
American Journal of Computational Mathematics, 2018, 8, 296-313 
http://www.scirp.org/journal/ajcm 

ISSN Online: 2161-1211 
ISSN Print: 2161-1203 

 

DOI: 10.4236/ajcm.2018.84024  Dec. 7, 2018 296 American Journal of Computational Mathematics 
 

 
 
 

Square Neurons, Power Neurons, and Their 
Learning Algorithms 

Ying Liu 

Department of Engineering Technology, Savannah State University, Savannah, Georgia 

 
 
 

Abstract 
In this paper, we introduce the concepts of square neurons, power neurons, 
and new learning algorithms based on square neurons, and power neurons. 
First, we briefly review the basic idea of the Boltzmann Machine, specifically 
that the invariant distributions of the Boltzmann Machine generate Markov 
chains. We further review ABM (Attrasoft Boltzmann Machine). Next, we re-
view the θ-transformation and its completeness, i.e. any function can be ex-
panded by θ-transformation. The invariant distribution of the ABM is a 
θ-transformation; therefore, an ABM can simulate any distribution. We re-
view the linear neurons and the associated learning algorithm. We then dis-
cuss the problems of the exponential neurons used in ABM, which are unsta-
ble, and the problems of the linear neurons, which do not discriminate the 
wrong answers from the right answers as sharply as the exponential neurons. 
Finally, we introduce the concept of square neurons and power neurons. We 
also discuss the advantages of the learning algorithms based on square neu-
rons and power neurons, which have the stability of the linear neurons and 
the sharp discrimination of the exponential neurons. 
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1. Introduction 

Neural networks and deep learning currently provide the best solutions to many 
supervised learning problems. In 2006, a publication by Hinton, Osindero, and 
Teh [1] introduced the idea of a “deep” neural network, which first trains a 
simple supervised model, and then adds on a new layer on top and trains the 
parameters for the new layer alone. You keep adding layers and training layers 
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in this fashion until you have a deep network. Later, this condition of training 
one layer at a time is removed. 

After Hinton’s initial attempt of training one layer at a time, Deep Neural 
Networks train all layers together. Examples include TensorFlow [2], Torch [3], 
and Theano [4]. Google’s TensorFlow is an open-source software library for 
dataflow programming across a range of tasks. It is a symbolic math library, and 
also used for machine learning applications, such as neural networks [5]. It is 
used for both research and production at Google. Torch is an open source 
machine learning library and a scientific computing framework. Theano is a 
numerical computation library for Python. The approach using the single 
training of multiple layers gives advantages to the neural network over other 
learning algorithms. 

In addition to neural network algorithms, there are numerous learning algo-
rithms. We select a few such algorithms below. 

Principal Component Analysis [6] [7] is a statistical procedure that uses an 
orthogonal transformation to convert a set of vectors into a set of values of li-
nearly uncorrelated variables called principal components. The number of prin-
cipal components is less than or equal to the number of original variables. 

Sparse coding [8] [9] minimizes the objective: 
2

2 1scL WH X Hλ= − +  

where, W is a matrix of transformation, H is a matrix of inputs, and X is a ma-
trix of the outputs. λ implements a trade of between sparsity and reconstruction.  

Auto encoders [10]-[15] minimize the objective: 

( ) 2T

2aeL W W X Xσ= −   

where σ is some neural network functions. Note that Lsc looks almost like Lae 
once we set ( )TH W Xσ= . The difference is that: 1) auto encoders do not en-
courage sparsity in their general form; 2) an auto encoder uses a model for find-
ing the codes, while sparse coding does so by means of optimization. 

K-means clustering [16] [17] [18] [19] is a method of vector quantization 
which is popular for cluster analysis in data mining. K-means clustering aims to 
partition n observations into k clusters. Each observation belongs to the cluster 
with the nearest mean, serving as a prototype of the cluster. This results in a par-
titioning of the data space into k clusters. 

If we limit the learning architecture to one layer, all of these algorithms have 
some advantages for some applications. The deep learning architectures cur-
rently provide the best solutions to many supervised learning problems, because 
two layers, when “properly” constructed, are better than one layer. One question 
is the existence of a solution for a given problem. This will often be followed by 
an effective solution development, i.e. an algorithm for a solution. This will often 
be followed by the stability of the algorithm. This will often be followed by an ef-
ficiency study of solutions. Although these theoretical approaches are not neces-
sary for the empirical development of practical algorithms, the theoretical stu-
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dies do advance the understanding of the problems. The theoretical studies will 
prompt new and better algorithm development of practical problems. Along the 
direction of solution existence, Hornik, Stinchcombe, & White [20] have shown 
that the multilayer feedforward networks with enough hidden layers are univer-
sal approximators. Roux & Bengio [21] have shown the same. Restricted 
Boltzmann machines are universal approximators of discrete distributions. 

Hornik, Stinchcombe, & White [20] establish that the standard multilayer 
feedforward networks with hidden layers using arbitrary squashing functions are 
capable of approximating any measurable function from one finite dimensional 
space to another to any desired degree of accuracy, provided many hidden units 
are sufficiently available. In this sense, multilayer feedforward networks are a 
class of universal approximators. 

