
Journal of Financial Risk Management, 2018, 7, 442-459 
http://www.scirp.org/journal/jfrm 

ISSN Online: 2167-9541 
ISSN Print: 2167-9533 

 

DOI: 10.4236/jfrm.2018.74024  Dec. 29, 2018 442 Journal of Financial Risk Management 
 

 
 
 

Next Level in Risk Management? Hedging and 
Trading Strategies of Volatility Derivatives 
Using VIX Futures 

Ernst J. Fahling1*, Elmar Steurer2, Tobias Schädler3, Adrian Volz1 

1International School of Management, Frankfurt am Main, Germany 
2Hochschule Neu-Ulm, Neu-Ulm, Germany 
3Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain 

 
 
 

Abstract 
The paper analyses how volatility derivatives on the volatility index VIX can 
be used as trading and risk management tools for investors and traders. Vola-
tility and the different types of volatility are discussed. It elaborates upon as-
sumptions of option pricing models and specifies which complications ac-
company the determination of volatility. The weaknesses of the 
Black-Scholes-Merton model are illuminated and the difference between the 
model assumptions regarding volatility and market reality is identified. Using 
the skew- and term-curve-effect, the paper demonstrates how volatility be-
haves in reality towards other model parameters. In terms of pure volatility 
trading, the volatility derivatives are presented and analysed in terms of their 
merits and fields of application. Additionally, the stylized facts about volatil-
ity are considered. The paper shows how VIX futures and options can hedge 
equity portfolios and when they are superior to traditional hedging alterna-
tives and compares the outcome of a VIX hedging strategy with a Buy & Hold 
strategy of the S & P 500 index over a time period of 20 years. 
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1. Introduction 

Volatility as an indicator used to measure the fluctuating intensity of stock 
prices or rates in financial markets has gained significant attention in recent 
years. This cannot be traced back to a single event. In fact, it is more the result of 
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a confluence of factors over the last few decades. Volatility has not only received 
more attention as a risk indicator, but become an interesting new asset class for 
investors. Events such as the Lehman Brothers collapse in 2008 and the Euro-
pean debt crisis mark a new era in the financial industry. Due to the reaction of 
the central banks by providing new instruments described as quantitative easing 
the development of the stock markets has been boosted mainly by fiscal policy 
and financial conditions since then. Thus, the financial system is more sensitive 
to announced changes of central bank policy resulting in unexpected large fluc-
tuations. 

This increased uncertainty has brought risk to the forefront when making in-
vestment decisions and increased the demand for hedging instruments as inves-
tors sought protection against an increasing level of exposure. The interest in 
trading derivatives, whose value derives from the value of other basic underlying 
variables such as stocks, bonds or indices has increased significantly in recent 
years. The interest in derivatives goes hand in hand with the interest in volatility. 
But why is this case? 

Volatility is important because it is an essential parameter in every option 
pricing model. A trade with options is also a trade on the volatility of the under-
lying security. As a result of this, volatility trading is part of every single option 
trading strategy. It is important to note that there is no uniform consensus on 
the exact definition of volatility. A full understanding of volatility and its impact 
on the option price requires specification of all types of volatility. 

Before the first volatility-based instruments entered the market, investments 
in volatility were only possible through a standard options portfolio. These 
portfolios were disadvantaged because they had to be hedged delta-neutral, i.e. 
the portfolio had to be made independent from price changes of the underlying 
security. Furthermore, it required a constant alignment, known as dynamic 
hedging. This hedging process was both time consuming and expensive, but it 
was the only alternative by that time to directly trade volatility. 

Volatility trading revolutionized with the introduction of the first volatil-
ity-based index VIX in 1993 by the Chicago Board Options Exchange and the 
creation of instruments that had the index as underlying. New volatility instru-
ments based on the index continue to be constructed. They form a new market 
segment for both retail, and institutional investors. 

