution and discussed numerous characteristic measures of proposed model. 
Parameters are estimated by the method of maximum likelihood and perfor-
mance of these estimates is also assessed by simulations study. Four suitable 
lifetime datasets are modeled by the TEMP distribution and the results sup-
port that the proposed model provides much better results as compared to its 
sub-models. 
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1. Introduction 

An Italian Economist and civil engineer, Pareto (1848-1923) introduced the 
Power law. This law is also known as Pareto Power law and shortly turned into 
Pareto distribution. Unequal distribution of wealth in society was major cause to 
establish the Power law. 80% wealth of the population is distributed in 20% pop-
ulation. Thus it is also known as 80 - 20 rule and is stated as N = γx−k where N is 
the number of individuals with income higher than x for k > 0. Under social 
constraints of taxation and other conditions this law is proved to be inevitable 
and universal. Many empirical phenomena are explained by Pareto distribution. 
Flexibility of Pareto distribution attracted the researchers to develop models by 
mixing Pareto distribution with other distributions. 

Alzaatreh et al. [1] developed Gamma Pareto distribution. Bourguignon et al. 
[2] introduced the modified form of Pareto distribution presented as “The Ku-
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maraswamy-Pareto distribution”. Nasiru and Luguterah [3] worked on “The 
New Weibull-Pareto distribution”. Shafiq [4] derived the classical and Bayesian 
approach on fuzzy observations to draw inference for Pareto distribution and 
also discussed its characterization and reliability behavior. Exponentiated gene-
ralized (EG) class is used by Andrade and Zea [5] to extend the Pareto distribu-
tion. Numerous mathematical properties are developed and discussed as well as 
two real time data sets are modeled by it. 

Moment probability distribution or weighted distribution is introduced by 
Fisher [6] in the context of unequal probability sampling. Mir and Ahmad [7] 
developed some size biased discrete distributions and also discussed their 
generalized cases. Dara [8] developed the weighted form of various life time dis-
tributions including special cases of size biased distributions with their reliability 
analysis. Weighted Weibull distribution is size-biased (SWWD) by Perveen and 
Ahmad [9]. They discussed various characteristic measures and three life data 
sets are modeled by SWWD. 

Exponentiated CDF of a probability distribution is expressed as Exponen-
tiated Distribution (ED). Gompertz [10] used ED to compare the growth model 
of the population versus table of human mortality. Hasnain and Ahmad [11] 
proposed and developed the exponentiated moment form of exponential distri-
bution (EME) and discussed its various properties. Fatima and Roohi [12] de-
veloped a transmuted form of exponentiated Pareto-I distribution and discussed 
the increasing and decreasing behavior of hazard rate as well as derived some of 
its properties. Mansour et al. constructed the Kumaraswamy form of exponen-
tiated Frechet distribution (Kw-EFr) and 27 special cases are developed. Differ-
ent mathematical properties and real time dataset are modeled by Kw-EFr. 

Shaw and Buckley [13] developed Quadratic Rank Transmutation Map 
(QRTM) to discover new family of non-Gaussian distributions. Let G(x) and g(x) 
are CDF and PDF of base distribution. Proposed QRTM distribution is 

( ) ( ) ( ) ( )21 , 1F x G x G xλ λ λ= + − ≤              (1.1) 

( ) ( ) ( ) ( )1 2 , 1f x g x G xλ λ λ= + − ≤                (1.2) 

where F(x) and f(x) are the CDF and PDF of the corresponding QRTM. 
Merovci and Puka [14] proposed the transmuted form of Pareto distribution 

and discussed various properties along with its reliability behavior. Saboor et al. 
[15] derived and studied the various structural properties and reliability meas-
ures of the transmuted form of exponential-Weibull distribution (TEW). Khan 
et al. [16] discussed the shape and hazard function of transmuted Kumaraswamy 
distribution (TK-w) and derived some of its properties. Various properties are 
discussed in Size-Biased version of Exponential distribution that is transmuted 
by Hussain et al. [17]. 

The authors divided the structure of the article into several sections as follows: 
Section 2 describes the CDF, PDF and special cases of proposed distribution. In 
Section 3 and 4, various reliability measures, moments and order statistics are 
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discussed. Quantile function, different descriptive statistics and Rényi entropy 
are discussed in Section 5. Simulations study is conducted to observe the beha-
vior of MLE estimates in Section 6 while parameters of TEMP distribution are 
derived by the method of MLE along with two life time data sets are modeled in 
Section 7. Final conclusion is reported in Section 8. 

2. Proposed Distribution 

We introduce a four parameter distribution named as Transmuted Exponen-
tiated Moment Pareto distribution (TEMP distribution) with CDF as 

( ) ( )
21 1

1 1 1 ,
k k

F x
x x

α α
γ γλ λ

− −      = + − − −      
         

          (2.1) 

and PDF 

( ) ( )
11 111

1 1 2 1 ,
k kk

k

k
f x x

x xx

α α
γ γ γα λ λ γ

−− −−     −        = − + − − >                 
   (2.2) 

where α and k are positive shape parameters and 1λ <  is transmuted parame-
ter of TEMP distribution. 

Figure 1 is density plot of TEMP distribution. It is plotted for various combi-
nations of parameters α and λ for fixed k. 

Cumulative distribution function plot of TEMP distribution at different com-
binations of parameters α and λ for fixed k are given in Figure 2. 

 

 
Figure 1. Probability density function plot of TEMP distribution. 