Deep Belief Networks (DBN) are generative neural network models with 
many layers of hidden explanatory factors, recently introduced by Hinton, 
Osindero, and Teh, along with a greedy layer-wise unsupervised learning 
algorithm. The building block of a DBN is a probabilistic model called a 
Restricted Boltzmann machine (RBM), used to represent one layer of the model. 
Restricted Boltzmann machines are interesting because inference is easy in them 
and because they have been successfully used as building blocks for training 
deeper models. Roux & Bengio [21] proved that adding hidden units yield a 
strictly improved modeling power, and RBMs are universal approximators of 
discrete distributions.  

An alternative to the direction of “deep layers”, higher order is another 
direction. In our earlier paper [22], we provided yet another proof: Deep Neural 
Networks are universal approximators. The advantage of this proof is that it will 
lead to multiple new learning algorithms. In our approach, Deep Neural 
Networks implement an expansion and this expansion is complete. These two 
directions are equivalent [22] [23]. There are several learning algorithms 
characterized by θ-transformation, which are in the direction of higher order, 
which form a new family of learning algorithms [22] [23]. The conversion 
between these two directions of deep layers and higher orders is beyond the 
scope of this paper. The first learning algorithm characterized by higher orders 
and θ-transformation [24] [25] [26] [27] is ABM [28], which has a problem of 
stability.  

Once we accept that the deep learning architectures currently provide the best 
solutions, the next question is what is in each layer; in this paper, we intend to 
fill these layers with the square and power neurons. 

In [23], by identifying that the ABM algorithm uses exponential neurons, a 
second learning algorithm was developed to replace the exponential neurons 
with linear neurons [23], which solved the stability problem. However, the linear 
neurons do not discriminate the wrong answers from the right answers as 
sharply as the exponential neurons. In this paper, we will present a third 
algorithm after [28] and [23]. We will take the middle ground between the 
exponential neurons [28] and the linear neurons [23], which has the advantages 
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of both algorithms [23] [28] and avoids the disadvantages of the both algorithms. 
In Section 2, we briefly review how to use probability distributions in a 

Supervised Learning Problem. In this approach, given an input A, an output B, and 
a mapping from A to B, one can convert this problem to a probability distribution 
[29] [30] [31] [32] [33] of (A, B): ( ), , ,p a b a A b B∈ ∈ . If an input is a A∈  and an 
output is b B∈ , then the probability ( ),p a b  will be higher than 0. One can find a 
Markov chain [34] such that the equilibrium distribution of this Markov chain, 
( ),p a b , realizes, as faithfully as possible, the given supervised training set.  
In Section 3, the Boltzmann machines [29] [30] [31] [32] [33] are briefly 

reviewed. Our discussion concentrates on the distribution space of the Boltzmann 
machine rather than the neural aspects. All possible distributions together form a 
distribution space. All of the distributions, implemented by Boltzmann machines, 
define a Boltzmann Distribution Space, which is a subset of the distribution space 
[24] [25] [26] [27]. Given an unknown function, one can find a Boltzmann 
machine such that the equilibrium distribution of this Boltzmann machine realizes, 
as faithfully as possible, the unknown function. A natural question is whether such 
an approximation is possible. The answer is that this approximation is not yet a 
good approximation. 

In Section 4, we review the ABM (Attrasoft Boltzmann Machine) [28] which has 
an invariant distribution. An ABM is defined by two features: 1) an ABM with n 
neurons has neural connections up to the nth order; and 2) all of the connections up 
to nth order are determined by the ABM algorithm [28]. By adding more terms in 
the invariant distribution compared to the second order Boltzmann Machine, ABM 
is significantly more powerful to simulate an unknown function. Unlike the 
Boltzmann Machine, ABM’s emphasize higher order connections rather than lower 
order connections. The Boltzmann Machine (order 0, 1, 2) and the ABM (order n, 
n − 1, n − 2) are at the opposite end of the neuron orders. 

In Section 5, we review θ-transformation [24] [25] [26] [27].  
In Section 6, we review the completeness of the θ-transformation [24] [25] [26] 

[27]. The θ-transformation is complete, i.e. given a function, one can find a 
θ-transformation by converting it from the x-coordinate system to the θ-coordinate 
system. 

In Section 7, we discuss how the invariant distribution of an ABM implements a 
θ-transformation [11] [12] [13] [14], i.e. given an unknown function, one can find 
an ABM such that the equilibrium distribution of this ABM realizes precisely the 
unknown function. We introduce the exponential neurons; if we keep only lower 
orders, this will be the standard Boltzmann machine.  

In Section 8, we discuss the stability problem of the exponential neurons.  
In Section 9, we review linear neurons [23], which solves the stability problem. 

However, the linear neurons do not discriminate the wrong answers from the right 
answers as sharply as the exponential neurons.  

