
American Journal of Computational Mathematics, 2018, 8, 296-313
http://www.scirp.org/journal/ajcm

ISSN Online: 2161-1211
ISSN Print: 2161-1203

DOI: 10.4236/ajcm.2018.84024 Dec. 7, 2018 296 American Journal of Computational Mathematics

Square Neurons, Power Neurons, and Their
Learning Algorithms

Ying Liu

Department of Engineering Technology, Savannah State University, Savannah, Georgia

Abstract
In this paper, we introduce the concepts of square neurons, power neurons,
and new learning algorithms based on square neurons, and power neurons.
First, we briefly review the basic idea of the Boltzmann Machine, specifically
that the invariant distributions of the Boltzmann Machine generate Markov
chains. We further review ABM (Attrasoft Boltzmann Machine). Next, we re-
view the θ-transformation and its completeness, i.e. any function can be ex-
panded by θ-transformation. The invariant distribution of the ABM is a
θ-transformation; therefore, an ABM can simulate any distribution. We re-
view the linear neurons and the associated learning algorithm. We then dis-
cuss the problems of the exponential neurons used in ABM, which are unsta-
ble, and the problems of the linear neurons, which do not discriminate the
wrong answers from the right answers as sharply as the exponential neurons.
Finally, we introduce the concept of square neurons and power neurons. We
also discuss the advantages of the learning algorithms based on square neu-
rons and power neurons, which have the stability of the linear neurons and
the sharp discrimination of the exponential neurons.

Keywords
AI, Boltzmann Machine, Markov Chain, Invariant Distribution,
Completeness, Deep Neural Network

1. Introduction

Neural networks and deep learning currently provide the best solutions to many
supervised learning problems. In 2006, a publication by Hinton, Osindero, and
Teh [1] introduced the idea of a “deep” neural network, which first trains a
simple supervised model, and then adds on a new layer on top and trains the
parameters for the new layer alone. You keep adding layers and training layers

How to cite this paper: Liu, Y. (2018) Square
Neurons, Power Neurons, and Their Learning
Algorithms. American Journal of Computa-
tional Mathematics, 8, 296-313.
https://doi.org/10.4236/ajcm.2018.84024

Received: September 5, 2018
Accepted: December 4, 2018
Published: December 7, 2018

Copyright © 2018 by author and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ajcm
https://doi.org/10.4236/ajcm.2018.84024
http://www.scirp.org
https://doi.org/10.4236/ajcm.2018.84024
http://creativecommons.org/licenses/by/4.0/

Y. Liu

DOI: 10.4236/ajcm.2018.84024 297 American Journal of Computational Mathematics

in this fashion until you have a deep network. Later, this condition of training
one layer at a time is removed.

After Hinton’s initial attempt of training one layer at a time, Deep Neural
Networks train all layers together. Examples include TensorFlow [2], Torch [3],
and Theano [4]. Google’s TensorFlow is an open-source software library for
dataflow programming across a range of tasks. It is a symbolic math library, and
also used for machine learning applications, such as neural networks [5]. It is
used for both research and production at Google. Torch is an open source
machine learning library and a scientific computing framework. Theano is a
numerical computation library for Python. The approach using the single
training of multiple layers gives advantages to the neural network over other
learning algorithms.

In addition to neural network algorithms, there are numerous learning algo-
rithms. We select a few such algorithms below.

Principal Component Analysis [6] [7] is a statistical procedure that uses an
orthogonal transformation to convert a set of vectors into a set of values of li-
nearly uncorrelated variables called principal components. The number of prin-
cipal components is less than or equal to the number of original variables.

Sparse coding [8] [9] minimizes the objective:
2

2 1scL WH X Hλ= − +

where, W is a matrix of transformation, H is a matrix of inputs, and X is a ma-
trix of the outputs. λ implements a trade of between sparsity and reconstruction.

Auto encoders [10]-[15] minimize the objective:

() 2T

2aeL W W X Xσ= −

where σ is some neural network functions. Note that Lsc looks almost like Lae
once we set ()TH W Xσ= . The difference is that: 1) auto encoders do not en-
courage sparsity in their general form; 2) an auto encoder uses a model for find-
ing the codes, while sparse coding does so by means of optimization.

K-means clustering [16] [17] [18] [19] is a method of vector quantization
which is popular for cluster analysis in data mining. K-means clustering aims to
partition n observations into k clusters. Each observation belongs to the cluster
with the nearest mean, serving as a prototype of the cluster. This results in a par-
titioning of the data space into k clusters.

If we limit the learning architecture to one layer, all of these algorithms have
some advantages for some applications. The deep learning architectures cur-
rently provide the best solutions to many supervised learning problems, because
two layers, when “properly” constructed, are better than one layer. One question
is the existence of a solution for a given problem. This will often be followed by
an effective solution development, i.e. an algorithm for a solution. This will often
be followed by the stability of the algorithm. This will often be followed by an ef-
ficiency study of solutions. Although these theoretical approaches are not neces-
sary for the empirical development of practical algorithms, the theoretical stu-

https://doi.org/10.4236/ajcm.2018.84024

Y. Liu

DOI: 10.4236/ajcm.2018.84024 298 American Journal of Computational Mathematics

dies do advance the understanding of the problems. The theoretical studies will
prompt new and better algorithm development of practical problems. Along the
direction of solution existence, Hornik, Stinchcombe, & White [20] have shown
that the multilayer feedforward networks with enough hidden layers are univer-
sal approximators. Roux & Bengio [21] have shown the same. Restricted
Boltzmann machines are universal approximators of discrete distributions.

Hornik, Stinchcombe, & White [20] establish that the standard multilayer
feedforward networks with hidden layers using arbitrary squashing functions are
capable of approximating any measurable function from one finite dimensional
space to another to any desired degree of accuracy, provided many hidden units
are sufficiently available. In this sense, multilayer feedforward networks are a
class of universal approximators.