 

 
Figure 2. Cumulative distribution function plot of TEMP distribution. 
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Some Special Cases 
1) For λ = 0, α = 1, and k − 1 = β, the resulting distribution reduces to Pareto 

distribution. 
2) For λ = 0, α = 1, the resulting distribution is Moment Pareto distribution 

discussed by Dara (8). 
3) For k − 1 = β, α = 1, the distribution reduces to Transmuted Pareto distri-

bution and was developed by Merovci and Puka [14]. 
TEMP distribution is developed on the basis that it provides more flexible re-

sults on highly right skewed datasets. Flexibility of TEMP distribution is assessed 
by comparing TEMP distribution with Pareto distribution and its related sub 
model (Transmuted Pareto distribution). 

3. Properties of Transmuted Exponentiated Moment Pareto 
Distribution 

3.1. Survival Function of Temp Distribution 

Survival or reliability function is used to measure the risk of occurrence of some 
event at a specific time. It is denoted by S(x). 

Survival function S(x) of TEMP distribution is given as 

( ) ( )
21 1

1 1 1 1 , 0.
k k

S x x
x x

α α
γ γλ λ

− −      = − + − + − >      
         

      (3.1) 

Survival function of TEMP distribution (Figure 3) shows the decreasing be-
havior on several combinations of parameters α and λ for fixed k. 

3.2. Hazard Function of TEMP Distribution 

Hazard function was introduced by Barlow et al. [18]. It is time dependent func-
tion. It is used to measure the failure rate of some components in a particular 
period of time x. 

For TEMP distribution, hazard function H(x) is given by 

( ) ( )
( )1

f x
H x

F x
=

−
 

( )

( )

( )

11 11

21 1

1
1 1 2 1

.

1 1 1 1

k kk

k

k k

k
x xx

H x

x x

α α

α α

γ γ γα λ λ

γ γλ λ

−− −−

− −

    −      − + − −                 =
      − + − + −      

         

    (3.2) 

The hazard function of TEMP distribution (Figure 4) for various combina-
tions of parameters for fixed k indicates the increasing trend at initial phase. 
Longer tail to right shows the decreasing behavior of TEMP distribution. 

3.3. Cumulative Hazard Function of TEMP Distribution 

Summing up the hazard function from 0 to time (t) is considered as cumulative 
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hazard function. It is denoted by H(t). Only continuous distributions are dis-
cussed under it. It is used to measure the overall number of failures that are 
added up to time t. 

Cumulative hazard function is defined as 

( ) ( )( )lnH x S x= −  

for TEMP distribution it is described as 

( ) ( )
21 1

ln 1 1 1 1 .
k k

H x
x x

α α
γ γλ λ

− −        = − − + − + −                 
      (3.3) 

The cumulative hazard function of TEMP distribution (Figure 5) indicates  
 

 
Figure 3. Survival function plot of TEMP distribution. 

 

 
Figure 4. Hazard function plot of TEMP distribution. 

 

 
Figure 5. Cumulative hazard function plot of TEMP distribution. 
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strictly increasing behavior for various combinations of parameters α and λ for 
fixed k. 

3.4. Reverse Hazard Function of TEMP Distribution 

From Equation (2.1) and Equation (3.1), reverse hazard rate function of TEMP 
distribution is 

( ) ( )
( )1r

f x
h x

S x
=

−
 

( )
( )

( )

1
1

1

1 1 2 1

.

1 1

k
k

r
k

k

k
x

h x

x
x

α

α

γα γ λ λ

γλ λ

−
−

−

     − + − −       =
     + − −       

          (3.4) 

3.5. Mills Ratio of TEMP Distribution 

From Equation (2.2) and Equation (3.1), mills ratio of TEMP distribution is 

( ) ( )
( )

S x
M x

f x
=  

( )
( )

( )

21 1

11 1
1

1 1 1 1

.

1 1 1 2 1

k k
k

k k
k

x
x x

M x

k
x x

α α

α α

γ γλ λ

γ γα γ λ λ

− −

−− −
−

        − + − + −                 =
         − − + − −                 

   (3.5) 

3.6. Odd Function of TEMP Distribution 

Symmetric graph of the function w.r.t the origin is said to be odd function. 
For TEMP distribution it is defined as 

( ) ( )
( )

F x
O x

S x
=  

( )
( )

( )

21 1

21 1

1 1 1

1 1 1 1

k k

k k

x x
O x

x x

α α

α α

γ γλ λ

γ γλ λ

− −

− −

      + − − −      
         =

      − + − + −      
         

         (3.6) 

3.7. Elasticity of TEMP Distribution 

By definition elasticity is defined as 

( ) ( )
( )

xf x
e x

F x
=  

from Equation (2.1) and Equation (2.2), elasticity of TEMP distribution is writ-
ten as 
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( )
( )

( )

11 1
1

21 1
1

1 1 1 2 1

1 1 1

k k
k

k k
k

k
x x

e x

x
x x

α α

α α

γ γα γ λ λ

γ γλ λ

−− −
−

− −
−

         − − + − −                 =
        + − − −                 

    (3.7) 

4. Moments 

Moments are used to describe the mean, variance, skewness and kurtosis of the 
probability distribution and it is denoted by m1, m2, m3 and m4 respectively. Dif-
ferent categories of moments including Fractional, factorial, negative, incom-
plete, L, probability weighted and TL moments are having application in engi-
neering, medicine, natural as well as social sciences. 