2. The Volatility Assumption of Option Pricing Models 
2.1. Parameter Volatility in the Black-Scholes-Merton Option 

Pricing Model 

Multiple model approaches for the valuation of financial options have been es-
tablished. However, merely equilibrium models that imply certain hypotheses 
regarding the price development of the underlying instruments have achieved 
greater practical significance. Within the group of equilibrium models, the group 
of complete equilibrium models dominates in terms of application. Two models 
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in particular from this group occupy a prominent position. 
On the one hand, the Black-Scholes-Merton Model (B/S model) developed in 

1973 by the American economists Black and Scholes (1973). On the other hand, 
the Binomial Option Pricing Model (BOPM) developed by Cox, Ross, and 
Rubinstein (1979) in 1979 that contains the B/S model as an edge case. Figure 1 
illustrates the classification of the two models mentioned into the theoretical 
framework of option pricing models (Steiner, Bruns, & Stöckl, 2012). Due to the 
frequency of its application in practice and its worldwide popularity, this work 
mainly refers to the Black-Scholes-Merton model (B/S model). 

Volatility for different options, in option pricing theory, is considered con-
stant – regardless of the strike price (or exercise price) and the remaining 
time-to-expiration. In practice, however, volatility behaves differently. Implied 
volatilities are exposed to a multitude of dynamic influencing factors that are 
interlinked. These factors include supply and demand, risk affinity, liquidity, as 
well as actions of the market participants. The market participants’ expectations 
regarding future volatilities can be seen as the most important factor (Hilpold & 
Kaiser, 2010). 

The use of a traditional theoretical pricing model, such as the Black-Scholes- 
Merton model, is undoubtedly associated with real problems. These problems 
result from the assumptions made by the pricing model. Reality shows that 
 capital markets are not perfect, 
 stock prices do not constantly follow a stochastic process with continuous 

variables in continuous time (a diffusion process), 
 volatility does not have to remain constant, instead, it may fluctuate over an 

option’s lifespan, and 
 the real world does not have to resemble a lognormal distribution. 

Considering all these weaknesses, there is a question whether theoretical pric-
ing models provide traders with any practical value at all. However, traders have 
found that the use of a pricing model, even an imperfect one is nonetheless bet-
ter than not using a model at all. 

Traders who are trying to compensate for a pricing model’s weaknesses may 
assume that the market uses the same model as themselves. Therefore, they then 
merely have to find out how the market deals with the model’s weaknesses and 
apply the same for their case. This procedure is comparable to computing im-
plied volatility. The implied volatility calculation assumes that: 
 everyone uses the same pricing model, 
 the option price is known, and 
 everyone agrees on every input parameter, except volatility. 

Thanks to these assumptions, it is possible to determine the volatility that the 
marketplace is implying via the option’s market price to the underlying contract. 
The same general approach can be applied in modified form to the weaknesses 
in the pricing model (Natenberg, 2015). 

Using the Black-Scholes model, an option’s theoretical value over an option’s 
lifespan depends exclusively on the volatility of the underlying contract, assuming  
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Figure 1. Classification of option pricing models. 

 
the input parameters: underlying price, strike price, time-to-expiration and in-
terest rate are known. Before expiration, traders will not know what the volatility 
of the underlying is. On the expiration date, it becomes possible to look back in 
time and calculate the historical volatility. 

In a perfect Black-Scholes world, it does not make sense to have a different 
implied volatility for every single strike price. This is because all options 
(whether calls or puts) have the exact same index as the underlying. The pur-
chase of underpriced options and the sale of overpriced options would ulti-
mately cause every option to have the same IV, if the market’s activity were a 
result of everyone’s belief in the effectiveness of the Black-Scholes-Merton 
model. However, this almost never takes place in any market (Natenberg, 2015). 

2.2. Parameter Implied Volatility 

Among the parameters needed for the Black-Scholes-Merton valuation formulas, 
one cannot be directly observed: the volatility of the share price. Chapter 2 ex-
plained how share price volatility can be estimated using historical stock prices 
or returns. However, in reality, traders usually operate with implied volatilities. 
These are the volatilities included in the observed option prices on the market. 
Implied volatilities are used to monitor the market opinion on the volatility of a 
particular share. Whereas historical volatilities are calculated retroactively, i.e. 
on the basis of past prices, implied volatilities look to the future. Traders fre-
quently substitute implied volatility for the option’s price. This is very practical 
since the implied volatility usually fluctuates less than the option’s price in the 
normal case. Relationship Between Implied Volatility and Other B/S Parameters 
Traders using a theoretical pricing model are exposed to two different risk types. 
First, the risk that the wrong inputs are used in the model. Second, the risk that 
the pricing model itself is erroneous due to either incorrect or unrealistic as-
sumptions. 