Deep Belief Networks (DBN) are generative neural network models with
many layers of hidden explanatory factors, recently introduced by Hinton,
Osindero, and Teh, along with a greedy layer-wise unsupervised learning
algorithm. The building block of a DBN is a probabilistic model called a
Restricted Boltzmann machine (RBM), used to represent one layer of the model.
Restricted Boltzmann machines are interesting because inference is easy in them
and because they have been successfully used as building blocks for training
deeper models. Roux & Bengio [21] proved that adding hidden units yield a
strictly improved modeling power, and RBMs are universal approximators of
discrete distributions.

An alternative to the direction of “deep layers”, higher order is another
direction. In our earlier paper [22], we provided yet another proof: Deep Neural
Networks are universal approximators. The advantage of this proof is that it will
lead to multiple new learning algorithms. In our approach, Deep Neural
Networks implement an expansion and this expansion is complete. These two
directions are equivalent [22] [23]. There are several learning algorithms
characterized by θ-transformation, which are in the direction of higher order,
which form a new family of learning algorithms [22] [23]. The conversion
between these two directions of deep layers and higher orders is beyond the
scope of this paper. The first learning algorithm characterized by higher orders
and θ-transformation [24] [25] [26] [27] is ABM [28], which has a problem of
stability.

Once we accept that the deep learning architectures currently provide the best
solutions, the next question is what is in each layer; in this paper, we intend to
fill these layers with the square and power neurons.

In [23], by identifying that the ABM algorithm uses exponential neurons, a
second learning algorithm was developed to replace the exponential neurons
with linear neurons [23], which solved the stability problem. However, the linear
neurons do not discriminate the wrong answers from the right answers as
sharply as the exponential neurons. In this paper, we will present a third
algorithm after [28] and [23]. We will take the middle ground between the
exponential neurons [28] and the linear neurons [23], which has the advantages

https://doi.org/10.4236/ajcm.2018.84024

Y. Liu

DOI: 10.4236/ajcm.2018.84024 299 American Journal of Computational Mathematics

of both algorithms [23] [28] and avoids the disadvantages of the both algorithms.
In Section 2, we briefly review how to use probability distributions in a

Supervised Learning Problem. In this approach, given an input A, an output B, and
a mapping from A to B, one can convert this problem to a probability distribution
[29] [30] [31] [32] [33] of (A, B): (), , ,p a b a A b B∈ ∈ . If an input is a A∈ and an
output is b B∈ , then the probability (),p a b will be higher than 0. One can find a
Markov chain [34] such that the equilibrium distribution of this Markov chain,
(),p a b , realizes, as faithfully as possible, the given supervised training set.
In Section 3, the Boltzmann machines [29] [30] [31] [32] [33] are briefly

reviewed. Our discussion concentrates on the distribution space of the Boltzmann
machine rather than the neural aspects. All possible distributions together form a
distribution space. All of the distributions, implemented by Boltzmann machines,
define a Boltzmann Distribution Space, which is a subset of the distribution space
[24] [25] [26] [27]. Given an unknown function, one can find a Boltzmann
machine such that the equilibrium distribution of this Boltzmann machine realizes,
as faithfully as possible, the unknown function. A natural question is whether such
an approximation is possible. The answer is that this approximation is not yet a
good approximation.

In Section 4, we review the ABM (Attrasoft Boltzmann Machine) [28] which has
an invariant distribution. An ABM is defined by two features: 1) an ABM with n
neurons has neural connections up to the nth order; and 2) all of the connections up
to nth order are determined by the ABM algorithm [28]. By adding more terms in
the invariant distribution compared to the second order Boltzmann Machine, ABM
is significantly more powerful to simulate an unknown function. Unlike the
Boltzmann Machine, ABM’s emphasize higher order connections rather than lower
order connections. The Boltzmann Machine (order 0, 1, 2) and the ABM (order n,
n − 1, n − 2) are at the opposite end of the neuron orders.

In Section 5, we review θ-transformation [24] [25] [26] [27].
In Section 6, we review the completeness of the θ-transformation [24] [25] [26]

[27]. The θ-transformation is complete, i.e. given a function, one can find a
θ-transformation by converting it from the x-coordinate system to the θ-coordinate
system.

In Section 7, we discuss how the invariant distribution of an ABM implements a
θ-transformation [11] [12] [13] [14], i.e. given an unknown function, one can find
an ABM such that the equilibrium distribution of this ABM realizes precisely the
unknown function. We introduce the exponential neurons; if we keep only lower
orders, this will be the standard Boltzmann machine.

In Section 8, we discuss the stability problem of the exponential neurons.
In Section 9, we review linear neurons [23], which solves the stability problem.

However, the linear neurons do not discriminate the wrong answers from the right
answers as sharply as the exponential neurons.

In Section 10, we review the linear neuron learning algorithms.
In Section 11, we will take the middle ground between the exponential neurons

https://doi.org/10.4236/ajcm.2018.84024

Y. Liu

DOI: 10.4236/ajcm.2018.84024 300 American Journal of Computational Mathematics

and the linear neurons, which has the advantages of both algorithms and avoids the
disadvantages of the both algorithms. The new contribution of this paper is that we
introduce the concept of square neurons and power neurons.

In Section 12, we also discuss the advantages of the two new learning algorithms
based on square neurons and power neurons, which has the stability of the linear
neurons and the sharp discrimination of the exponential neurons.

In Section 13, we introduce a simple example to demonstrate the improvement
of the square neurons and power neurons over linear neurons.

2. Basic Approach

The basic supervised learning [29] problem is: given a training set {A, B}, where
{ }1 2, ,A a a=  and { }1 2, ,B b b=  , find a mapping from A to B. It turns out that if

we can reduce this from a discrete problem to a continuous problem, it will be very
helpful. The first step is to convert this problem to a probability [29] [30] [32] [33]:

(), , ,p p a b a A b B= ∈ ∈ .

If a1 does not match with b1, the probability is 0 or close to 0. If a1 matches with b1,
the probability is higher than 0. This can reduce the problem of inferencing of a
mapping from A to B to inferencing a distribution function.

An irreducible finite Markov chain possesses a stationary distribution [34]. This
invariant distribution can be used to simulate an unknown function. It is the
invariant distribution of a Markov chain which eventually allows us to prove that
the DNN is complete.

