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Abstract 

Yin [1] has developed a new Bayesian measure of evidence for testing a point 
null hypothesis which agrees with the frequentist p-value thereby, solving 
Lindley’s paradox. Yin and Li [2] extended the methodology of Yin [1] to the 
case of the Behrens-Fisher problem by assigning Jeffreys’ independent prior 
to the nuisance parameters. In this paper, we were able to show both analyti-
cally and through the results from simulation studies that the methodology of 
Yin [1] solves simultaneously, the Behrens-Fisher problem and Lindley’s pa-
radox when a Gamma prior is assigned to the nuisance parameters. 
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1. Introduction 

Consider a hypothesis testing problem about the difference of two means as fol-
lows: Let ( )2

1 1 1~ ,X N µ σ  and ( )2
2 2 2~ ,X N µ σ  and no assumption is made 

about 2
1σ  and 2

2σ . Then testing the hypothesis stated as 

0 1 2 0: 0 Versus : 0H Hθ µ µ θ= − = ≠                (1) 

based on random samples of size 1n  and 2n  respectively, and the assumption 
that ( )11 11 12 1, , , nX X X X=   and ( )22 21 22 2, , , nX X X X=   are independent is 
known as the Behrens-Fisher problem. 

Lindley [3] showed that using the same data, the conclusion of a hypothesis 
test from a frequentist perspective could differ from that of a Bayesian perspec-
tive. It was shown that as n →∞ , the posterior probability under H0 tends to 1. 
This result holds irrespective of the prior probability assigned to H0. For discus-
sions and arguments concerning Lindley’s paradox, see Spanos [4] and Robert 
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[5]. As an extension of the methodology of Yin [1], Yin and Li [2] made an at-
tempt to solve the Behrens-Fisher Problem as well as Lindley’s Paradox using a 
noninformative prior. In this work, we propose to examine the performance of 
the methodology of Yin [1] in solving simultaneously, the Behrens-Fisher prob-
lem and Lindley’s paradox when Gamma priors are assigned to the unknown va-
riances. 

2. Literature Review 

Scheffe [6] showed that for the Behrens-Fisher problem, there does not exist 
convenient tests and confidence intervals by constructing a test statistic based on 
a linear and a quadratic form. He established this result by showing that there 
exists no symmetric solution to the Behrens-Fisher problem using this approach. 
Fraser and Streit [7] derived a valid solution for the Behrens-Fisher problem us-
ing arbitrary absolutely continuous error distributions. They used a structural 
approach, where the random fluctuations apparent in the experiment were gen-
erated by a random variable with known distribution. Robinson [8] investigated 
the discrepancy between the coverage probabilities for the Behrens-Fisher inter-
vals and the intervals of the nominal significance level. He advocates the use of 
the Behrens-Fisher test unless a proper Bayesian test is considered appropriate. 
Tsui and Weerahandi [9] proposed the use of generalized pivotal quantities and 
generalized p-values in the case of hypothesis testing in the presence of nuisance 
parameters given by 

( ) ( ) ( )
1 2

12 2
2 1 2

1, 2 1 2 1 2Pr 2
1n n

s sp x F x x n n
B B

−

+ −

  
 = ≥ − + − + 

−   

 

       (2) 

where ( )2 1 21i i is n s−= − , 1,2i = , 2
is  is the variance of sample i calculated from 

a sample of size in  and 
( ) ( )1 21 1

~ ,
2 2

n n
B Beta

− − 
 
 

. Zheng et al. [10] pro-

posed an approach to solving the Behrens-Fisher problem in such a way that the  
Type-II error and the length of the confidence interval is controlled conditioned 
on a specified Type-I error by using Stein’s two-stage sampling scheme. Ozkip et 
al. [11] compared the different methods of solving the Behrens-Fisher problem 
to see which test outperforms the rest. 

Degroot [12] commented on the reaction of some Bayesians on the use of in-
formative priors. He disagrees with the notion that diffuseness of a prior distri-
bution reflects ignorance about the distribution of such a parameter. Berger and 
Sellke [13] investigated the relationship between the p-value and the Bayesian 
measure of evidence against the null hypothesis for a two-sided hypothesis test-
ing problem and concluded that the two measures of evidence were irreconcila-
ble. Casella and Berger [14] investigated the discrepancy between the Bayesian 
measure of evidence, that is, the posterior probability that H0 is true, and the 
p-value, in a one-sided hypothesis testing problem under the same class of priors 
as in Berger and Sellke [13] but concluded that the two measures of evidence 
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were reconcilable. Berger and Delampady [15] also investigated the discrepancy 
between the p-value and the Bayesian measure of evidence and concluded that 
using a noninformative prior does not necessarily solve Lindley’s paradox. 

Meng [16] proposed a Bayesian counterpart of the generalized p-value to al-
low the “Test Statistic” depend on both the data and unknown (nuisance) para-
meters and thus permit a direct measure of the discrepancy between sample and 
population quantiles. Unlike the generalized p-value of Tsui and Weerahandi [9] 
that requires the use of a pivotal quantity as a test variable whose tail area prob-
abilities are free of nuisance parameters, only the specification of prior distribu-
tions are required for the posterior predictive p-value which is given as 

( ) ( ) ( )
( ) ( ) ( )1 2

1 2 1 2

2
1 2 1 2

1, 12 22 1 2
1 1 , 2 2 ,

Pr
1

n n

n n n n

x x n n
ppp x F

s x B s x Bµ µ
+ −−

 
− + = ≥ 

   + − + + − −     
 

 (3) 

where ( )2 1 21i i is n s−= − , 1,2i =  and 
1 2

1 2
, ~  ,

2 2n n
n nB Beta  

 
 

. 