In Section 10, we review the linear neuron learning algorithms. 
In Section 11, we will take the middle ground between the exponential neurons 
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and the linear neurons, which has the advantages of both algorithms and avoids the 
disadvantages of the both algorithms. The new contribution of this paper is that we 
introduce the concept of square neurons and power neurons.  

In Section 12, we also discuss the advantages of the two new learning algorithms 
based on square neurons and power neurons, which has the stability of the linear 
neurons and the sharp discrimination of the exponential neurons. 

In Section 13, we introduce a simple example to demonstrate the improvement 
of the square neurons and power neurons over linear neurons. 

2. Basic Approach  

The basic supervised learning [29] problem is: given a training set {A, B}, where 
{ }1 2, ,A a a=   and { }1 2, ,B b b=  , find a mapping from A to B. It turns out that if 

we can reduce this from a discrete problem to a continuous problem, it will be very 
helpful. The first step is to convert this problem to a probability [29] [30] [32] [33]:  

( ), , ,p p a b a A b B= ∈ ∈ . 

If a1 does not match with b1, the probability is 0 or close to 0. If a1 matches with b1, 
the probability is higher than 0. This can reduce the problem of inferencing of a 
mapping from A to B to inferencing a distribution function.  

An irreducible finite Markov chain possesses a stationary distribution [34]. This 
invariant distribution can be used to simulate an unknown function. It is the 
invariant distribution of a Markov chain which eventually allows us to prove that 
the DNN is complete. 

3. Boltzmann Machine 

A Boltzmann machine [29] [30] [31] [32] [33] is a stochastic neural network in 
which each neuron has a certain probability to be 1. The probability of a neuron to 
be 1 is determined by the so called Boltzmann distribution. The collection of the 
neuron states:  

( )1 2, , , nx x x x=   

of a Boltzmann machine is called a configuration. The configuration transition is 
mathematically described by a Markov chain with 2n configurations x X∈ , where 
X is the set of all points, ( )1 2, , , nx x x . When all of the configurations are 
connected, it forms a Markov chain. A Markov chain has an invariant distribution 
[34]. Whatever initial configuration of a Boltzmann starts from, the probability 
distribution converges over time to the invariant distribution, p(x). The 
configuration x X∈  appears with a relative frequency p(x) over a long period of 
time. 

The Boltzmann machine [29] [30] [31] [32] [33] defines a Markov chain. Each 
configuration of the Boltzmann machine is a state of the Markov chain. The 
Boltzmann machine has a stable distribution. Let T be the parameter space of a 
family of Boltzmann machines. An unknown function can be considered as a stable 
distribution of a Boltzmann machine. Given an unknown distribution, a Boltzmann 
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machine can be inferred such that its invariant distribution realizes, as faithfully as 
possible, the given function. Therefore, an unknown function is transformed into a 
specification of a Boltzmann machine.  

More formally, let F be the set of all functions. Let T be the parameter space of a 
family of Boltzmann machines. Given an unknown f F∈ , one can find a 
Boltzmann machine such that the equilibrium distribution of this Boltzmann 
machine realizes, as faithfully as possible, the unknown function [29] [30] [31] [32] 
[33]. Therefore, the unknown, f, is encoded into a specification of a Boltzmann 
machine, t T∈ . We call the mapping from F to T as a Boltzmann Machine 
Transformation: F T→  [24] [25] [26] [27].  

Let T be the parameter space of a family of Boltzmann machines, and let FT be 
the set of all functions that can be inferred by the Boltzmann Machines over T; 
obviously, FT is a subset of F. It turns out that FT is significantly smaller than F and 
it is not a good approximation for F. The main contribution of the Boltzmann 
machine is to establish a framework for inferencing a mapping from A to B.  

4. Attrasoft Boltzmann Machines (ABM) 

The invariant distribution of a Boltzmann machine [29] [30] [31] [32] [33] is: 

( ) e ij i ji j M x xp x b <∑=                         (1) 

If the threshold vector does not vanish, the distributions are: 

( ) e ij i j i ii j M x x T xp x b < −∑ ∑=                      (2) 

By rearranging the above distribution, we have: 

( ) e i i ij i ji jc T x M x xp x <− +∑ ∑=  

It turns out that the third order Boltzmann machines have the following type of 
distributions:  

( ) e i i ij i j ijk i j ki j i j kc T x  M x x M x x xp x  < < <− + +∑ ∑ ∑=                 (3) 

An ABM [24] [25] [26] [27] is an extension of the higher order Boltzmann 
Machine to the maximum order. An ABM with n neurons has neural connections 
up to the nth order. All of the connections up to the nth order are determined by the 
ABM algorithm [28]. By adding additional higher order terms to the invariant 
distribution, ABM is significantly more powerful to simulate an unknown function.  