3. Boltzmann Machine

A Boltzmann machine [29] [30] [31] [32] [33] is a stochastic neural network in
which each neuron has a certain probability to be 1. The probability of a neuron to
be 1 is determined by the so called Boltzmann distribution. The collection of the
neuron states:

()1 2, , , nx x x x= 

of a Boltzmann machine is called a configuration. The configuration transition is
mathematically described by a Markov chain with 2n configurations x X∈ , where
X is the set of all points, ()1 2, , , nx x x . When all of the configurations are
connected, it forms a Markov chain. A Markov chain has an invariant distribution
[34]. Whatever initial configuration of a Boltzmann starts from, the probability
distribution converges over time to the invariant distribution, p(x). The
configuration x X∈ appears with a relative frequency p(x) over a long period of
time.

The Boltzmann machine [29] [30] [31] [32] [33] defines a Markov chain. Each
configuration of the Boltzmann machine is a state of the Markov chain. The
Boltzmann machine has a stable distribution. Let T be the parameter space of a
family of Boltzmann machines. An unknown function can be considered as a stable
distribution of a Boltzmann machine. Given an unknown distribution, a Boltzmann

https://doi.org/10.4236/ajcm.2018.84024

Y. Liu

DOI: 10.4236/ajcm.2018.84024 301 American Journal of Computational Mathematics

machine can be inferred such that its invariant distribution realizes, as faithfully as
possible, the given function. Therefore, an unknown function is transformed into a
specification of a Boltzmann machine.

More formally, let F be the set of all functions. Let T be the parameter space of a
family of Boltzmann machines. Given an unknown f F∈ , one can find a
Boltzmann machine such that the equilibrium distribution of this Boltzmann
machine realizes, as faithfully as possible, the unknown function [29] [30] [31] [32]
[33]. Therefore, the unknown, f, is encoded into a specification of a Boltzmann
machine, t T∈ . We call the mapping from F to T as a Boltzmann Machine
Transformation: F T→ [24] [25] [26] [27].

Let T be the parameter space of a family of Boltzmann machines, and let FT be
the set of all functions that can be inferred by the Boltzmann Machines over T;
obviously, FT is a subset of F. It turns out that FT is significantly smaller than F and
it is not a good approximation for F. The main contribution of the Boltzmann
machine is to establish a framework for inferencing a mapping from A to B.

4. Attrasoft Boltzmann Machines (ABM)

The invariant distribution of a Boltzmann machine [29] [30] [31] [32] [33] is:

() e ij i ji j M x xp x b <∑= (1)

If the threshold vector does not vanish, the distributions are:

() e ij i j i ii j M x x T xp x b < −∑ ∑= (2)

By rearranging the above distribution, we have:

() e i i ij i ji jc T x M x xp x <− +∑ ∑=

It turns out that the third order Boltzmann machines have the following type of
distributions:

() e i i ij i j ijk i j ki j i j kc T x M x x M x x xp x < < <− + +∑ ∑ ∑= (3)

An ABM [24] [25] [26] [27] is an extension of the higher order Boltzmann
Machine to the maximum order. An ABM with n neurons has neural connections
up to the nth order. All of the connections up to the nth order are determined by the
ABM algorithm [28]. By adding additional higher order terms to the invariant
distribution, ABM is significantly more powerful to simulate an unknown function.

By adding additional terms, the invariant distribution for an ABM is:

() eHp x = ,

1 2 31 1 2
1 1 2 1 2 3

12
0 1 2 3 1 2

i i ii i i n
i i i i i i n nH x x x x x x x x xθ θ θ θ θ= + ∑ +∑ +∑ + + 

 

ABM is significantly more powerful to simulate an unknown function. As more
and more terms are added, from the second order terms to the nth order terms, the
invariant distribution space will become larger and larger. Like the Boltzmann
Machines in the last section, ABM implements a transformation, BF T→ . We
hope ultimately that this ABM transformation is complete so that given any

https://doi.org/10.4236/ajcm.2018.84024

Y. Liu

DOI: 10.4236/ajcm.2018.84024 302 American Journal of Computational Mathematics

function f F∈ , we can find an ABM, t T∈ , such that the equilibrium
distribution of this ABM realizes precisely the unknown function. We show that
this is exactly the case.

5. θ-Transformation
5.1. Basic Notations

We first introduce some notations used in this paper [24] [25] [26] [27]. There are
two different types of coordinate systems: the x-coordinate system and the
θ-coordinate system [24] [25] [26] [27]. Each of these two coordinate systems has
two representations, x-representation and θ-representation. An N-dimensional
vector, p, is:

()0 1 1, , , Np p p p −=  ,

which is the x-representation of p in the x-coordinate systems.
In the x-coordinate system, there are two representations of a vector:

• {pi} in the x-representation, and
• { }1 2 mi i i

mp  in the θ-representation.
In the θ-coordinate system, there are two representations of a vector:

• {θi} in the x-representation, and
• { }1 2 mi i i

mθ
 in the θ-representation.

The reason for the two different representations is that the x-representation is
natural for the x-coordinate system, and the θ-representation is natural for the
θ-coordinate system.

The transformations between {pi} and { }1 2 mi i i
mp  , and those between {θi} and

{ }1 2 mi i i
mθ
 , are similar. Because of the similarity, in the following, only the

transformation between {pi} and { }1 2 mi i i
mp  will be introduced. Let N = 2n be the

number of neurons. An N-dimensional vector, p, is:

()0 1 1, , , Np p p p −=  (4)

Consider px, because { }0,1, , 1 2 1nx N∈ − = − is the position inside a
distribution, then x can be rewritten in the binary form:

1 1 0
2 12 2 2n

nx x x x−= + + + (5)

Some of the coefficients xi might be zero. In dropping those coefficients which
are zero, we write:

2 1
1 2

1 1 12 2 2 .m
m

i i i
i i ix x x x − − −= = + + +  (6)

This generates the following transformation:
1 2

1 1 12 12 2 2
m

i i im
i i i
m xp p p − − −+ + +

= =



 (7)

where

1 21 m i i i n≤ < < < ≤ (8)

In this θ-representation, a vector p looks like:

{ }1 2 3 12 13 23 123
0 1 1 1 2 2 2 3, , , , , , , , , ,p p p p p p p p  

https://doi.org/10.4236/ajcm.2018.84024

Y. Liu

DOI: 10.4236/ajcm.2018.84024 303 American Journal of Computational Mathematics

The 0-th order term is 0p , the first order terms are: 1 2 3
1 1 1, , ,p p p  , … The first

few terms in the transformation between {pi} and { }1 2 mi i i
mp  are:

1 2
0 0 1 1 1 2
12 3 13
2 3 1 4 2 5
23 123 4
2 6 3 7 1 8

, , ,

, , ,

, , ,

p p p p p p

p p p p p p

p p p p p p

= = =

= = =

= = = 

 (9)

The x-representation is the normal representation, and the θ-representation is a
form of binary representation.