The first risk type is typically dealt with by traders by paying close attention to 
an option position’s sensitivities (i.e., Delta, Gamma, Theta, Vega and Rho). 
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In doing so, traders prepare to take protective action in case market condi-
tions move against them. Even though each input poses a risk, special attention 
should be placed on volatility. This is because it represents the only input pa-
rameter that cannot be directly observed from the marketplace. 

For speculative purposes, options are an excellent vehicle. However, this is not 
the main reason for the existence of the options market. Instead, its existence is 
fundamental to the primary economic purpose of options: a risk management 
tool for investors. Option contracts are used by hedgers as protection for their 
assets against adverse price movements. The demand for hedging via options 
goes hand in hand with the markets’ risk perception. For instance, if the risk 
perception increases, the demand for this protection also increases. In this con-
text, risk is expressed through volatility. It is thereby understood as the potential 
for large moves in either direction, as mentioned in Chapter 2. When the market 
expects higher volatility, the relative prices of options are forced upwards by in-
creased demand for protective options.  

In contrast, when the market anticipates lower volatility, greater supply (i.e. 
selling of options) forces option prices downwards. 

2.3. Volatility Skew 

Traders are enabled by a multitude of platforms to solve for volatility values of 
various options within the same option class. Options of the same class have in-
terrelated values. Even though several model parameters are shared among the 
different series within the same class, IV may vary for different options within 
the same class. This is referred to as the volatility skew. Two types of volatility 
skew can be distinguished: vertical skew and horizontal skew (volatility term 
structure) (Passarelli, 2012). 

The distribution of an option’s implied volatilities across different strike 
prices is generally referred to as volatility skew. Depending on the skew’s shape, 
two variants can be distinguished: volatility smirk or volatility smile (Natenberg, 
2015). Figure 2 shows the actual volatility smile observed on 2018-11-17 for SPX 
contracts expiring on 2018-11-30. 

The volatility smile skew shape can be frequently observed in near-term stock 
options and options in the foreign exchange market. Volatility smile patterns 
indicate that demand is larger for options that are in-the-money or 
out-of-the-money. The volatility smirk, in contrast, has two subvariants: the 
forward skew and the reverse skew. Whereas the forward skew shape typically 
appears for options in the commodities market, the reverse skew shape usually 
occurs with longer-term stock options and index options. The IV for options in 
the reverse skew shape increases with lower strike prices and decreases with 
higher strikes prices. This, in turn, suggests that OTM calls and ITM puts are 
cheaper relative to ITM calls and OTM puts. 

The IV for options in the forward skew shape, in contrast, decreases with 
lower strikes and increases with higher strikes. This suggests that ITM calls and  
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Figure 2. Volatility smile - SPX - Date: 2018-11-17 - Expiration Date: 2018-11-30. 
 
OTM puts are in less demand relative to OTM calls and ITM puts (The Options 
Guide, 2017). 

For the distribution of implied volatilities in the equity option market, one 
possible explanation has to do with the way in which option contracts are used 
as a hedging instrument. 

As most traders in the equity market take long positions in stocks, they are 
more worried about an unexpected decline in share prices than about an unex-
pected increase. To protect a long underlying position (such as a stock), the two 
most widespread hedging strategies using options are the purchase of protective 
puts and the sale of covered calls. 

If a stock investor chooses to buy a protective put, they are more in favour of 
choosing one at lower strike prices. Even though, an OTM put is cheaper than its 
ITM counterpart, it also offers less protection against downward movement. 

If, however, the investor is so concerned about a downward movement that 
they require the protection of an ITM protective put, he should simply sell the 
stock instead (Natenberg, 2015). 