4.1. Moments about Origin of TEMP Distribution 

The r-th moment about origin of TEMP distribution say rµ′  is given by 

( )dr
r x f x x

γ

µ
∞

′ = ∫
 

( )
11 111

1 1 2 1 d .
k kk

r
r k

k
x x

x xx

α α

γ

γ γ γµ α λ λ
−− −−∞     −      ′ = − + − −                 

∫
 

Let 
1 1

1 11 d d
1

k k
k kz x z x z z

x k
γ γγ

−

− − = − = = −  − 
⇒ ⇒  

limit 1 and 0.x z x zγ→ ⇒ → →∞⇒ →  
Then 

( ) ( ) ( )
1 1

1 2 11 1

0 0

1 1 d 2 1 d .
r r

r rk k
r z z z z z zα αµ α λ γ αλγ− −− −′ = + − + −∫ ∫  

Simplification reduces rµ′  

( ) ( ) ( )1 1 , 2 1 ,2r r r rC B A B Aµ α λ α λ α′ = + + − +            (4.1) 

where 
1r

rA
k

=
−

, ( ), Beta functionB a b =  and r
rC γ= . 

4.2. Fractional Positive Moments of TEMP Distribution 

Fractional positive moments about the origin of r.v. X following TEMP distribu-
tion are given by 

( )
 

d
m
n

m
n

x f x x
γ

µ
∞

′ = ∫  

( )1 1 , 2 1 , 2m m m m
n n n n

C B A B Aµ α λ α λ α
    

′ = + + − +            
        (4.2) 
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where 
( )1m

n

mA
n k

=
−

, ( ), Beta functionB a b =  and 
m
n

m
n

C γ= . 

4.3. Fractional Negative Moments of TEMP Distribution 

Fractional negative moments about the origin of r.v. X following TEMP distri-
bution are given by 

( )
 

d
m
n

m
n

x f x x
γ

µ
 ∞ − 
 

 − 
 

′ = ∫  

( )
   

1 1 , 2 1 , 2m m m m
n n n n

C B A B Aµ α λ α λ α       − − − −       
       

    
′     = + + − +

        
    (4.3) 

where 
( )1m

n

mA
n k − 

 

= −
−

, ( ), Beta functionB a b =  and 
m
n

m
n

C γ
 − 
 

 − 
 

= . 

4.4. Negative Moments of TEMP Distribution 

rth negative moments about the origin of r.v. X following TEMP distribution are 
given by 

( )dr
r x f x x

γ

µ
∞

−
−′ = ∫  

( ) ( ) ( ) ( )( ) ( )( )         1 1 , 2 1 , 2r r r rC B A B Aµ α λ α λ α− − − −
 ′ = + + − + 

     (4.4) 

where ( ) ( )  1r
rA

k− = −
−

, ( ), Beta functionB a b =  and ( )
( )  r

rC γ −
− = . 

4.5. Factorial Moments of TEMP Distribution 

Factorial moments of TEMP distribution using Equation (2.2) is given by 

[ ]  
n

r rn
r

E X
γ
ϕ µ

=

′= ∑  

[ ] ( ) ( ) ( )1 1 , 2 1 ,2
n

r r r rn
r

E X C B A B A
γ

α ϕ λ α λ α
=

= + + − +  ∑      (4.5) 

where 
1r

rA
k

=
−

, ( ), Beta functionB a b = , r
rC γ= ,  

[ ] ( )( ) ( ) 
  1 2 1iX X X X X i= + + + −  and rϕ  is the Stirling number of first 

kind. 

4.6. Moment Generating Function of TEMP Distribution 

Moment generating function (mgf) of r.v. X following TEMP distribution using 
Equation (4.1) is defined as 

( ) ( ) ( )e e dtx tx
xM t E f x x

γ

∞

= = ∫                (4.6.1) 
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using expansion 
( )

1
e

!

r
tx

r

tx
r

∞

=

= ∑ , Equation (4.6.1) is written as 

( ) ( ) ( )
1

d
!

r
r

x
r

t
M t x f x x

r γ

∞∞

=

= ∫∑  

using Equation (4.1), mgf of TEMP distribution is 

( ) ( ) ( ) ( ) ( )
1

1 1 , 2 1 ,2
!

r

x r r r
r

t
M t C B A B A

r
α λ α λ α

∞

=

= + + − +  ∑    (4.6.2) 

where 
1r

rA
k

=
−

, ( ), Beta functionB a b = , r
rC γ= . 

4.7. Central Moments of TEMP Distribution 

The central moments of probability distribution are defined by recurrence rela-
tion 

( ) ( )1
0

1 .
r

i i
r r i

i

r
i

µ µ µ −
=

  ′ ′= − 
 

∑  

For TEMP distribution 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 11

0

1 1 , 2 1 ,2
  1

1 1 , 2 1 ,2

i
r

i i r
r

i r i r i

B A B Ar
i B A B A

λ α λ α
µ α γ

λ α λ α
+

= − −

 + + − +      = −  
  + + − +     

∑  (4.6) 

where 
1r

rA
k

=
−

, ( ), Beta functionB a b =  and r
rC γ= . 

4.8. Cumulants of TEMP Distribution 

The cumulants of a probability distribution are defined by the recurrence rela-
tion 

1

1

1
   

1

r

r r i r i
i

r
K K

i
µ µ

−

−
=

− ′ ′= −  − 
∑  

for TEMP distribution 

( ) ( ) ( )

( ) ( ) ( )
1

1

1 1 , 2 1 ,2

1
1 1 , 2 1 ,2

1

r
r r r

r
i

i r i r i
i

K B A B A

r
K B A B A

i

αγ λ α λ α

γ λ α λ α
−

−
− −

=

= + + − +  

−    − + + − +    −  






∑

   (4.7) 

where 
1r

rA
k

=
−

, ( ), Beta functionB a b =  and r
rC γ= . 