5.2. θ-Transformation

Denote a distribution by p, which has a x-representation in the x-coordinate system,
p(x), and a θ-representation in the θ-coordinate system, p(θ). When a distribution
function, p(x) is transformed from one coordinate system to another, the vectors in
both coordinates represent the same abstract vector. When a vector q is
transformed from the x-representation q(x) to the θ-representation q(θ), then q(θ)
is transformed back to ()q x′ , () ()q x q x′ = .

The θ-transformation uses a function F, called a generating function. The
function F is required to have the inverse:

1, .FG GF I G F −= = = (10)

Let p be a vector in the x-coordinate system. As already discussed above, it can be
written either as:

() ()0 1 1, , , Np x p p p −=  (11)

or

() ()1 12 1, 123 12
0 1 1 2 2 3; , , ; , , ; , , .n n n n

np x p p p p p p p−= 

   (12)

The θ-transformation transforms a vector from the x-coordinate to the
θ-coordinate via a generating function. The components of the vector p in the
x-coordinate, p(x), can be converted into components of a vector p(θ) in the
θ-coordinate:

() ()1 12 1, 123 12
0 1 1 2 2 3; , , ; , , ; , , ,n n n n

np θ θ θ θ θ θ θ θ−= 

   (13)

or

() ()0 1 1, , , .Np θ θ θ θ −=  (14)

Let F be a generating function, which transforms the x-representation of p in the
x-coordinate to a θ-representation of p in the θ-coordinate system. The
θ-components are determined by the vector F[p(x)] as follows:

() 1 2 31 1 2
1 1 2 1 2 3

12
0 1 2 3 1 2

i i ii i i n
i i i i i i n nF p x x x x x x x x x xθ θ θ θ θ= + ∑ +∑ +∑ + +  



  (15)

where

1 21 m i i i n≤ < < < ≤ (16)

Prior to the transformation, p(x) is the x-representation of p in the x-coordinate;
after transformation, F[p(x)] is a θ-representation of p in the θ-coordinate system.

https://doi.org/10.4236/ajcm.2018.84024

Y. Liu

DOI: 10.4236/ajcm.2018.84024 304 American Journal of Computational Mathematics

There are N components in the x-coordinate and N components in the
θ-coordinate. By introducing a new notation X:

1 2 12
0 0 1 1 1 1 2 2 2 3 1 2
3 13 23
1 4 3 2 5 1 3 2 6 2 3
123 4
3 7 1 2 3 1 8 1 2 3 4

1, , , ,

, , ,

, ,

X X X X x X X x X X x x

X X x X X x x X X x x

X X x x x X X x x x x

= = = = = = = =

= = = = = =

= = = = 

 (17)

then the vector can be written as:

() J JF p x Xθ= ∑   (18)

By using the assumption GF = I, we have:

() { }J Jp x G Xθ= ∑ (19)

where J denotes the index in either of the two representations in the θ-coordinate
system.

The transformation of a vector p from the x-representation, p(x), in the
x-coordinate system to a θ-representation, p(θ), in the θ-coordinate system is called
θ-transformation [24] [25] [26] [27].

The θ-transformation is determined by [24] [25] [26] [27]:

1 2 1 2 1 2 3

1 1 2 1 3

2 2 4

1 1 3

m m m m

m m m

i i i i i i i i i i
m m m m m

i i i i i i
m m m

F p F p F p F p

F p F p F p

θ −

− −

− − −

− − −

       = + + + + +      
     − − − − −     

    

  

 

 

 (20)

The inverse of the θ-transformation [24] [25] [26] [27] is:

()1 2 1 3 1 1 21 2 1 2
0 1 1 1 2 2 2

m m m m mi i i i i i i i i i ii i i i
m mp G θ θ θ θ θ θ θ θ−= + + + + + + + + + + 

   (21)

6. θ-Transformation Is Complete

Because the θ-transformation is implemented by normal function, FG = GF = I, as
long as there is no singular points in the transformation, any distribution function
can be expanded. If we require ip ε≥ , which is a predefined small number, then
there will be no singular points in the transformation.

7. Exponential Neurons

An ABM with n neurons has neural connections up to the nth order. The invariant
distribution is:

() eHp x = ,

1 2 31 1 2
1 1 2 1 2 3

12
0 1 2 3 1 2

i i ii i i n
i i i i i i n nH x x x x x x x x xθ θ θ θ θ= + ∑ +∑ +∑ + + 

  .

An ABM implements a θ-transformation [24] [25] [26] [27] with:

() ()logF y y= , () ()expG y y= .