If the stock investor chooses to sell a covered call, they will almost always fa-
vour choosing one at higher strike prices. This offers less protection compared to 
the sale of an ITM call, but the investor most likely holds the stock because he 
assumes an increase in the share price. The investor will want to participate in at 
least some of the upside profit potential, if the stock price increases as presumed. 
The stock will be rapidly called away, limiting any upside profit, if the investor 
has sold an ITM call and the share price increases. 

In the equity option market, pressure tends to exist on both sides: buying 
pressure on the lower strike prices (the purchase of protective puts) and selling 
pressure on the higher strike prices (the sale of covered calls). This causes: IVs to 
increase with lower strike prices and IVs to decrease with higher strike prices. 
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The resulting skew shape is referred to as reverse skew pattern and is common 
for options in the equity market. 

The volatility skew transforms into an essential aid in managing risk and gen-
erating valuable theoretical values by handling it as an additional input into the 
theoretical pricing model. Furthermore, the skew analysis can build the founda-
tion for a range of different option strategies (Natenberg, 2015). 

3. Trading Volatility 

Trading volatility as an asset class in its own right has a number of good reasons. 
For instance, investors may gain diversification by adding volatility to an equity 
portfolio as equity volatility is strongly negatively correlated with the equity 
price. Furthermore, investors may attain insurance against market crashes by 
holding volatility in an equity portfolio. This, in turn, is because volatility tends 
to rise significantly at such moments. They are mentioned here to give an im-
pression of some features associated with volatility or volatility-based instru-
ments. Whereas speculative traders may simply bet on future volatility, arbitrage 
traders and hedge funds may take positions on dissimilar volatilities of the same 
maturities. For trading pure volatility, instruments directly based on volatility 
indices have been established as popular instruments (Alexander, 2008). 

Indirect instruments, however, reflect the trade on volatility via volatility in-
dices. It should be noted that the application of indirect instruments is presented 
and analysed in this paper. These indirect instruments base on volatility indices.  

The first volatility index, the CBOE Volatility Index (VIX index), was intro-
duced in 1993 by the Chicago Board Options Exchange (CBOE). Initially, it was 
designed to measure the market’s expectation of 30-day implied volatility by us-
ing ATM S & P 100 index (OEX index) option prices. Shortly after its introduc-
tion, the VIX index transformed into the premier benchmark for U.S. equity 
market volatility. Nowadays, it is featured on a regular basis in a large number of 
leading financial publications and business news shows, where it is frequently 
referred to as the ’fear index’ or ’market fear gauge’: “The VIX is known as Wall 
Street’s “fear gauge” because it tracks the expected swings in the S & P 500 index 
using options contracts” (Sindreu 2018). 

Ten years later in 2003, the CBOE, in collaboration with Goldman Sachs, up-
dated the methodology of the VIX index. Their intention behind this update was 
not only to reflect a new way of measuring expected volatility (implied volatil-
ity), but above all to create a measure that can be used by financial theorists, risk 
managers and volatility traders in a similar manner. While the old VIX index 
was originally designed to measure the market’s expectation of 30-day implied 
volatility by merely ATM S & P 100 (OEX index) option prices, the new VIX in-
dex is designed to measure the market’s expectation of 30-day implied volatility 
by averaging the weighted prices of S & P 500 (SPX index) option prices, both 
calls and puts over a wide range of exercise prices. The input of the VIX index 
are the market prices of the call and put options on the S & P 500 index with 
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more than 23 days and less than 37 days until maturity. 
This new methodology transformed the VIX index from a previously abstract 

concept into a practical standard for trading and hedging volatility by supplying 
a script for replicating volatility exposure with a portfolio of SPX index options. 

In 2014, the CBOE upgraded the VIX index by incorporating series of SPX 
Weeklys (weekly options). Since their introduction weekly options have trans-
formed into a very popular and actively traded risk management tool that are 
available on many indexes, equities, ETFs and ETNs. Through August 2014, SPX 
Weeklys averaged over a quarter of a million contracts traded per day and con-
stituted about one-third of all SPX option contracts traded. The insertion of SPX 
weekly options allows the VIX index to be computed using S & P 500 index 
option series, which most accurately correspond to the 30-day target time-
frame for implied volatility that the VIX Index aims to reflect. The fact that the 
VIX index always reflects an interpolation of two points besides the S & P 500 
volatility term structure is ensured by using SPX option contracts with less 
than 37 days and more than 23 days to expiration (Chicago Board Options 
Exchange, 2014). 