By adding additional terms, the invariant distribution for an ABM is: 

( ) eHp x  = , 

1 2 31 1 2
1 1 2 1 2 3

12
0 1 2 3 1 2

i i ii i i n
i i i i i i n nH x x x x x x   x x xθ θ θ θ θ= + ∑ +∑ +∑ + + 

   

ABM is significantly more powerful to simulate an unknown function. As more 
and more terms are added, from the second order terms to the nth order terms, the 
invariant distribution space will become larger and larger. Like the Boltzmann 
Machines in the last section, ABM implements a transformation, BF T→ . We 
hope ultimately that this ABM transformation is complete so that given any 
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function f F∈ , we can find an ABM, t T∈ , such that the equilibrium 
distribution of this ABM realizes precisely the unknown function. We show that 
this is exactly the case.  

5. θ-Transformation 
5.1. Basic Notations  

We first introduce some notations used in this paper [24] [25] [26] [27]. There are 
two different types of coordinate systems: the x-coordinate system and the 
θ-coordinate system [24] [25] [26] [27]. Each of these two coordinate systems has 
two representations, x-representation and θ-representation. An N-dimensional 
vector, p, is:  

( )0 1 1, , , Np p p p −=  , 

which is the x-representation of p in the x-coordinate systems. 
In the x-coordinate system, there are two representations of a vector:  

• {pi} in the x-representation, and  
• { }1 2 mi i i

mp   in the θ-representation.  
In the θ-coordinate system, there are two representations of a vector: 

• {θi} in the x-representation, and  
• { }1 2 mi i i

mθ
  in the θ-representation. 

The reason for the two different representations is that the x-representation is 
natural for the x-coordinate system, and the θ-representation is natural for the 
θ-coordinate system.  

The transformations between {pi} and { }1 2 mi i i
mp  , and those between {θi} and 

{ }1 2 mi i i
mθ
 , are similar. Because of the similarity, in the following, only the 

transformation between {pi} and { }1 2 mi i i
mp   will be introduced. Let N = 2n be the 

number of neurons. An N-dimensional vector, p, is:  

( )0 1 1, , , Np p p p −=                          (4) 

Consider px, because { }0,1, , 1 2 1nx N∈ − = −  is the position inside a 
distribution, then x can be rewritten in the binary form: 

1 1 0
2 12 2 2n

nx x x x−= + + +                      (5) 

Some of the coefficients xi might be zero. In dropping those coefficients which 
are zero, we write: 

2 1
1 2

1 1 12 2 2 .m
m

i i i
i i ix x x x  − − −= = + + +                (6) 

This generates the following transformation: 
1 2

1 1 12 12 2 2
m

i i im
i i i
m xp p p − − −+ + +

= =



                  (7) 

where  

1 21 m i i i  n≤ < < < ≤                      (8) 

In this θ-representation, a vector p looks like: 

{ }1 2 3 12 13 23 123
0 1 1 1 2 2 2 3, , , , , , , , , ,p p p p p p p p    
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The 0-th order term is 0p , the first order terms are: 1 2 3
1 1 1, , ,p p p  , … The first 

few terms in the transformation between {pi} and { }1 2 mi i i
mp   are: 

1 2
0 0 1 1 1 2
12 3 13
2 3 1 4 2 5
23 123 4
2 6 3 7 1 8

, , ,

, , ,

, , ,

p p      p p      p p

p p     p  p     p p

p p     p p   p p

= = =

= = =

= = = 

                  (9) 

The x-representation is the normal representation, and the θ-representation is a 
form of binary representation. 

5.2. θ-Transformation 

Denote a distribution by p, which has a x-representation in the x-coordinate system, 
p(x), and a θ-representation in the θ-coordinate system, p(θ). When a distribution 
function, p(x) is transformed from one coordinate system to another, the vectors in 
both coordinates represent the same abstract vector. When a vector q is 
transformed from the x-representation q(x) to the θ-representation q(θ), then q(θ) 
is transformed back to ( )q x′ , ( ) ( )q x q x′ = .  

The θ-transformation uses a function F, called a generating function. The 
function F is required to have the inverse: 

1, .FG GF I    G F −= = =                      (10) 

Let p be a vector in the x-coordinate system. As already discussed above, it can be 
written either as:  

( ) ( )0 1 1, , , Np x p p p −=                       (11) 

or 

( ) ( )1 12 1, 123 12
0 1 1 2 2 3; , , ; , , ; , , .n n n n

np x  p p p p p p p−= 

              (12) 

The θ-transformation transforms a vector from the x-coordinate to the 
θ-coordinate via a generating function. The components of the vector p in the 
x-coordinate, p(x), can be converted into components of a vector p(θ) in the 
θ-coordinate:  

( ) ( )1 12 1, 123 12
0 1 1 2 2 3; , , ; , , ; , , ,n n n n

np  θ θ θ θ θ θ θ θ−= 

               (13) 

or 

( ) ( )0 1 1, , , .Np  θ θ θ θ −=                       (14) 

Let F be a generating function, which transforms the x-representation of p in the 
x-coordinate to a θ-representation of p in the θ-coordinate system. The 
θ-components are determined by the vector F[p(x)] as follows: 