4.9. Skewness of TEMP Distribution 

Symmetry of a probability distribution is defined by skewness and it is denoted 
by 1β  

2
3

1 3
2

µ
β

µ
=  
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The measure 1β  of TEMP distribution is followed by 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

2

3 1 11 3
0

3 3

1

2 1 11 2
0

2 2

1 1 , 2 1 ,23
1

1 1 , 2 1 ,2

1 1 , 2 1 ,22
1

1 1 , 2 1 ,2

i
i i

i
i i

i
i i

i
i i

B A B A
i B A B A

B A B A
i B A B A

λ α λ α
α γ

λ α λ α
β

λ α λ α
α γ

λ α λ α

+
=

− −

+
=

− −

  + + − +      −   
  + + − +      =

  + + − +      −   
  + + − +     

∑

∑
3 .



 

(4.8) 

where 
1r

rA
k

=
−

, ( ), Beta functionB a b =  and r
rC γ= . 

4.10. Kurtosis of TEMP Distribution 

Kurtosis is used to check the spread / peaked of a probability distribution. Kur-
tosis of a probability distribution is determined by 2β  

4
2 2

2

µ
β

µ
=  

Kurtosis of TEMP distribution is given by 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

4 1 11 4
0

4 4
2 2

2 1 11 2
0

2 2

1 1 , 2 1 ,24
1

1 1 , 2 1 ,2
.

1 1 , 2 1 ,22
1

1 1 , 2 1 ,2

i
i i

i
i i

i
i i

i
i i

B A B A
i B A B A

B A B A
i B A B A

λ α λ α
α γ

λ α λ α
β

λ α λ α
α γ

λ α λ α

+
=

− −

+
=

− −

 + + − +      −  
  + + − +     =

  + + − +      −   
  + + − +      

∑

∑

(4.9) 

where 
1r

rA
k

=
−

, ( ), Beta functionB a b =  and r
rC γ= . 

4.11. The Mellin Transformation of TEMP Distribution 

In theory of statistics, the Mellin transformation is famous as a distribution of 
the product as well as quotient for independent r.v.’s. By definition the Mellin 
transformation is 

( ) ( ) ( )1 1 dm m
xM m E x x f x x

γ

∞
− −= = ∫  

for TEMP distribution, from Equation (4.1) 

( ) ( ) ( ) ( )1 1 11 1 , 2 1 ,2x m m mM m C B A B Aα λ α λ α− − − = + + − +       (4.10) 

where 1
1

1m
mA

k−
−

=
−

, ( ), Beta functionB a b =  and 1
1

m
mC γ −
− = . 

4.12. Incomplete Moments of TEMP Distribution 

For TEMP distribution, lower incomplete moments are defined as 

( ) ( ) ( )  d
l

r r
r X lM l E x x f x x

γ
≤= = ∫  

From Equation (4.1), ( ) ( ) ( )1 1 , 2 1 ,2r r r rC B A B Aµ α λ α λ α′ = + + − +   , re-
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place Beta function by 1k

l

B
γ −

 
 
 

, we get 

( ) ( ) ( ) ( )1 11 1 , 2 1 ,2k kr r r r

l l

M l C B A B A
γ γ

α λ α λ α− −
   
   
   

 
 = + + − +
 
 

  (4.11.1) 

where 
1r

rA
k

=
−

, ( )1 , Beta functionk

l

B a b
γ −

 
 
 

=  and r
rC γ= . 

For TEMP distribution, upper incomplete moments are defined as 

( ) ( ) ( )  dr r
r X u

u

M u E x x f x x
∞

>= = ∫  

( ) ( ) ( )d d
u

r r
rM u x f x x x f x x

γ γ

∞

= −∫ ∫  

from Equation (4.1), replace Beta function by 1k

u

B
γ −

 
 
 

, we get 

( ) ( ) ( ) ( )

( ) ( ) ( )1 1

1 1 , 2 1 ,2

1 1 , 2 1 ,2k k

r r r r

r r

u u

M l C B A B A

B A B A
γ γ

α λ α λ α

λ α λ α− −
   
   
   


= + + − +  


  − + + − +   

  (4.11.2) 

where 
1r

rA
k

=
−

, ( )1 , Beta functionk

u

B a b
γ −

 
 
 

=  and r
rC γ= . 

4.13. Residual Life Function of TEMP Distribution 

Let residual life ( ) ( ) ( ) ( ) ( )1   dn s
n w

m w E X w X w x w f x x
S w

∞ = − > = −  ∫  of X 

for TEMP distribution has n-th moment. 

( ) ( ) ( ) ( )
0

1   d
n

n s s
n

s w

n
m w w x f x x

sS w

∞
−

=

 
= − 

 
∑ ∫  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )1 1

0
    – 1 1 , 2 1 ,2

1

1 1 , 2 1 ,2 .k k

n
n s

n r r r
s

r r

u u

n
m w w C B A B A

sF w

B A B A
γ γ

α λ α λ α

λ α λ α− −

−

=

   
   
   

  = + + − +    −   
  − + + − +   

∑
(4.12) 

For life expectancy or mean residual life (MRL) function say ( )1m w  of 
TEMP distribution put n = 1 in Equation (4.12), we get 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )1 1

1
1

1
0

1
    – 1 1 , 2 1 ,2

1

1 1 , 2 1 ,2k k

s
r r r

s

r r

u u

m w w C A B A
sF w

B A B A
γ γ

α λ α λ α

λ α λ α− −

−

=

   
   
   

  = + + − +    −   
  − + + − +   

∑
 (4.12.1) 
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where 
1r

rA
k

=
−

, ( )1 , Beta functionk

u

B a b
γ −

 
 
 

=  and r
rC γ= . 