The first exchange-traded VIX futures contract was launched by the CBOE in 
March 2004 on its new all-electronic CBOE Futures Exchange (CFE). Two years 
later in February 2006, the CBOE introduced its next VIX-based product, VIX 
options. This represents the most successful new product in CBOE history. 
Combined trading activity in VIX futures and options has risen to a daily trad-
ing volume of over 800,000 contracts within merely 10 years since their launch 
(Chicago Board Options Exchange, 2014). 

The inverse relationship between equity volatility and equity market returns is 
well documented and suggests a diversification benefit of incorporating volatility 
in an investment portfolio. VIX futures and options are both instruments that 
offer investors the possibility to obtain a pure volatility exposure in a single and 
efficient package. 

A continuous, liquid and transparent market for VIX products is provided by 
the CBOE/CFE. VIX products are available to all types of investors, from the 
smallest retail trader to the largest institutional money managers and hedge 
funds. Besides the VIX index, the CBOE also computes several other volatility 
indices on equity indexes (Chicago Board Options Exchange, 2014). These indi-
ces diverge from the VIX index in either the underlying equity index and/or the 
observed timeframe for expected volatility (implied volatility) (Chicago Board 
Options Exchange, 2014). 

4. Trading and Hedging Strategies Using VIX Derivatives 
4.1. Stylized Facts about Volatility 

This section examines how volatility actually behaves in practice. This represents 
essential knowledge when considering trading with VIX futures and options or 
volatility derivatives in general. Therefore, stylized facts about volatility must be 
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examined (Sinclair, 2013). A stylized fact can be defined in the study of financial 
data represents a property that is strong enough to be accepted as universally 
valid. 

Econometric studies have revealed considerable amounts of commonalities in 
financial time series of different assets. It was found that the fluctuations in asset 
prices share several significant statistical properties. These properties have be-
come known as stylized facts. 

It should be emphasized that the stylized facts described here basically repre-
sent generalities, which means they do not need to prove true in every individual 
case. Despite the loss of precision when using generalities, they are useful for 
spotting broad similarities. Many of the facts will be qualitative. It is extraordi-
narily complex to integrate all these properties into models of the underlying, let 
alone option pricing models. Therefore, the objective should not be to search for 
a pricing model that captures all these properties, but to use tweaks and fudges 
to integrate these facts into the use of the Black-Scholes-Merton formalism and 
the volatility estimation problem. Thus, for volatility traders, it is essential to 
know as much as possible about any fact that concerns volatility. Stylized facts 
show up following characteristics: 
 “Volatility is not constant. It mean-reverts, clusters, and possesses long 

memory. 
 In most markets, volatility and returns have a negative correlation. This ef-

fect is asymmetric: negative returns cause volatility to rise sharply while posi-
tive returns lead to a smaller drop in volatility. This effect occurs most 
prominently in equity markets. 

 Volatility and volume have a strong positive relationship. 
 The distribution of volatility is close to log-normal” (Sinclair, 2013: p. 36). 

4.2. Nonconstant Volatility (Volatility Clustering) 

The fact that volatility does not remain constant has been documented by several 
studies (Akgiray, 1989; Turner & Weigel, 1992). The effect is uncomplicated to 
visually confirm and robust to the exact way volatility is estimated. Figure 3 il-
lustrates the monthly 30-day close-to-close volatility of the S & P 500 index 
(SPX) from 1990-01-31 to 2018-0-31. Therefore, it shows the historical fluctua-
tion intensity of the SPX. 