( ) 1 2 31 1 2
1 1 2 1 2 3

12
0 1 2 3 1 2

i i ii i i n
i i i i i i n nF p x x x x x x x x x xθ θ θ θ θ= + ∑ +∑ +∑ + +  



   (15) 

where 

1 21 m i  i  i  n≤ < < < ≤                      (16) 

Prior to the transformation, p(x) is the x-representation of p in the x-coordinate; 
after transformation, F[p(x)] is a θ-representation of p in the θ-coordinate system. 
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There are N components in the x-coordinate and N components in the 
θ-coordinate. By introducing a new notation X: 

1 2 12
0 0 1 1 1 1 2 2 2 3 1 2
3 13 23
1 4 3 2 5 1 3 2 6 2 3
123 4
3 7 1 2 3 1 8 1 2 3 4

1, , , ,

, , ,

, ,

X X       X X  x      X X x      X  X x x

X X  x    X  X x x     X  X  x x

X X  x x x    X X  x x x x

= = = = = = = =

= = = = = =

= = = = 

 (17) 

then the vector can be written as: 

( ) J JF p x  Xθ= ∑                        (18) 

By using the assumption GF = I, we have: 

( ) { }J Jp x   G Xθ= ∑                      (19) 

where J denotes the index in either of the two representations in the θ-coordinate 
system. 

The transformation of a vector p from the x-representation, p(x), in the 
x-coordinate system to a θ-representation, p(θ), in the θ-coordinate system is called 
θ-transformation [24] [25] [26] [27]. 

The θ-transformation is determined by [24] [25] [26] [27]: 

1 2 1 2 1 2 3

1 1 2 1 3

2 2 4

1 1 3

m m m m

m m m

i i i i i i i i i i
m m m m m

i i i i i i
m m m

F p F p F p  F p

F p F p F p

θ −

− −

− − −

− − −

       = + + + + +      
     − − − − −     

    

  

 

 

 (20) 

The inverse of the θ-transformation [24] [25] [26] [27] is:  

( )1 2 1 3 1 1 21 2 1 2
0 1 1 1 2 2 2

m m m m mi i i i i i i i i i ii i i i
m mp G   θ θ θ θ θ θ θ θ−= + + + + + + + + + + 

    (21) 

6. θ-Transformation Is Complete 

Because the θ-transformation is implemented by normal function, FG = GF = I, as 
long as there is no singular points in the transformation, any distribution function 
can be expanded. If we require ip ε≥ , which is a predefined small number, then 
there will be no singular points in the transformation. 

7. Exponential Neurons 

An ABM with n neurons has neural connections up to the nth order. The invariant 
distribution is: 

( ) eHp x  = , 

1 2 31 1 2
1 1 2 1 2 3

12
0 1 2 3 1 2

i i ii i i n
i i i i i i n nH x x x x x x   x x xθ θ θ θ θ= + ∑ +∑ +∑ + + 

  . 

An ABM implements a θ-transformation [24] [25] [26] [27] with: 

( ) ( )logF y y= , ( ) ( )expG y y= . 

We call the neurons in the ABM algorithm the exponential neurons, because of 
its exponential generating function. Furthermore, the “connection matrix” element 
can be calculated as follows [24] [25] [26] [27]: 
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1 2 1 2 3
1 2

1 1 2 1 3

2 2 4

1 1 3

log
m m m

m
m m m

i i i i i i i
i i i m m m m
m i i i i i i

m m m

p p p p
 

p p p
θ

−

− −

− − −

− − −

=
   



  



 

               (22) 

The reverse problem is as follows: given an ABM, the invariant distribution can 
be calculated as follows [24] [25] [26] [27]:  

( )1 2 1 3 1 1 21 2 1 2
0 1 1 1 2 2 2expm m m m mi i i i i i i i i i ii i i i

m mp   θ θ θ θ θ θ θ θ−= + + + + + + + + + + 

    (23) 

Therefore, an ABM can realize a θ-expansion, which in turn can approximate 
any distribution. The starting point of the algorithm is a complete expansion; thus, 
it has the advantage of accuracy [24] [25] [26] [27]. Write the above equation: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 1 2

1 3 1 1 21 2

0 1 1 1

2 2 2

exp exp exp exp

exp exp exp exp

m m

m m m

i i i ii i
m

i i i i i i ii i
m

p   θ θ θ θ

θ θ θ θ−

=

⋅







 

 

We call the neurons in the ABM algorithm the exponential neurons, because of 
its exponential generating function. The ABM algorithm uses multiplication 
expansion, which raises the question of stability. Therefore, we expect to improve 
this algorithm. 