We call the neurons in the ABM algorithm the exponential neurons, because of
its exponential generating function. Furthermore, the “connection matrix” element
can be calculated as follows [24] [25] [26] [27]:

https://doi.org/10.4236/ajcm.2018.84024

Y. Liu

DOI: 10.4236/ajcm.2018.84024 305 American Journal of Computational Mathematics

1 2 1 2 3
1 2

1 1 2 1 3

2 2 4

1 1 3

log
m m m

m
m m m

i i i i i i i
i i i m m m m
m i i i i i i

m m m

p p p p

p p p
θ

−

− −

− − −

− − −

=
   



  



 

 (22)

The reverse problem is as follows: given an ABM, the invariant distribution can
be calculated as follows [24] [25] [26] [27]:

()1 2 1 3 1 1 21 2 1 2
0 1 1 1 2 2 2expm m m m mi i i i i i i i i i ii i i i

m mp θ θ θ θ θ θ θ θ−= + + + + + + + + + + 

   (23)

Therefore, an ABM can realize a θ-expansion, which in turn can approximate
any distribution. The starting point of the algorithm is a complete expansion; thus,
it has the advantage of accuracy [24] [25] [26] [27]. Write the above equation:

() () () ()
() () () ()

1 2 1 2

1 3 1 1 21 2

0 1 1 1

2 2 2

exp exp exp exp

exp exp exp exp

m m

m m m

i i i ii i
m

i i i i i i ii i
m

p θ θ θ θ

θ θ θ θ−

=

⋅







 

We call the neurons in the ABM algorithm the exponential neurons, because of
its exponential generating function. The ABM algorithm uses multiplication
expansion, which raises the question of stability. Therefore, we expect to improve
this algorithm.

8. Stability of Exponential Neurons

If we take derivative of the expression:
1 2 1 2 3

1 2

1 1 2 1 3

2 2 4

1 1 3

log
m m m

m
m m m

i i i i i i i
i i i m m m m
m i i i i i i

m m m

p p p p

p p p
θ

−

− −

− − −

− − −

=
   



  



 

,

let

{ }
{ }

1 2

1 2

,

,

m

m

i i i
a m

i i i
b m

p p

θ θ

∈

∈





then depending whether pa appears in numerator, absent, or denominator, a partial
derivative can be

1 1,0, .b

a a ap p p
θ∂

= −
∂

Because of 1/pa, a small change in ()0 1 1, , , Np p p p −=  can cause a large
change in

() ()1 12 1, 123 12
0 1 1 2 2 3; , , ; , , ; , , .n n n n

np θ θ θ θ θ θ θ θ−= 

  

Expand:
2

e 1
2!

y yy= + + +

As we will argue in the next few sections,
• If we replace () e yG y = with ()G y y= , the θ-transformation will be stable,

i.e. a small ∂pa will cause a small bθ∂ ;
• If a generating function, ()G y y= , can classify a problem correctly, the

generating function, () 2G y y= , can discriminate the wrong answers from

https://doi.org/10.4236/ajcm.2018.84024

Y. Liu

DOI: 10.4236/ajcm.2018.84024 306 American Journal of Computational Mathematics

the right answers more sharply than ()G y y= ;
• The generating function, () 1nG y y += , can discriminate the wrong answers

from the right answers more sharply than () nG y y= .
In the next section, we will replace () e yG y = with ()G y y= . On one hand,

this replacement will stabilize the θ-transformation. On the other hand, the linear
term does not discriminate the wrong answers from the right answer as sharply as
the exponential neurons, because we can view the exponential neurons consisting
of the contributions from linear term, square term, cubic term, …

9. Linear Neuron

If we can convert the multiplication expansion to addition expansion, then the
performance will be more stable.

Let :

()G y y= , ()F y y= ,

From section 5, we have:
1 2 1 2 1 2 3 1 1 2 1 3

2 2 4 1 1 3
m m m m m m mi i i i i i i i i i i i i i i i

m m m m m m m m p p p p p p pθ − − −
− − − − − −= + + + + − − − − −      

  
1 2 1 3 1 1 21 2 1 2

0 1 1 1 2 2 2
m m m m mi i i i i i i i i i ii i i i

m mp θ θ θ θ θ θ θ θ−= + + + + + + + + + + 

  

We call these neurons linear neurons. The new algorithm uses summation in
expansion, thus it is more stable compared to exponential neurons. The partial
derivatives do not have singular points.

Example: let an ANN have 3 neurons,

()1 2 3, ,x x x

and let a distribution be:

{ }0 1 2 3 4 5 6 7, , , , , , ,p p p p p p p p ,

Then,

() () () ()
() () ()
()

0 0 1 0 1 2 0 2 3 0 1 2 3

4 0 4 5 0 1 4 5 6 0 2 4 6

7 0 1 2 3 4 5 6 7

, , , ,

, , ,

.

p p p p

p p p

p

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

= = + = + = + + +

= + = + + + = + + +

= + + + + + + +

When the expansion uses addition, it has the advantage of stability. As we will
show below, it also has a third advantage of fast training (low time complexity).

10. A Linear Neuron Learning Algorithm

In [23], we introduced the linear neuron learning algorithm. The L1-distance
between two configurations is:

() 1 1 2 2,d x x x x x x′ ′ ′= − + − +

For example, ()111,111 0d = ; ()111,110 1d = .
The linear neuron learning algorithm can be summarized into a single

formula:

()()1 2 1 22 ^ ,m mi i i i i i
m mD d x xθ = −  , if ()1 20 ,mi i i

md x x D≤ ≤

https://doi.org/10.4236/ajcm.2018.84024

Y. Liu

DOI: 10.4236/ajcm.2018.84024 307 American Journal of Computational Mathematics

1 2 0mi i i
mθ = , if ()1 2 ,mi i i

md x x D>

where ()1 2 ,mi i i
md x x is the distance between a neuron configuration, x, and a

training neuron configuration, 1 2 mi i i
mx  , and D is called connection radius. Beyond

this radius, all connections are 0.
The linear neuron learning algorithm is [23] [28]:
Step 1. The First Assignment (d = 0)
The first step is to assign the first connection matrix element for training vector,

1 2 mi i i
mx x=  . We will assign:

1 2 2mi i i D
x mθ θ= = ,

while D is the radius of connection space.
Step 2. The Rest of the Assignment
The next step is to assign the rest of the weight:

()()1 2 1 22 ^ ,m mi i i i i i
m mD d x xθ = −  , if ()1 20 ,mi i i

md x x D≤ ≤

1 2 0mi i i
mθ = , if ()1 2 ,mi i i

md x x D>

Step 3. Modification
The algorithm uses bit “1” to represent an input pattern or an output class; so,

the input vectors or the output vectors cannot be all 0’s; otherwise, these
coefficients are 0.