Two interesting properties can be observed. First, one can easily recognize 
that volatility does change over time, and second that it changes in specific ways, 
so called “volatility clusters”. The phenomenon of volatility clusters appears to 
have been first noticed by Mandelbrot (1963). He claimed that “large changes 
tend to be followed by large changes … and small changes tend to be followed by 
small changes” (Mandelbrot, 1963: p. 418). Significant autocorrelations are 
shown in particular by both squared returns and absolute returns (proxies for 
one-day volatility). Figure 4 and Figure 5 illustrate these autocorrelations for 
the SPX as a function of a range of lags. 

https://doi.org/10.4236/jfrm.2018.74024


E. J. Fahling et al. 
 

 

DOI: 10.4236/jfrm.2018.74024 451 Journal of Financial Risk Management 
 

 
Figure 3. CBOE Volatility Index (VIX). 
 

 
Figure 4. Autocorrelations for the daily squared log returns of the SPX from 1963-12-31 
to 2018-05-31. 
 

Volatility clustering occurs independent of the underlying instrument. It has 
been observed across a variety of different assets, including indices, equities, 
commodities, and currencies (Taylor, 1986). 

Clustering suggests that the current volatility level represents a good estimate 
for future volatility. Option traders have internalized the rule of thumb that 
states that tomorrow’s level of volatility will be identical to today’s level. They do 
not value how remarkable this piece of information is for their trading activities. 
Volatility clustering implies that volatility is relatively predictable. This repre-
sents a significant feature which the underlying price certainly does not have. 

4.3. Negative Correlation (Leverage Effect) 

Another important stylized fact to be mentioned is the inverse relationship be-
tween equity prices and volatility. This persistent effect indicates that volatility  
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Figure 5. Autocorrelations for the daily log returns of the SPX from 1963-12-31 to 
2018-05-31. 

 
tends to rise when the price of the underlying drops. It can be explained by 
the ’leverage effect’ companies are exposed to and thus is as an explanation for 
the effect in stocks. A drop in the share price, in the case of a corporation that 
has not issued any debt, triggers an increase in the company’s financial leverage. 
This, in turn, increases its risk and leads to higher volatility. 

Even though, this explanation appears plausible, it does not seem to explain 
the effect in practice (Figlewski & Wang, 2001). This does not represent a new 
observation, various economists have remarked upon it (Black, 1976; Christie, 
1982). Ever since, it has been the subject of a large number of published studies. 
While this effect is very common in particular for equity indices, it is also true 
for a broad variety of other assets, such as individual equities, bonds, and several 
commodities. It appears to be a significant property of any asset, in which in-
vestors put their money and therefore have a positive expected return. For in-
stance, it generally does not apply to currencies (Sinclair 2013). Figure 6 shows 
the SPX plotted against its 30-day IV (VIX index). The inverse relationship be-
tween IV (VIX) and the underlying price (SPX) is particularly visible during 
stock market crashes and longer lasting periods of downwards corrections. For 
the time series ranging from 1990-01-02 to 2018-06-29 the correlation between 
the daily log returns of the SPX and the daily returns of the VIX is −0.787. 

4.4. Volume and Volatility 

The next-to-last stylized fact to be mentioned deals with the relation between 
trading volume and volatility. Trading volume is strongly correlated with every 
single measure of volatility. It is relatively complex to establish the causality in 
their relationship. Good arguments can be made for both sides, for volatility en-
couraging investors to trade and therefore causing an increase in trading vol-
ume, as well as for trading volume moving the price of the underlying and  
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Figure 6. Negative correlation between SPX and VIX (monthly basis). 

 
therefore causing volatility. Nonetheless, the relationship between both variables 
is robust and lasts over all timeframes (Tauchen & Pitts, 1983; Lee & Rui, 2002; 
Sinclair, 2013: p. 43f.). However, when it comes to an empirical evidence this 
stylized fact cannot be proven clearly. Figure 7 shows the relationship by plot-
ting daily volume against the daily range and daily absolute returns for the SPX 
from 2011-04-01 to 2016-03-31. The indefinite and vague visual impression is 
confirmed by the very low coefficient of determination of a linear regression as 
of 0.000622. This evidence indicates strongly that a relation between volume and 
volatility is not self-evident, which contrasts the empirical findings mentioned 
above. Thus, this stylized fact should be assessed critically – obviously it depends 
largely on the time period chosen. 