8. Stability of Exponential Neurons 

If we take derivative of the expression: 
1 2 1 2 3

1 2

1 1 2 1 3

2 2 4

1 1 3

log
m m m

m
m m m

i i i i i i i
i i i m m m m
m i i i i i i

m m m

p p p p
 

p p p
θ

−

− −

− − −

− − −

=
   



  



 

, 

let  

{ }
{ }

1 2

1 2

,

,

m

m

i i i
a m

i i i
b m

p p

θ θ

∈

∈





 

then depending whether pa appears in numerator, absent, or denominator, a partial 
derivative can be 

1 1,0, .b 

a a ap p p
θ∂

= −
∂

 

Because of 1/pa, a small change in ( )0 1 1, , , Np p p p −=   can cause a large 
change in  

( ) ( )1 12 1, 123 12
0 1 1 2 2 3; , , ; , , ; , , .n n n n

np  θ θ θ θ θ θ θ θ−= 

    

Expand: 
2

e 1
2!

y yy= + + +  

As we will argue in the next few sections,  
• If we replace ( ) e yG y =  with ( )G y y= , the θ-transformation will be stable, 

i.e. a small ∂pa will cause a small bθ∂ ; 
• If a generating function, ( )G y y= , can classify a problem correctly, the 

generating function, ( ) 2G y y= , can discriminate the wrong answers from 
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the right answers more sharply than ( )G y y= ; 
• The generating function, ( ) 1nG y y += , can discriminate the wrong answers 

from the right answers more sharply than ( ) nG y y= . 
In the next section, we will replace ( ) e yG y =  with ( )G y y= . On one hand, 

this replacement will stabilize the θ-transformation. On the other hand, the linear 
term does not discriminate the wrong answers from the right answer as sharply as 
the exponential neurons, because we can view the exponential neurons consisting 
of the contributions from linear term, square term, cubic term, … 

9. Linear Neuron 

If we can convert the multiplication expansion to addition expansion, then the 
performance will be more stable.  

Let : 

( )G y y= , ( )F y y= , 

From section 5, we have: 
1 2 1 2 1 2 3 1 1 2 1 3

2 2 4 1 1 3
m m m m m m mi i i i i i i i i i i i i i i i

m m m m m m m m p p p p p p pθ − − −
− − − − − −= + + + + − − − − −      

    
1 2 1 3 1 1 21 2 1 2

0 1 1 1 2 2 2
m m m m mi i i i i i i i i i ii i i i

m mp    θ θ θ θ θ θ θ θ−= + + + + + + + + + + 

    

We call these neurons linear neurons. The new algorithm uses summation in 
expansion, thus it is more stable compared to exponential neurons. The partial 
derivatives do not have singular points. 

Example: let an ANN have 3 neurons,  

( )1 2 3, ,x x x  

and let a distribution be: 

{ }0 1 2 3 4 5 6 7, , , , , , ,p p p p p p p p , 

Then, 

( ) ( ) ( ) ( )
( ) ( ) ( )
( )

0 0 1 0 1 2 0 2 3 0 1 2 3

4 0 4 5 0 1 4 5 6 0 2 4 6

7 0 1 2 3 4 5 6 7

, , , ,

, , ,

.

p    p p  p

p  p p

p

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

= = + = + = + + +

= + = + + + = + + +

= + + + + + + +

 

When the expansion uses addition, it has the advantage of stability. As we will 
show below, it also has a third advantage of fast training (low time complexity).  

10. A Linear Neuron Learning Algorithm 

In [23], we introduced the linear neuron learning algorithm. The L1-distance 
between two configurations is:  

( ) 1 1 2 2,d x x x x x x′ ′ ′= − + − +  

For example, ( )111,111 0d = ; ( )111,110 1d = .  
The linear neuron learning algorithm can be summarized into a single 

formula:  

( )( )1 2 1 22 ^ ,m mi i i i i i
m mD d x xθ = −  , if ( )1 20 ,mi i i

md x x D≤ ≤  
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1 2 0mi i i
mθ = , if ( )1 2 ,mi i i

md x x D>  

where ( )1 2 ,mi i i
md x x  is the distance between a neuron configuration, x, and a 

training neuron configuration, 1 2 mi i i
mx  , and D is called connection radius. Beyond 

this radius, all connections are 0.  
The linear neuron learning algorithm is [23] [28]: 
Step 1. The First Assignment (d = 0) 
The first step is to assign the first connection matrix element for training vector, 

1 2 mi i i
mx x=  . We will assign:  

1 2 2mi i i D
x mθ θ= = , 

while D is the radius of connection space.  
Step 2. The Rest of the Assignment  
The next step is to assign the rest of the weight: 

( )( )1 2 1 22 ^ ,m mi i i i i i
m mD d x xθ = −  , if ( )1 20 ,mi i i

md x x D≤ ≤  

1 2 0mi i i
mθ = , if ( )1 2 ,mi i i

md x x D>  

Step 3. Modification 
The algorithm uses bit “1” to represent an input pattern or an output class; so, 

the input vectors or the output vectors cannot be all 0’s; otherwise, these 
coefficients are 0.  

Step 4. Retraining 
Repeat the last three steps for all training patterns; if there is an overlap, take the 

maximum values: 

( ) ( ){ }1 2 1 2 1 21 max ,m m mi i i i i i i i i
m m mt tθ θ θ+ =   . 

11. Square Neurons and Power Neurons 

The linear neurons do not discriminate the wrong answers from the right answers 
as sharply as the exponential neurons. We will use a numerical example to demon-
strate this in the later section.  