4.14. Reverse Residual Life Function of TEMP Distribution 

Let reverse residual life  

( ) ( ) ( ) ( ) ( )1 dn n
nR w E w X X w w x f x x

F w γ

∞ = − ≤ = −  ∫  of X for TEMP dis-

tribution has n-th moment. 

( ) ( ) ( ) ( )
0

1   1 d
n

t n t t
n

t

n
R w w x f x x

tF w γ

∞
−

=

 
= − 

 
∑ ∫  

( ) ( ) ( ) ( ) ( )

( )

1

1

0
  1 1 1 ,

2 1 ,2 .

k

k

n
t n t

n r r
t w

r

w

n
R w w C B A

tF w

B A

γ

γ

α λ α

λ α

−

−

−

 
=  

 

 
 
 

  = − + +    

− +



∑
     (4.13) 

For mean waiting time or mean inactivity time of TEMP distribution put n = 
1 in Equation (4.13), we get 

( ) ( ) ( ) ( ) ( )

( )

1

1

1
1

1
0

1
  1 1 1 ,

2 1 ,2

k

k

t t
r r

t w

r

w

R w w C B A
tF w

B A

γ

γ

α λ α

λ α

−

−

−

 
=  

 

 
 
 

  = − + +    

− +



∑
    (4.13.1) 

where 
1r

rA
k

=
−

, ( )1 , Beta functionk

w

B a b
γ −

 
 
 

=  and r
rC γ= . 

4.15. Order Statistic of TEMP Distribution 

Reliability of a system is tested by order statistic. The random sample provides 
important information like smallest value to largest value. To maintain the 
highest temperature of a medicine or lowest temperature of areas are the exam-
ples studied by order statistic to overcome the crisis or disasters in case of emer-
gency. 

Let 1 2 3, , , , mX X X X  be a random sample follows to TEMP distribution 

and ( ) ( ) ( ) ( ){ }1 2 3, , , , mX X X X  be its arranged form where X(1) and X(k) represent 

the smallest and k-th smallest value follows to ( ) ( ) ( ) ( ){ }1 2 3, , , , mX X X X  re-

spectively. The r.v.s ( ) ( ) ( ) ( )1 2 3, , , , mX X X X  are called order statistic. 

Order statistic for pdf of X(i) is defined as 

( )
( ) ( ) ( ) ( ) ( ) ( )1

 
! 1

1 ! !i

i m i
x

mf x F x F x f x
i m i

− −
= −      − −

 

for TEMP distribution, order statistic for pdf of X(i) is 
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( )
( ) ( ) ( ) ( )

( )

( )

 

121 1

 

21 1

11 11

!   1 1 1
1 ! !

1 1 1 1

1
1 1 2 1

i

i
k k

x

m i
k k

k kk

k

mf x
i m i x x

x x

k
x xx

α α

α α

α

γ γλ λ

γ γλ λ

γ γ γα λ λ

−
− −

−
− −

−− −−

        = + − − −       − −           

        ⋅ − + − + −                 

  −    ⋅ − + − −     
     

α      

 

order statistic of TEMP distribution in reduced form 

( )
( ) ( )

( ) ( )
( )

( )

( )

 

11 11

 

1
1

1 1

! 1
  1 1 2 1

1 ! !

1 1

1 1 1 1

i

ik kk

x k

i
k

k k

m k
f x

x xi m i x

x

x x

α α

α

α α

α γ γ γλ λ

γλ λ

γ γλ λ

−− −−

−
−

− −

    −        = − + − −       − −           
       ⋅ + − −          

         ⋅ − − + − −      
         

( )

 

m i−
  
  
  

  

  (4.15) 

for TEMP distribution, largest order or m-th order statistic pdf X(m) is given by 

( )
( ) ( ) ( )

( )
( )

 

11 11

 

1
1 1

1
    1 1 2 1

1 1 1 1

m

mk kk

x k

m
k k

m k
f x

x xx

x x

α α

α α

α γ γ γλ λ

γ γλ λ

−− −−

−
− −

    −        = − + − −                 

           ⋅ − − + − −                   

  (4.15.1) 

and first order or smallest order statistic pdf X(1) for TEMP distribution, is given 
by 

( )
( ) ( ) ( )

( )
( )

  1

11 11

 

1
1 1

1
    1 1 2 1

1 1 1 1

k kk

x k

m
k k

m k
f x

x xx

x x

α α

α α

α γ γ γλ λ

γ γλ λ

−− −−

−
− −

    −        = − + − −                 

           ⋅ − − + − −                   

 (4.15.2) 

From Equation (4.15), r-th moment of order statistic for TEMP distribution 
in simplified and reduced form is given by 

( ) ( ) ( )

( ) ( ) ( )

, , 0

1

, , 0

1 1,
1

2 1 1, 1
1

i
r

j l p

i

j l p

rC E B j l p i
k

rE B j l p i
k

µ λ α

λ λ α

∞

=

∞
−

=

  ′ = + + + + +  − 
 − + + + + + +  − 

∑

∑
    (4.16) 

where 
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( )
( ) ( ) ( ) ( )

1! 1 !, ,
1 ! ! 1 ! !

k rm k mA C
i m i i m i
α γ αγ−−

= =
− − − −

 

( ) ( )
1

1 1 .j l p l p j j pi m i l
E

j l p
λ λ+ + − − +− −   

= − +   
   

 

5. Quantile Function and Descriptive Statistics  
of TEMP Distribution 

Statistical significance is assessed by the quantile function of the observations for 
known distribution. It is defined by inverting the CDF under consideration. 
When information about the data set is quantitatively reviewed or analyzed by 
the summary statistics, it is called descriptive statistics. 