4.5. Volatility Distribution 

The last stylized fact concerns the distribution of volatility. This has been sug-
gested as log-normal by several studies (Andersen, Bollerslev, Diebold, & Ebens, 
2001; Cizeau, Liu, Meyer, Peng, & Stanley, 1997). However, there is at least one 
study which has indicated that the distribution’s tail would be better character-
ized as a power law (Liu et al., 1999). The particular distribution is possibly ir-
relevant. The significant fact is that the distribution is strongly skewed to the 
right with a lot more periods of high volatility than one would expect if the dis-
tribution was normally distributed. This is apparent in Figure 8, which shows 
the distribution of 30-day volatility for the S & P 500 index from 1990-01-02 to 
2018-06-29. In other words, this implies that volatility spends much more time 
in low states than it spends in high states.  

Furthermore, the distribution of volatility diverges significantly in bull and 
bear markets. This becomes apparent in the following example. From 1990 to 
2011 if the SPX was higher than its 200-day moving average, then the median  
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Figure 7. Relative daily price changes of S & P 500 index against daily volume. 

 

 
Figure 8. VIX distribution: 1990-01-02 to 2018-06-29. 

 
30-day volatility was 12.1%. If, however, the SPX was lower than its 200-day 
moving average, then the median 30-day volatility was 21.6% (Sinclair, 2013: p. 
45). 

This observation is robust in relation to the way volatility is measured and the 
length of the moving average used to determine whether the underlying market 
is in a bull or bear phase. It is comprehensible that as volatility trader, one needs 
to fully understand and master volatility. This is correct regardless of the level of 
quantitative analysis one plans to use Sinclair: “Each individual product will 
have certain quirks and nuances, but all volatilities have a number of common 
features. 
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 Volatility clusters. 
 Volatility mean reverts. 
 Volatility tends to increase as the underlying price declines. 
 Volatility and volume are highly correlated. 
 Volatility is approximately log-normally distributed.” (Sinclair, 2013: p. 47) 

5. Empirical Study on Combined Portfolio Performance 

In this chapter empirical findings of the success of indirect instruments to trade 
volatility are presented. It will be shown how a consistent mix of both portfolios, 
i.e. the pure long stocks portfolio and the VIX futures portfolio, would have 
performed in the past in two different time periods. 

Firstly, the analysis undertaken by Rhoads (2011) shows the monthly per-
formance for a combined portfolio with a 90% exposure to the S & P 500 index 
portfolio and a 10% exposure to the VIX futures portfolio. Important to note is, 
that the analysis focuses on the years 2007 until 2010 which was the area of the 
financial crisis. In that time period the combined portfolio clearly outperformed 
the pure SPX portfolio in the years 2007 and 2008, while it slightly underper-
forms in the latter two years. This relative performance can be ascribed to the 
volatility trend during the respective period. There has been an uptrend in vola-
tility through 2007 and 2008, while there was basically a downward to flat vola-
tility trend in 2009 and 2010. 

Secondly, an own further long-term performance study of a SPX portfolio 
hedged by VIX derivatives is analysed. It is analysed, how the full protection of 
the SPX via corresponding one-month ATM European put options compares to 
the index itself over the long run ranging from 1990-01-31 to 2018-03-30. Albeit 
while tests of put options around the volatility smile are not conducted it is pos-
sible to relate the results to them. Overall the study concludes that by hedging 
the index as described, 80% of the gains of the SPX with distributed dividends 
considered are eliminated by simultaneously raising volatility significantly 
within the sample period.  

For the study the well-known Black-Scholes partial differential equation for 
European put options (Black & Scholes, 1973; Davis, 2010) with V as V(S,t) the 
option value, S is the price and σ the volatility of the underlying asset, t as time 
to maturity and k as the strike price is extended for continuously paying divi-
dends (d) and applied as follows: 

( ) ( )
2

2 2
2

1 0 with max ,0
2

V V VS r d S rV V k S
t SS

σ∂ ∂ ∂
+ + − − = = −

∂ ∂∂
    (1) 

Solving this equation for the initial boundary value problem leads to the ho-
mogenous linear Black-Scholes formula. Dividends paid from the SPX are ac-
counted for on a monthly basis without being reinvested. 