To improve the accuracy of the linear neurons, we define the square neurons us-
ing the following generating function: 

( ) ( )1 2F y y= , ( ) ( )2G y y= . 

We define the power neurons using the following generating function: 

( ) ( )1 LF y y= , ( ) ( )LG y y= . 

For square neurons, we have: 

( ) ( )1 2 1 2 1 2 3 1 1 2 1 3
2 2 4 1 1 3 ^ 1 2m m m m m m mi i i i i i i i i i i i i i i i

m m m m m m m m p p p p p p pθ − − −
− − − − − −= + + + + − − − − −      

    

( )1 2 1 3 1 1 21 2 1 2
0 1 1 1 2 2 2 ^ 2m m m m mi i i i i i i i i i ii i i i

m mp    θ θ θ θ θ θ θ θ−= + + + + + + + + + + 

    

For power neurons, we have: 

( ) ( )1 2 1 2 1 2 3 1 1 2 1 3
2 2 4 1 1 3 ^ 1m m m m m m mi i i i i i i i i i i i i i i i

m m m m m m m m p p p p p p p Lθ − − −
− − − − − −= + + + + − − − − −      

    

( )1 2 1 3 1 1 21 2 1 2
0 1 1 1 2 2 2 ^m m m m mi i i i i i i i i i ii i i i

m mp    Lθ θ θ θ θ θ θ θ−= + + + + + + + + + + 

    
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12. Square Neurons and Power Neurons Algorithms Are  
Better 

The square neuron learning algorithm is similar to the linear neuron learning 
algorithm except for the linear neurons:  

( )1 2 1 3 1 1 21 2 1 2
0 1 1 1 2 2 2 ^1m m m m mi i i i i i i i i i ii i i i

m mp    θ θ θ θ θ θ θ θ−= + + + + + + + + + + 

    

And for the square neurons:  

( )1 2 1 3 1 1 21 2 1 2
0 1 1 1 2 2 2 ^ 2m m m m mi i i i i i i i i i ii i i i

m mp    θ θ θ θ θ θ θ θ−= + + + + + + + + + + 

    

If the linear neuron can classify a problem correctly, then the square neurons 
will do better. We will not formally prove this, but we will use a simple example 
to show the point.  

Example. Assume a linear neuron distribution is (1, 2, 3, 4)/10, then based the 
above expressions, the square neuron distribution is (12, 22, 32, 42)/30. The largest 
probability is increased from 4/10 to 16/30.  

13. An Example 

In this section, we will first use the linear neuron algorithm [23]; then we will use 
the square and power neuron algorithms. The example is to identify simple digits in 
Figure 1 [1] [24] [25] [26] [27] [29]. Each digit is converted into 7 bits: 0, 1, …, 6. 
Figure 2 shows the bit location.  

The 10 input vectors for digits in Figure 2 have 7 bits: 

( )0 1,1,1,0,1,1,1I = , 

( )1 0,0,1,0,0,1,0I = , 

( )2 1,0,1,0,1,0,1I = , 

  

where I0 is an image of “0”. The 10 output vectors for digits in Figure 2 have 10 bits: 

( )0 1,0,0,0,0,0,0,0,0,0O = , 

( )1 0,1,0,0,0,0,0,0,0,0O = , 

( )2 0,0,1,0,0,0,0,0,0,0O = , 

  

where O0 is a classification. The 10 training vectors have 17 bits: 

( ) ( ) ( )( )0 0 0, 1,1,1,0,1,1,1 , 1,0,0,0,0,0,0,0,0,0T I O= = , 

( ) ( ) ( )( )1 1 1, 0,0,1,0,0,1,0 , 0,1,0,0,0,0,0,0,0,0T I O= = , 

  

We will set the radius: D = 2; the possible elements are: 2D-d = 4, 2, 1, and 0.  
We will work out a few examples. As the first example, we rewrite T1 as: 

( ) ( ) ( )( )259
1 1 1 3, 0,0,1,0,0,1,0 , 0,1,0,0,0,0,0,0,0,0T I O x= = = . 

The first connection element (0-distance) is: 259
3 4θ = . There are two coefficients 

for d = 1: 59 29
2 2 2θ θ= = . T1 generates 3 coefficients.  
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Figure 1. An example.  

 

 
Figure 2. Input bit assignments. 

 
As the second example, we rewrite T7 as: 

( ) ( )( )1,2,5,14
4 1,0,1,0,0,1,0 , 0,0,0,0,0,0,0,1,0,0x = . 

