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Abstract 
The concept of linear tangle was introduced as an obstruction to mixed 
searching number. The concept of single ideal has been introduced as an ob-
struction to linear-width. Moreover, it was already known that mixed search 
number is equivalent to linear-width. Hence, by combining those results, we 
obtain a proof of the equivalence between linear tangle and single ideal. This 
short report gives an alternative proof of the equivalence. 
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1. Introduction 

A graph searching game is a game where searchers (or cops) want to capture a 
fugitive (or robber) and the fugitive want to escape from the searchers, and they 
move through a graph for their purpose. Graph searching games have been 
well-studied [1] [2] [3], since graph searching games have many practical and 
theoretical applications such as robot motion planning, network security, and 
artificial intelligence (see e.g. [4]). 

There are several variants of graph searching games such as edge search, node 
search, and mixed search (see e.g. [5]) and there are several graph 
width-parameters such as path-width, tree-width, and branch-width. In the 
study of graph searching games, it is known that there are some strong 
connections between graph searching games and graph width parameters, in 
which the minimum number of searchers (i.e., search number) usually 
corresponds to the value of width. For example, mixed search number is 
essentially equivalent to linear-width1 (see [6] [7]). 

 

 

1If a graph has no pendant vertices, the equivalence holds. 
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The concept of linear tangle was introduced in [7] as an obstruction to the 
existence of mixed searching strategy: there is a linear tangle of order 1k +  iff 
there is no mixed searching strategy with k searchers, where k is a prefixed 
integer. From the equivalence, as mentioned above, between mixed search 
number and linear-width, a linear tangle of order 1k +  is an obstruction to 
being linear-width is at most k (see also [8]). 

The concept of single ideal has been introduced in [9] as an obstruction to 
linear-width: there is a single ideal of order 1k +  iff the linear-width is more 
than k. Thus, a linear tangle of a large order and a single ideal of a large order 
are both obstructions to small linear-width, which means that the concepts of 
linear tangle and single ideal are the same. In this short report, we give an 
alternative proof of the equivalence between linear tangle and single ideal.  

2. Definitions and Notations  

In this paper, we consider a pair ( ),E f  rather than graphs, where E is an 
underlying set and f is a symmetric submodular function on E, and such a pair is 
called connectivity system (see cf. [10]). All sets considered in this paper are 
finite. For an underlying set E and a subset X of E, we denote \E X  by X . 

A function : 2 ZEf →  is symmetric submodular if f satisfies the following:  
1) ( ) ( )f X f X=  for any X E⊆ ,  
2) ( ) ( ) ( ) ( )f X f Y f X Y f Y X+ ≥ +   for any ,X Y E⊆ .  
It is known that a symmetric submodular function f satisfies the following 

properties [10]: for each ,X Y E⊆ ,  
1) ( ) ( )f X f≥ ∅  and  
2) ( ) ( ) ( ) ( )\ \f X f Y f X Y f Y X+ ≥ + .  
A set X is k-efficient if ( )f X k≤ . Throughout the paper, f means a 

symmetric submodular function, k a fixed positive integer, and we assume that 
{ }( )f e k≤  for every e E∈ , hence we have ( )f k∅ ≤ . 

Definition 1 ([7]). A linear tangle of order 1k + 2 on a connectivity system 
( ),E f  is a family L  of k-efficient subsets of E, satisfying the following 
axioms:  

(L1) ∅∈L ,  
(L2) For each k-efficient subset X of E, exactly one of X  or X  in L ,  
(L3) If ,X Y ∈L , e E∈ , and { }( )f e k≤ , then { }X Y e E≠   holds.  
Definition 2 ([9]). A single ideal of order 1k +  on a connectivity system 

( ),E f  is a family M  of k-efficient subsets of E, satisfying the following 
axioms:  

(S1) E∉M ,  
(S2) If ,A B E⊆ , A B⊂ , B∈M , and ( )f A k≤ , then A∈M  holds,  
(S3) If A∈M , e E∈ , { }( )f e k≤ , and { }( )f A e k≤ , then { }A e ∈ M  

holds.  
We also consider the following additional axiom: 

 

 

2In [7], the order is k rather than k + 1. 
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(S4) For each k-efficient subset A of E, exactly one of A or A  in M.  
It is shown in [9] that the linear-width of ( ),E f  is at least 1k +  if and only 

if there is a single ideal on ( ),E f  of order 1k +  which satisfies (S4).  
Since we assume that { }( )f e k≤  for every e E∈ , the axioms (L3) and (S3) 

can be restated, respectively, as follows:  
(L3) If ,X Y ∈L  and e E∈ , then { }X Y e E≠   holds.  
(S3) If A∈M , e E∈ , and { }( )f A e k≤ , then { }A e ∈ M  holds.  

3. Result  

Lemma 1. A linear tangle L  of order 1k +  is a single ideal of order 1k +  
satisfying the additional axiom (S4).  

Proof. From the axioms (L1) and (L2), it is obvious that L  satisfies the 
axioms (S1) and (S4). 

We claim that L  satisfies the axioms (S2). Suppose, to the contrary, that 
there exist k-efficient subsets A and B such that A B⊆ , B∈L , and A∉L . 
Then, we have A∈L  by (L2), and for any e E∈ , { }A e B E=   holds, 
but this contradicts the axiom (L3). 

Finally, we show that L  satisfies the axioms (S3). Suppose, to the contrary, 
that there exists k-efficient subset A∈L  and an element e E∈  such that 

{ }( )f A e k≤  and { }A e ∉ L  hold. Then, we have { }A e ∈ L , hence 
{ },A A e ∈ L  and { } { }A A e e E=    hold, however, this contradicts the 

axiom (L3).  
Lemma 2. A single ideal M  of order 1k +  satisfying the additional axiom 

(S4) is a linear tangle of order 1k + .  
Proof. From the axioms (S1) and (S4), it is obvious that M  satisfies the 

axioms (L1) and (L2). 
We show that M  satisfies the axiom (L3). Suppose, to the contrary, that 

there exists a triple { }( ), ,X Y e  such that ,X Y ∈M , e E∈ , and 
{ }X Y e E=  . We choose a triple minimizing X Y  in such triples 

{ }( ), ,X Y e . First, we claim that X Y = ∅  holds. Since 
( ) ( ) ( ) ( )2 \ \k f X f Y f X Y f Y X≥ + ≥ +  holds, at least one of ( )\f X Y  or 

( )\f Y X  is at most k. Without loss of generality, we may assume that 
( )\f X Y  is at most k. Hence, by (S2) from \X Y X⊆ , we have \X Y ∈M . 

If X Y ≠ ∅ , then we have ( )\X Y X Y Y>  , however, this contradicts 
the choice of the triple. Thus, we have shown that X Y = ∅ . 

Next, we claim that e X∉  holds. Suppose if not, that is, if e X∈ , then we 
have X Y E= , which implies that X Y= ∈M  holds, however, this 
contradicts the axiom (S4). Similarly, we know that e Y∉  holds. 

Now, we know that the triple { }( ), ,X Y e  consists of a partition of E. Hence, 
we have { }( ) ( ) ( )f X e f Y f Y k= = ≤ , and from this, it follows that 

{ }X e Y= ∈ M  holds by the axiom (S3). However, this contradicts the axiom 
(S4).  

From lemmas 1 and 2, we have the following theorem.  
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Theorem 1. Under the assumption that { }( )f e k≤  for every e E∈ , F  
is a linear tangle of order 1k +  iff F  is a single ideal of order 1k +  
satisfying the additional axiom (S4).  
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