5.1. Quantile Function of TEMP Distribution 

The qth quantile function of TEMP distribution is 

( ) ( )

1 1 1
21 1 4

1 .
2

k

q

q
x

αλ λ λ
γ

λ

−
− 

  + − + −  = −
  
   

           (5.1) 

Median of a distribution is qx  for q = 0.5. For TEMP distribution we put q = 
0.5 in Equation (5.1), we get 

( )

1 1   1
21 1

Median 1 .
2

k
αλ λ

γ
λ

−
− 

  + − + 
 = − 
   

 

            (5.2) 

To generate random numbers, we suppose that CDF of TEMP distribution 
follows uniform distribution u = U (0, 1). 

Random numbers of TEMP distribution is calculated by 

( ) ( )

1 1 1
21 1 4

1 .
2

k

R

u
x

αλ λ λ
γ

λ

−
− 

  + − + −  = −
  
   

           (5.3) 

Coefficient of variation is defined as the quotient of standard deviation (SD) 
to mean. 

SDCV
Mean

=  

Coefficient of variation of TEMP distribution is 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1
2

2 1 11 2
0

2 2

1 1

1 1 , 2 1 ,22
1

1 1 , 2 1 ,2
CV .

1 1 , 2 1 ,2

i
i i

i
i i

B A B A
i B A B A

B A B A

λ α λ α
α γ

λ α λ α

αγ λ α λ α

+
=

− −

  + + − +       −     + + − +      =
+ + − +  

∑
(5.4) 
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where 
1r

rA
k

=
−

, ( ), Beta functionB a b =  and r
rC γ= . 

From Equation (3.4.1) set 1r = − , we get harmonic mean of TEMP distribu-
tion 

( )1 , 2 ,2 .
1 1

k kHM B B
k k

α λ α λ α
γ
    = + −    − −    

          (5.5) 

5.2. Entropy of TEMP Distribution 

Degree of disorder or randomness in a system or our lack of information about 
it is defined as Entropy. In information theory, the Rényi entropy generalized 
Hartley entropy, Shannon entropy, Collision and min entropy. Entropies quan-
tify the diversity, uncertainty or randomness of a system. 

Rényi [19] entropy is defined as 

( ) ( )
0

1 log d for 0 and 1.
1

I X f x xδ
δ δ δ

δ

∞

= > ≠
− ∫  

From Equation (2.2), the reduced form of Rényi entropy of TEMP distribu-
tion is given by 

( ) ( ) ( )
0

1 log 1 1, .
1

i i

i
I X D A B C E

iδ

δ
δ

∞

=

   
= − +   −     

∑          (5.7) 

where 2
1

A λ
λ

=
+

, ( ), Beta functionB a b = , ( )1C iα δ α= + − ,  

( )
( )( )

1

1 1
1

D k
k

δ
δγ α λ

−

= + −  −
 and ( )1

1
1

k
E

k
δ +

= −
−

. 

5.3. Mixture Representation of TEMP Distribution (Figure 6) 

The PDF of “n” mixture of TEMP distribution is followed by ( ) ( )1
n

iif x p f x
=

= ∑ , 

where 1 1n
ii p

=
=∑  and ( )if x  for TEMP distribution from Equation (2.2) is 

 

 
Mixture Density Plot of TEMP distribution for n = 2 at various combination of parameters 

1 2 1 2 1 2, , , ,,p p k kα α  and 1 2,λ λ  for fixed value of γ  

Figure 6. Mixture density plot TEMP distribution. 
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defined as 
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For n = 2, mixture form of TEMP distribution is given by 

( ) ( )
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For n = 3, mixture form of TEMP distribution is given by 
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 (5.8) 

From Equation (4.1), r-th moment of mixture form of TEMP distribution is 
written as ( ) 1

nr
i riE X p µ

=
′= ∑  

( ) ( ) ( ) ( )
1

1 1 , 2 1 ,2
n

r
i r r r

i
E X p C B A B Aα λ α λ α

=

= + + − +  ∑       (5.9) 

where 
1r

rA
k

=
−

, ( ), Beta functionB a b =  and r
rC γ= . 

6. Simulation Study of TEMP Distribution 

In order to assess the behavior of estimates derived by the method of MLE from 
TEMP distribution, a small scaled experiment is carried out based on simula-
tions study. Performance of MLE is evaluated on the basis of mean square errors 
(MSEs). For this we generate size n = 100, 200, 300, 400 and 500 samples from 
Equation (5.3) and results are achieved by 1000 simulations. Statistical software 
R is used to develop the empirical results. 

Table 1 and Table 2 are representing consistent and efficient performance of 
the estimates produced by MLE and these estimates are quite close to the true 
parameter values for entire n. The decreasing behavior of mean square errors 
justify that the MLE works quite well for TEMP distribution (Table 3, Table 4). 

7. Estimation of Parameters and Application  
of TEMP Distribution 

Parameters of Transmuted Exponentiated Moment Pareto distribution are cal-
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culated using the method of MLE by incorporating R package (statistical soft-
ware). 

7.1. Estimation of Parameters of TEMP Distribution 

Log likelihood function of TEMP distribution under Equation (2.2) is stated as 
 

Table 1. MLE Estimates and Mean Square Errors (MSEs) in parenthesis are calculated at 
various sample sizes for k = 1.5, α = 0.5 and λ = −0.4 and parameter γ is minimum possi-
ble value of x. 