Step 4. Retraining
Repeat the last three steps for all training patterns; if there is an overlap, take the

maximum values:

() (){ }1 2 1 2 1 21 max ,m m mi i i i i i i i i
m m mt tθ θ θ+ =   .

11. Square Neurons and Power Neurons

The linear neurons do not discriminate the wrong answers from the right answers
as sharply as the exponential neurons. We will use a numerical example to demon-
strate this in the later section.

To improve the accuracy of the linear neurons, we define the square neurons us-
ing the following generating function:

() ()1 2F y y= , () ()2G y y= .

We define the power neurons using the following generating function:

() ()1 LF y y= , () ()LG y y= .

For square neurons, we have:

() ()1 2 1 2 1 2 3 1 1 2 1 3
2 2 4 1 1 3 ^ 1 2m m m m m m mi i i i i i i i i i i i i i i i

m m m m m m m m p p p p p p pθ − − −
− − − − − −= + + + + − − − − −      

  

()1 2 1 3 1 1 21 2 1 2
0 1 1 1 2 2 2 ^ 2m m m m mi i i i i i i i i i ii i i i

m mp θ θ θ θ θ θ θ θ−= + + + + + + + + + + 

  

For power neurons, we have:

() ()1 2 1 2 1 2 3 1 1 2 1 3
2 2 4 1 1 3 ^ 1m m m m m m mi i i i i i i i i i i i i i i i

m m m m m m m m p p p p p p p Lθ − − −
− − − − − −= + + + + − − − − −      

  

()1 2 1 3 1 1 21 2 1 2
0 1 1 1 2 2 2 ^m m m m mi i i i i i i i i i ii i i i

m mp Lθ θ θ θ θ θ θ θ−= + + + + + + + + + + 

  

https://doi.org/10.4236/ajcm.2018.84024

Y. Liu

DOI: 10.4236/ajcm.2018.84024 308 American Journal of Computational Mathematics

12. Square Neurons and Power Neurons Algorithms Are
Better

The square neuron learning algorithm is similar to the linear neuron learning
algorithm except for the linear neurons:

()1 2 1 3 1 1 21 2 1 2
0 1 1 1 2 2 2 ^1m m m m mi i i i i i i i i i ii i i i

m mp θ θ θ θ θ θ θ θ−= + + + + + + + + + + 

  

And for the square neurons:

()1 2 1 3 1 1 21 2 1 2
0 1 1 1 2 2 2 ^ 2m m m m mi i i i i i i i i i ii i i i

m mp θ θ θ θ θ θ θ θ−= + + + + + + + + + + 

  

If the linear neuron can classify a problem correctly, then the square neurons
will do better. We will not formally prove this, but we will use a simple example
to show the point.

Example. Assume a linear neuron distribution is (1, 2, 3, 4)/10, then based the
above expressions, the square neuron distribution is (12, 22, 32, 42)/30. The largest
probability is increased from 4/10 to 16/30.

13. An Example

In this section, we will first use the linear neuron algorithm [23]; then we will use
the square and power neuron algorithms. The example is to identify simple digits in
Figure 1 [1] [24] [25] [26] [27] [29]. Each digit is converted into 7 bits: 0, 1, …, 6.
Figure 2 shows the bit location.

The 10 input vectors for digits in Figure 2 have 7 bits:

()0 1,1,1,0,1,1,1I = ,

()1 0,0,1,0,0,1,0I = ,

()2 1,0,1,0,1,0,1I = ,



where I0 is an image of “0”. The 10 output vectors for digits in Figure 2 have 10 bits:

()0 1,0,0,0,0,0,0,0,0,0O = ,

()1 0,1,0,0,0,0,0,0,0,0O = ,

()2 0,0,1,0,0,0,0,0,0,0O = ,



where O0 is a classification. The 10 training vectors have 17 bits:

() () ()()0 0 0, 1,1,1,0,1,1,1 , 1,0,0,0,0,0,0,0,0,0T I O= = ,

() () ()()1 1 1, 0,0,1,0,0,1,0 , 0,1,0,0,0,0,0,0,0,0T I O= = ,



We will set the radius: D = 2; the possible elements are: 2D-d = 4, 2, 1, and 0.
We will work out a few examples. As the first example, we rewrite T1 as:

() () ()()259
1 1 1 3, 0,0,1,0,0,1,0 , 0,1,0,0,0,0,0,0,0,0T I O x= = = .

The first connection element (0-distance) is: 259
3 4θ = . There are two coefficients

for d = 1: 59 29
2 2 2θ θ= = . T1 generates 3 coefficients.

https://doi.org/10.4236/ajcm.2018.84024

Y. Liu

DOI: 10.4236/ajcm.2018.84024 309 American Journal of Computational Mathematics

Figure 1. An example.

Figure 2. Input bit assignments.

As the second example, we rewrite T7 as:

() ()()1,2,5,14
4 1,0,1,0,0,1,0 , 0,0,0,0,0,0,0,1,0,0x = .

The first connection element (0-distance) is: 1,2,5,14
4 4θ = . There are 3 coefficients

for d = 1: 1,2,14 1,5,14 2,5,14
3 3 3 2θ θ θ= = = . There are 3 coefficients for d = 2:

1,14 2,14 5,14
2 2 2 1θ θ θ= = = . T7 generates 7 coefficients.
As the last example, we rewrite T4 as:

() ()()1,2,3,5,11
5 0,1,1,1,0,1,0 , 0,0,0,0,1,0,0,0,0,0x = ,

the first connection element (0-distance) is: 1,2,3,5,11
5 4θ = . There are 4 coefficients for

d = 1: 1,2,3,11 1,2,5,11 1,3,5,11 2,3,5,11
4 4 4 4 2θ θ θ θ= = = = . There are 6 coefficients for d = 2:

1,2,11 1,3,11
3 2 1θ θ= = . T4 generates 11 coefficients.
After training the linear neuron algorithm with { }0 1 9, , ,T T T , all of the

connection coefficients, 1 2 mi i i
mθ
 , are calculated. Section 9 provides the formula to

calculate the probability of each (input, output) pair. For example, the probability
is 259

3p , if the input is “1” and the output is in class 1; the probability is 258
3p , if the

input is “1” and the output is in class 0; the probability is 2,5,10
3p , if the input is “1”

and the output is in class 2; …
The character recognition results [23] are given in Table 1, where the first

column is input, then the next 10 columns are output. The output probability is not
normalized in Table 1. The relative probability for (input = 0, output = 0) is 31;
those for (input = 0, output = 1) are 8; those for (input = 0, output = 2) are 6; …. So
if the input is digit 0, the output is identified as 0. In this problem, the output is a
single identification, so the largest weight determines the digit classification. In each
case, all input digits are classified correctly.