Put option positions are rolled over on the last trading day of each month 
onto the last day of the following months based on the calendar of the New York 
Stock Exchange (NYSE). The time to maturity measured in days of each option 
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is calculated until the last trading day of the following month. The implied vola-
tility refers to ATM VIX values. 

For the sample period before 2007-12-05 the volatility is estimated on basis of 
VIX values adjusted for differences to ATM VIX values due to the volatility 
smile. The adjustments are determined by a linear regression model which pa-
rameters are calculated through the ordinary least squares (OLS) method. For 
the fitted model 

2.16777 0.976595x− +  

the F-Statistic of 157.997 corresponds to the P-Value of 0 and a coefficient of 
determination of 98.3%. Thus, the explanatory power of that model can be re-
garded as tremendously well. Figure 9 shows the relationship between the VIX 
versus the ATM VIX and the fitted model on a daily basis from 2007-12-05 to 
2018-06-26. Data for daily ATM VIX and VIX values are derived from Thomson 
Reuters Datastream. 

Monthly data used for the model derived from Thomson Reuters Datastream 
are the SPX, dividends of the SPX, the ICE Benchmark Administration (IBA) 
and the United States Dollar Interbank LIBOR 1 Month as the risk-free rate. 
Daily VIX and ATM VIX data is as well derived from Thomson Reuters Data-
stream. Figure 10 shows the performance effects of hedging the SPX including 
distributed dividends with one-month ATM European put options over the pe-
riod from 1990-01-31 to 2018-03-30. Over the same period Figure 11 illustrates 
the premiums paid and gains received from the hedging strategy. 

The empirical result is, that the compound annual growth rate (CAGR) of 
8.5% of the unhedged SPX is reduced to 3.9% by applying the evaluated volatility 
based hedging strategy. On the other hand, the annual volatility raises from 
12.0% to 17.7%. In nominal terms 80% of the gains of the SPX with distributed 
dividends are eliminated due to the negative cash balance of the option strat-
egy. 
 

 
Figure 9. Daily VIX values (blue line) sorted ascending versus corresponding ATM VIX 
values (grey line) and the linear regression model (red line). 
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Figure 10. Time series of the SPX including dividends (blue line) and the hedged SPX in-
cluding dividends (red line). 

 

 
Figure 11. Premiums paid (blue line) and respective gains received (red line) over the 
sample period. 

6. Conclusion 

Volatility as an asset class and trading tool continues to be a rapidly growing and 
developing area in the financial industry. Trading volatility as an asset class in its 
own right has been established for a number of reasons. Investors may obtain 
excellent diversification by adding volatility to their portfolios. This is not least 
attributable to its negative correlation with equity market returns. Investors may 
also attain disaster insurance against market crashes by holding volatility in an 
equity portfolio as it tends to increase significantly at such times. These features, 
among others, make investments in volatility an ideal instrument for hedging 
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purposes. These hypotheses are supported by the studies referred to in this work. 
Moreover, its application is not limited to hedgers only. 

Volatility properties, such as mean reversion or volatility clustering, allow in-
vestors to make better predictions on the long-term future development of vola-
tility. Volatility products are a topic with plenty of room for future research. 
Many volatility products, such as options and futures on the VIX, have not been 
traded for a very long time, but have nonetheless recorded a significant increase 
in average trading volume. Especially in the case of newly introduced volatility 
products, such as certificates on volatility indices, it is necessary to examine what 
the long-term yield opportunities look like and in which areas their application 
might be worthwhile. 

The main purpose of this study was to gather an empirical insight how the 
long-term performance of the application of volatility derivatives to hedge a long 
position in the S & P 500 index will result in. The empirical findings clearly show 
that over the last 20 years a protective put strategy for the S & P 500 index would 
have contributed to a significant underperformance against a buy & hold strat-
egy of the S & P 500 Index. With this empirical finding in mind, the applications 
of volatility derivatives obviously mainly make sense from a tactical market per-
spective rather than a strategic one. 
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