Parameters n = 25 n = 100 n = 200 n = 300 n = 400 n = 500 

k̂  
1.6222 

(0.1702) 
1.55498 
(0.0923) 

1.5443 
(0.0556) 

1.5256 
(0.0702) 

1.4995 
(0.0444) 

1.4861 
(0.0425) 

α̂  
0.4794 

(0.1492) 
0.4491 

(0.1464) 
0.4709 

(0.1027) 
0.6100 

(0.0968) 
0.5676 

(0.0809) 
0.5800 

(0.0775) 

λ̂  
−0.7515 
(0.2779) 

−0.3283 
(0.5442) 

−0.5418 
(0.2915) 

−0.0662 
(0.3622) 

−0.2680 
(0.2680) 

−0.1773 
(0.2671) 

 
Table 2. MLE Estimates and Mean Square Errors (MSEs) in parenthesis are calculated at 
various sample sizes for k = 2.5, α = 1.5 and λ = 0.1 and parameter γ is minimum possible 
value of x. 

Parameters n = 25 n = 100 n = 200 n = 300 n = 400 n = 500 

k̂  
2.2491 

(0.3142) 
2.7255 

(0.2854) 
2.7522 

(0.1678) 
2.4955 

(0.2629) 
2.4734 

(0.2173) 
2.3427 

(0.3332) 

α̂  
1.0669 

(0.5538) 
1.5308 

(0.3542) 
1.3268 

(0.3525) 
1.6509 

(0.1295) 
1.5801 

(0.1264) 
1.5969 

(0.0955) 

λ̂  
−0.3426 
(0.8251) 

−0.1197 
(0.5371) 

−0.3519 
(0.4729) 

0.3599 
(0.3378) 

0.2073 
(0.3389) 

0.3857 
(0.4775) 

 
Table 3. Various results of Descriptive measures on simulated data generated by the Eq-
uation (5.3) at different samples sizes n = 25, 100, 200, 300, 400 and 500 for selected val-
ues of k = 1.5, α = 0.5 and λ = −0.4. 

Descriptive measures n = 25 n = 100 n = 200 n = 300 n = 400 n = 500 

1µ′  0.1118 0.1033 0.1007 0.1003 0.1004 0.1002 

2µ′  0.0128 0.0107 0.0101 0.0101 0.0101 0.0100 

3µ′  0.0015 0.0011 0.0010 0.0010 0.0010 0.0010 

4µ′  0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 

Skewness 2.3481 4.57777 9.9338 15.0006 12.662 22.2935 

Kurtosis 8.4551 24.8207 110.2899 240.6803 190.6012 498.0018 

CV% 49.5936 31.0745 16.7523 9.6611 12.7474 4.4775 

AIC 23.5142 2.6587 175.2641 223.5484 463.4593 624.4094 

-Log-likelihood 8.7571 1.7606 84.6321 108.7742 228.7297 309.2047 
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Table 4. Various results of descriptive measures on simulated data generated by the Equ-
ation (5.3) at different samples sizes n = 25, 100, 200, 300, 400 and 500 for selected values 
of for k = 2.5, α = 1.5 and λ = 0.1. 

Descriptive measures n = 25 n = 100 n = 200 n = 300 n = 400 n = 500 

1µ′  0.1956 0.1165 0.1057 0.1021 0.1035 0.1002 

2µ′  0.0924 0.0138 0.0112 0.0104 0.0107 0.0100 

3µ′  − 0.0016 0.0011 0.0011 0.0011 0.0010 

4µ′  − 0.0002 0.0001 0.0001 0.0001 0.0001 

CV% 118.1114 116.4815 96.3946 69.7225 67.2829 14.2311 

Skewness 1.1732 2.4445 3.9651 6.5704 5.3503 21.55994 

Kurtosis 3.3210 9.4564 23.3555 59.1233 37.2802 476.9756 

AIC −13.0174 −154.2575 −311.995 −500.0787 −577.9877 −701.4997 

-Log-likelihood 9.5087 80.1287 158.995 253.0393 291.9938 353.7499 
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 (7.1.1) 

Partial derivatives of Equation (7.1.1) w.r.t the parameters k, α and λ are cal-
culated and equating to zero we get. 

( )
( )

( )

1

1
1 1

11 1

11

1 ln
ln ln

1
1

2 1 ln

0

1 2 1

k

n n

i k
i i

k k

n

ki

n x xLL n x
k k

x

x x x

x

α

α

γ γα
γ

γ

γ γ γαλ

γλ λ

−

−
= =

−− −

−=

    −    ∂     = + − −
 ∂ −  −  

  
          −                    + = 

   + − −   
     

∑ ∑

∑

   (7.1.2) 

( )

( )

1

1

1( 1) 1

11

ln 1

1 ln 1

2 0

1 2 1

kn

i

k k

n

ki

nLL
x

x x

x

α

α

γ
α α

γ γ

λ
γλ λ

−

=

−− −

−=

 ∂  = + −  ∂    
        − −                − = 

   + − −   
     

∑

∑
     (7.1.3) 

( )
( )

11

11

1 2 1

0.

1 2 1

k

n

ki

x
LL

x

α

α

γ

λ γλ λ

−−

−=

    − −     ∂  = = 
∂    + − −   

     

∑          (7.1.4) 

https://doi.org/10.4236/ojs.2018.86063


M. Z. Arshad et al. 
 

 

DOI: 10.4236/ojs.2018.86063 957 Open Journal of Statistics 

 

Since γ is the initial point of PDF, as a minimum possible value of sample is 
the estimate of γ. Solution of simultaneous Equations (7.1.2)-(7.1.4) gives us 
MLE estimates of TEMP distribution. We solve these non linear equations by 
using R package. 