The worst case is input = 8, see Table 2. Using the largest probability as a
classification, if input = 8, then output = 8, which is a correct classification. But the
16% probability for (input = 8, output = 8) is too low compared to the next one,
12.7% for (input = 8, output = 9), or (input = 8, output = 6), or (input = 8, output =
0). Some improvements must be made.

https://doi.org/10.4236/ajcm.2018.84024

Y. Liu

DOI: 10.4236/ajcm.2018.84024 310 American Journal of Computational Mathematics

This is the main reason for the square neurons and power neurons, which will
improve all digits in Table 1. The character recognition results for the square
neurons simply square every number in Table 1, see Table 3. In the following, we
will only study the worst case of Table 2.

For the square neuron algorithm, the results are in Table 4. Now the probability
of the correct output in the worst case is increased from 16% to 22.7%.

For the power neuron algorithm with L = 4, the results are in Table 5. Now the
probability of the correct output in the worst case is increased from 16% to 37%.
This can be further improved by increasing L.

To summarize, the square and power neurons add leverage to the linear neurons
performance. The square neuron and power neurons have sharply increased the
discrimination of the linear neurons between the correct answer and wrong answer.

Table 1. The classifications from the linear neuron algorithm without normalization.

Input p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

0 31 8 6 6 5 6 7 13 8 7

1 0 8 0 0 1 0 0 4 0 0

2 1 2 24 6 1 1 1 4 1 1

3 1 8 6 24 5 6 1 13 1 7

4 0 8 0 1 18 1 0 4 0 1

5 1 2 1 6 5 24 7 4 1 7

6 7 2 6 6 5 24 31 4 8 7

7 0 8 0 1 1 0 0 13 0 0

8 31 8 24 24 18 24 31 13 39 31

9 7 8 6 24 18 24 7 13 8 31

Table 2. The classifications of “8” from the linear neuron algorithm.

Input p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

8 31 8 24 24 18 24 31 13 39 31

8 0.1276 0.03292 0.09877 0.09877 0.07407 0.09877 0.12757 0.0535 0.16049 0.1276

Table 3. The classifications from the square neuron algorithm without normalization.

Input p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

0 961 64 36 36 25 36 49 169 64 49

1 0 64 0 0 1 0 0 16 0 0

2 1 4 576 36 1 1 1 16 1 1

3 1 64 36 576 25 36 1 169 1 49

4 0 64 0 1 324 1 0 16 0 1

5 1 4 1 36 25 576 49 16 1 49

6 49 4 36 36 25 576 961 16 64 49

7 0 64 0 1 1 0 0 169 0 0

8 961 64 576 576 324 576 961 169 1521 961

9 49 64 36 576 324 576 49 169 64 961

https://doi.org/10.4236/ajcm.2018.84024

Y. Liu

DOI: 10.4236/ajcm.2018.84024 311 American Journal of Computational Mathematics

Table 4. The square neuron algorithm.

Input p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

8 961 64 576 576 324 576 961 169 1521 961

0.1437 0.00957 0.08611 0.08611 0.04844 0.08611 0.14367 0.02527 0.22739 0.1437

Table 5. The power (L = 4) neuron algorithm.

Input p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

8 0.14 0.00 0.05 0.05 0.01 0.05 0.14 0.00 0.37 0.14

14. Conclusion

In conclusion, we have introduced two new learning algorithms: the square neuron
learning algorithm and the power neuron learning algorithm, which are superior to
the earlier ABM algorithm [10] and the linear neuron algorithm [15]. The reason
for this improvement is that the ABM has a problem of stability and the linear
neuron algorithm has a problem of discriminating wrong answers. In this paper, we
have introduced the concepts of square neurons and power neurons. We have
shown that these two new learning algorithms, based on square neurons and power
neurons, have advantages over both the ABM learning algorithm and the linear
neuron algorithm.

Acknowledgements

I would like to thank Gina Porter for proof reading of this paper.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Hinton, G.E., Osindero, S. and Teh, Y. (2006) A Fast Learning Algorithm for Deep

Belief Nets. Neural Computation, 18, 1527-1554.
https://doi.org/10.1162/neco.2006.18.7.1527

[2] TensorFlow. https://www.tensorflow.org/

[3] Torch. http://torch.ch/

[4] Theano. http://deeplearning.net/software/theano/introduction.html

[5] Byrne, W. (1992) Alternating Minimization and Boltzmann Machine Learning.
IEEE Transactions on Neural Networks, 3, 612-620.
https://doi.org/10.1109/72.143375

[6] Jolliffe, I.T. (2002) Principal Component Analysis, Series: Springer Series in Statis-
tics. 2nd Edition, Springer, New York, 487 p.

[7] Abdi, H. and Williams, L.J. (2010) Principal Component Analysis. Wiley Interdis-
ciplinary Reviews: Computational Statistics, 2, 433-459.

[8] Olshausen, B.A. (1996) Emergence of Simple-Cell Receptive Field Properties by
Learning a Sparse Code for Natural Images. Nature, 381, 607-609.

https://doi.org/10.4236/ajcm.2018.84024
https://doi.org/10.1162/neco.2006.18.7.1527
https://www.tensorflow.org/
http://torch.ch/
http://deeplearning.net/software/theano/introduction.html
https://doi.org/10.1109/72.143375

Y. Liu

DOI: 10.4236/ajcm.2018.84024 312 American Journal of Computational Mathematics

https://doi.org/10.1038/381607a0

[9] Gupta, N. and Stopfer, M. (2014) A Temporal Channel for Information in Sparse
Sensory Coding. Current Biology, 24, 2247-2256.
https://doi.org/10.1016/j.cub.2014.08.021

[10] Bengio, Y. (2009) Learning Deep Architectures for AI (PDF). Foundations and
Trends in Machine Learning, 2, No. 1. https://doi.org/10.1561/2200000006

[11] Liou, C.-Y., Huang, J.-C. and Yang, W.-C. (2008) Modeling Word Perception Using
the Elman Network. Neurocomputing, 71, 3150-3157.
https://doi.org/10.1016/j.neucom.2008.04.030

[12] Liou, C.-Y., Cheng, C.-W., Liou, J.-W. and Liou, D.-R. (2014) Autoencoder for
Words. Neurocomputing, 139, 84-96.