The first connection element (0-distance) is: 1,2,5,14
4 4θ = . There are 3 coefficients 

for d = 1: 1,2,14 1,5,14 2,5,14
3 3 3 2θ θ θ= = = . There are 3 coefficients for d = 2:  

1,14 2,14 5,14
2 2 2 1θ θ θ= = = . T7 generates 7 coefficients.  
As the last example, we rewrite T4 as: 

( ) ( )( )1,2,3,5,11
5 0,1,1,1,0,1,0 , 0,0,0,0,1,0,0,0,0,0x = , 

the first connection element (0-distance) is: 1,2,3,5,11
5 4θ = . There are 4 coefficients for 

d = 1: 1,2,3,11 1,2,5,11 1,3,5,11 2,3,5,11
4 4 4 4 2θ θ θ θ= = = = . There are 6 coefficients for d = 2: 

1,2,11 1,3,11
3 2 1θ θ= = . T4 generates 11 coefficients. 
After training the linear neuron algorithm with { }0 1 9, , ,T T T , all of the 

connection coefficients, 1 2 mi i i
mθ
 , are calculated. Section 9 provides the formula to 

calculate the probability of each (input, output) pair. For example, the probability 
is 259

3p , if the input is “1” and the output is in class 1; the probability is 258
3p , if the 

input is “1” and the output is in class 0; the probability is 2,5,10
3p , if the input is “1” 

and the output is in class 2; … 
The character recognition results [23] are given in Table 1, where the first 

column is input, then the next 10 columns are output. The output probability is not 
normalized in Table 1. The relative probability for (input = 0, output = 0) is 31; 
those for (input = 0, output = 1) are 8; those for (input = 0, output = 2) are 6; …. So 
if the input is digit 0, the output is identified as 0. In this problem, the output is a 
single identification, so the largest weight determines the digit classification. In each 
case, all input digits are classified correctly. 

The worst case is input = 8, see Table 2. Using the largest probability as a 
classification, if input = 8, then output = 8, which is a correct classification. But the 
16% probability for (input = 8, output = 8) is too low compared to the next one, 
12.7% for (input = 8, output = 9), or (input = 8, output = 6), or (input = 8, output = 
0). Some improvements must be made. 
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This is the main reason for the square neurons and power neurons, which will 
improve all digits in Table 1. The character recognition results for the square 
neurons simply square every number in Table 1, see Table 3. In the following, we 
will only study the worst case of Table 2.  

For the square neuron algorithm, the results are in Table 4. Now the probability 
of the correct output in the worst case is increased from 16% to 22.7%. 

For the power neuron algorithm with L = 4, the results are in Table 5. Now the 
probability of the correct output in the worst case is increased from 16% to 37%. 
This can be further improved by increasing L. 

To summarize, the square and power neurons add leverage to the linear neurons 
performance. The square neuron and power neurons have sharply increased the 
discrimination of the linear neurons between the correct answer and wrong answer. 

 
Table 1. The classifications from the linear neuron algorithm without normalization. 

Input p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 

0 31 8 6 6 5 6 7 13 8 7 

1 0 8 0 0 1 0 0 4 0 0 

2 1 2 24 6 1 1 1 4 1 1 

3 1 8 6 24 5 6 1 13 1 7 

4 0 8 0 1 18 1 0 4 0 1 

5 1 2 1 6 5 24 7 4 1 7 

6 7 2 6 6 5 24 31 4 8 7 

7 0 8 0 1 1 0 0 13 0 0 

8 31 8 24 24 18 24 31 13 39 31 

9 7 8 6 24 18 24 7 13 8 31 

 
Table 2. The classifications of “8” from the linear neuron algorithm. 

Input p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 

8 31 8 24 24 18 24 31 13 39 31 

8 0.1276 0.03292 0.09877 0.09877 0.07407 0.09877 0.12757 0.0535 0.16049 0.1276 

 
Table 3. The classifications from the square neuron algorithm without normalization. 

Input p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 

0 961 64 36 36 25 36 49 169 64 49 

1 0 64 0 0 1 0 0 16 0 0 

2 1 4 576 36 1 1 1 16 1 1 

3 1 64 36 576 25 36 1 169 1 49 

4 0 64 0 1 324 1 0 16 0 1 

5 1 4 1 36 25 576 49 16 1 49 

6 49 4 36 36 25 576 961 16 64 49 

7 0 64 0 1 1 0 0 169 0 0 

8 961 64 576 576 324 576 961 169 1521 961 

9 49 64 36 576 324 576 49 169 64 961 
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Table 4. The square neuron algorithm. 

Input p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 

8 961 64 576 576 324 576 961 169 1521 961 

 
0.1437 0.00957 0.08611 0.08611 0.04844 0.08611 0.14367 0.02527 0.22739 0.1437 

 
Table 5. The power (L = 4) neuron algorithm. 

Input p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 

8 0.14 0.00 0.05 0.05 0.01 0.05 0.14 0.00 0.37 0.14 

14. Conclusion 

In conclusion, we have introduced two new learning algorithms: the square neuron 
learning algorithm and the power neuron learning algorithm, which are superior to 
the earlier ABM algorithm [10] and the linear neuron algorithm [15]. The reason 
for this improvement is that the ABM has a problem of stability and the linear 
neuron algorithm has a problem of discriminating wrong answers. In this paper, we 
have introduced the concepts of square neurons and power neurons. We have 
shown that these two new learning algorithms, based on square neurons and power 
neurons, have advantages over both the ABM learning algorithm and the linear 
neuron algorithm.  
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