Fisher Information matrix ( )K ϕ  of order 3 × 3 is required for hypothesis 
test and interval estimation. ( )K ϕ  is described as 

( )

2

2

2 2

2

2 2 2

2

.

L
k
L LK

k
L L L

k

ϕ
α α

λ α λ λ

 ∂
 ∂ 
 ∂ ∂

=  ∂ ∂ ∂ 
 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 

               (7.1.5) 

7.2. Application of TEMP Distribution 

To show that Transmuted Exponentiated Moment Pareto (TEMP) distribution 
is better than its sub-models Transmuted Pareto (TP) and Pareto (P) distribu-
tions, authors consider four data sets. In R, package Adequacy Model and me-
thod BFGS is used to derive the estimates. 

7.2.1. Dataset-1 
Choulakian and Stephens [20] discussed the dataset entitled with the exceed-
ances of flood peaks (in m3/s) of the Wheaton River in Canada. This data set is 
also discussed by Merovci and Puka [14] (Table 5). 

7.2.2. Dataset-2 
Remission times (in months) of bladder cancer 128 patients sample is discussed 
by Lee and Wang [21] (Table 6). 

7.2.3. Dataset-3 
Barlow et al. [22] developed the dataset corresponding to the Kevlar 49/epoxy 
strands failure times (pressure at 90% age) (Table 7). 

7.2.4. Dataset-4 
Ghitany et al. [23] discussed the waiting time (in minutes) before the customer  

 
Table 5. Parameter estimates and information criterion. (Since γ is the initial point of 
PDF, as a minimum possible value of sample is the estimate of γ = 0.1.) 

Models 
Coefficients 

(Standard Error) 
Information Criterion 

k α λ -LL AIC BIC W A K-S 

TEMP 
1.47 

(0.05) 
1.88 

(0.33) 
−0.94 
(0.06) 

280.67 567.35 574.19 0.73 4.52 0.19 

TP − 
0.35 

(0.03) 
−0.95 
(0.05) 

286.20 576.40 580.95 0.72 4.49 0.23 

PD − 
0.24 

(0.03) 
− 303.07 608.13 610.41 0.92 5.69 0.33 
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Table 6. Parameter estimates and information criterion. (Since γ is the initial point of 
PDF, as a minimum possible value of the sample is the estimate of γ = 0.08.) 

Models 

Coefficients 
(Standard Error) 

Information Criterion 

k α λ -LL AIC BIC W A K-S 

TEMP 
1.51 

(0.04) 
2.26 

(0.32) 
−0.95 
(0.05) 

452.02 910.04 918.60 1.59 8.63 0.21 

TP − 
0.35 

(0.02) 
−0.97 
(0.03) 

466.99 937.99 943.70 1.53 8.32 0.29 

PD − 
0.24 

(0.02) 
− 499.61 1001.22 1004.07 1.81 9.99 0.36 

 
Table 7. Parameter estimates and information criterion. (Since γ is the initial point of 
PDF, as a minimum possible value of the sample is the estimate of γ = 0.01.) 

Models 

Coefficients 
(Standard Error) 

Information Criterion 

k α λ -LL AIC BIC W A K-S 

TEMP 
1.42 

(0.04) 
1.43 

(0.21) 
−0.90 
(0.07) 

151.07 308.14 315.98 1.76 9.67 0.22 

TP − 
0.36 

(0.03) 
−0.93 
(0.05) 

153.88 311.76 316.99 1.77 9.67 0.25 

PD − 
0.25 

(0.03) 
− 174.40 350.80 353.42 2.07 11.35  

 
Table 8. Parameter estimates and information criterion. (Since γ is the initial point of 
PDF, as a minimum possible value of the sample is the estimate of γ = 0.8.) 

Models 

Coefficients 
(Standard Error) 

Information Criterion 

k α λ -LL AIC BIC W A K-S 

TEMP 
1.75 

(0.07) 
1.42 

(0.21) 
−0.92 
(0.05) 

358.01 722.03 729.85 1.37 8.28 0.22 

TP − 
0.63 

(0.05) 
−0.93 
(0.05) 

360.86 725.73 730.94 1.37 8.25 0.26 

PD − 
0.45 

(0.05) 
− 382.95 722.03 729.85 1.37 8.28 0.35 

 
receives service in a bank on 100 observations (Table 8 and Figure 7). 

8. Conclusions 

In this article, authors have developed a new four parameter model named 
Transmuted Exponentiated Moment Pareto (TEMP) distribution. Numerous 
mathematical properties of TEMP distribution are discussed. TEMP distribution 
is modeled by four suitable lifetime data sets. Authors calculate the values of -LL 
and information criterion (AIC, BIC, A, W, K-S) on data set 1 to 4. TEMP  
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Data No. 1 
Exceedances of flood peaks (in m3/s) of the 

Wheaton River 

Data No. 2 
Remission times (in months) of bladder cancer 

patients 

  

DATA No. 3 
Kevlar 49/epoxy strands failure times 

DATA No. 4 
Waiting time (in minutes) before the customer 

receives service in a bank 

 
 

Figure 7. PDF plots drafted over empirical histogram. 
 

distribution is compared with its sub-models. Based on the minimum value of 
-LL and information criterion it is concluded that TEMP distribution is most 
favorable fit distribution as compared to its sub-models Transmuted Pareto (TP) 
and Pareto distribution. 

In future numerous properties of Bayesian analysis of TEMP distribution will 
be studied. 
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