[13] Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986) Learning Internal Repre-
sentations by Error Propagation.

[14] Bourlard, H. and Kamp, Y. (1988) Auto-Association by Multilayer Perceptrons and
Singular Value Decomposition. Biological Cybernetics, 59, 291-294.
https://doi.org/10.1007/BF00332918

[15] Hinton and Salakhutdinov. (2006) Reducing the Dimensionality of Data with Neur-
al Networks.

[16] MacQueen, J.B. (1967) Some Methods for Classification and Analysis of Multiva-
riate Observations. Proceedings of 5th Berkeley Symposium on Mathematical Sta-
tistics and Probability, Berkeley, Vol. 1, 281-297.

[17] Steinhaus, H. (1957) Sur la division des corps matériels en parties. Bulletin
L’Académie Polonaise des Science, 4, 801-804. (In French)

[18] Lloyd, S.P. (1982) Least Squares Quantization in PCM. IEEE Transactions on In-
formation Theory, 28, 129-137. https://doi.org/10.1109/TIT.1982.1056489

[19] Forgy, E.W. (1965) Cluster Analysis of Multivariate Data: Efficiency versus Inter-
pretability of Classifications. Biometrics, 21, 768-769.

[20] Hornik, K., Stinchcombe, M. and White, H. (1989) Multilayer Feedforward Net-
works Are Universal Approximators. Neural Networks, 2, 359-366.
https://doi.org/10.1016/0893-6080(89)90020-8

[21] Le Roux, N. and Bengio, Y. (2008) Representational Power of Restricted Boltzmann
Machines and Deep Belief Networks. Neural Computation, 20, 1631-1649.
https://doi.org/10.1162/neco.2008.04-07-510

[22] Liu, Y. and Wang, S. (2018) Completeness Problem of the Deep Neural Networks.
American Journal of Computational Mathematics, 8, 184-196.
https://doi.org/10.4236/ajcm.2018.82014

[23] Liu, Y. (2018) Identity Neurons and Their Learning Algorithms. Journal of Com-
puter Science and Information Technology.

[24] Liu, Y. (1993) Image Compression Using Boltzmann Machines. Proceedings of
SPIE, 2032, 103-117. https://doi.org/10.1117/12.162027

[25] Liu, Y. (1995) Boltzmann Machine for Image Block Coding. Proceedings of SPIE,
2424, 434-447. https://doi.org/10.1117/12.205245

[26] Liu, Y. (1997) Character and Image Recognition and Image Retrieval Using the
Boltzmann Machine. Proceedings of SPIE, 3077, 706-715.
https://doi.org/10.1117/12.271533

[27] Liu, Y. (1993) Two New Classes of Boltzmann Machines. Proceedings of SPIE,
1966, 162-175. https://doi.org/10.1117/12.152648

https://doi.org/10.4236/ajcm.2018.84024
https://doi.org/10.1038/381607a0
https://doi.org/10.1016/j.cub.2014.08.021
https://doi.org/10.1561/2200000006
https://doi.org/10.1016/j.neucom.2008.04.030
https://doi.org/10.1007/BF00332918
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1162/neco.2008.04-07-510
https://doi.org/10.4236/ajcm.2018.82014
https://doi.org/10.1117/12.162027
https://doi.org/10.1117/12.205245
https://doi.org/10.1117/12.271533
https://doi.org/10.1117/12.152648

Y. Liu

DOI: 10.4236/ajcm.2018.84024 313 American Journal of Computational Mathematics

[28] Liu, Y. (2002) US Patent No. 7,773,800. http://www.google.com/patents/US7773800

[29] Sanches-Sinencio, E. and Lau, C. (1992) Artificial Neural Networks. IEEE Press.

[30] Amari, S., Kurata, K. and Nagaoka, H. (1992) Information Geometry of Boltzmann
Machine. IEEE Transactions on Neural Networks, 3, 260-271.
https://doi.org/10.1109/72.125867

[31] Dagli, C.H. (1995) Intelligent Engineering Systems through Artificial Neural Net-
works. ASME Press, Vol. 5, 757-850.

[32] Anderson, N.H. and Titterington, D.M. (1995) Beyond the Binary Boltzmann Ma-
chine. IEEE Transactions on Neural Networks, 6, 1229-1236.
https://doi.org/10.1109/72.410364

[33] Lin, C.T. and Lee, C.S.G. (1995) A Multi-Valued Boltzmann Machine. IEEE Trans-
actions on Systems, Man and Cybernetics, 25, 660-668.

[34] Feller, W. (1968) An Introduction to Probability Theory and Its Application. John
Wiley and Sons, Hoboken.

https://doi.org/10.4236/ajcm.2018.84024
http://www.google.com/patents/US7773800
https://doi.org/10.1109/72.125867
https://doi.org/10.1109/72.410364

	Square Neurons, Power Neurons, and Their Learning Algorithms
	Abstract
	Keywords
	1. Introduction
	2. Basic Approach
	3. Boltzmann Machine
	4. Attrasoft Boltzmann Machines (ABM)
	5. θ-Transformation
	5.1. Basic Notations
	5.2. θ-Transformation

	6. θ-Transformation Is Complete
	7. Exponential Neurons
	8. Stability of Exponential Neurons
	9. Linear Neuron
	10. A Linear Neuron Learning Algorithm
	11. Square Neurons and Power Neurons
	12. Square Neurons and Power Neurons Algorithms Are Better
	13. An Example
	14. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