Ghosh and Kim [17] proposed an approach of constructing a prior different 
from Jeffreys’ independent prior that leads to a credible interval whose asymp-
totic coverage probability matches the frequentist coverage probability more ac-
curately than Jeffreys’ interval. Yin [1] developed a Bayesian testing procedure 
that solves Lindley’s Paradox in testing a precise null hypothesis in the one sam-
ple case. Instead of the conventional Bayesian approach, this new procedure 
avoids the dichotomy of the parameter space. Let 1 2, , , nX X X  be a random 
sample from a distribution with density ( )|f x θ , where θ  is unknown and 
belongs to the parameter space Θ , and let θ  have a prior density ( )π θ , then 
the new Bayesian measure of evidence is 

( ) ( ) ( )( )0| | |BP x P E x E x xθ θ θ θ= − ≥ −              (4) 

where ( )|E xθ  is the posterior expectation of θ  under the prior ( )π θ . A 
smaller value of ( )BP x  means a bigger distance between 0θ  and the true θ  
and therefore, suggests stronger evidence against the null hypothesis H0. 

Yin and Li [2] extended the methodology of Yin [1] to solve simultaneously, 
the Behrens-Fisher problem and Lindley’s Paradox using Jeffreys’ objective prior 
given as 

( )2 2
1 2 1 2 2 2

1 2

1, , ,π µ µ σ σ
σ σ

∝
                   

 (5) 

They showed that the posterior distribution of θ , the difference of the two 
means 1µ  and 2µ  is given as 

1 21 1 2 1
1 2

1 2

| ~ n nS T S T
x x x

n n
θ − − 

− − −  
                  

 (6) 

and the Bayesian measure of evidence under Jeffreys’ independent prior was 
given by 
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( ) 1 11 1 1 1
1 2

1 1

n nBF
J

S T S T
P x P x x

n n
− −

 
 = − ≥ −
 
               

 (7) 

where 1aT −  is a t variable with 1a −  degrees of freedom. This approach was 
shown to solve the two problems and also, to yield credible intervals that actually 
possess 1 α−  coverage probability. This was however only demonstrated where 
a non-informative prior was used and the use of an informative prior was rec-
ommended in order to see how the methodology performs under such condi-
tions. 

3. Main Results 

Let there exist samples of sizes 1n  and 2n  from ( )2
1 1 1~ ,X N µ σ  and 

( )2
2 2 2~ ,X N µ σ  respectively. Under the assumption of independence, and let-

ting x = (x1, x2), the likelihood function is given by 

( ) ( )
1 2

2
2 2

1 2 1 2 1 2 2
1

1| , , , exp
2

i in n

i i

S
f x

µ
µ µ σ σ σ σ

σ
− −

=

 
∝ − 

 
∑

         
 (8) 

where 

( ) ( )2

1

in

i i ij i
j

S xµ µ
=

= −∑  

Now, let ( )2 2
1 2 1 2, , , 1π µ µ σ σ ∝ , 2

i iτ σ −= , and  
( ) ( )~ , , 1, 2i i iGamma iπ τ α β = . The marginal posterior distribution of 

( )1 2, | xµ µ  is given by 

( )

( )
( ) ( )1 1 2 21 2 1 2

1 2

2 2 2 2
1 2 1 2 1 2

0 0

2
1 1 2 2

1 2 1 2 1 22
10 0

, |

, , , | d d

1exp e d d
2

Ga

Ga

i in n

i i

x

x

S τ β τ βα α

π µ µ

π µ µ σ σ σ σ

µ
σ σ τ τ σ σ

σ

∞∞

∞∞
− +− − − −

=

∝

 
∝ − 

 

∫∫

∑∫∫

      (9) 

So, we have that 

( )

( )
( )

( )
( )

( )
( )

( )
( )
( )

( )

1 1 2 2

1 1 2 2

1 2

2 4 2 2 4 2

1 1 1 2 2 2

2 4 2 2 4 22 2
1 1 1 1 2 2 2 2

2 2
1 1 2 2

, |

1 1
2 2

2 2
1 1

1 1

Ga

n n

n n

x

S S

n x n x
n S n S

α α

α α

π µ µ

µ β µ β

µ β µ β

− + − − + −

− + − − + −

   ∝ + +      

   − + − +
∝ + +   

− −      

 (10) 

Let 

( ) 2

2
1 , 1, 2.

1
i

i
i i

a i
n S

β
= + =

−
 

Then we have that 

( ) ( )
( )

( )
( )
( )

( )1 1 2 22 4 2 2 4 22 2
1 1 1 2 2 2

1 2 2 2
1 1 1 2 2 2

, | 1 1
1 1

n n

Ga n x n x
x

a n S a n S

α α
µ µ

π µ µ

− + − − + −
   − −

∝ + +   
− −      

 (11) 
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Now, let 

( ) ( )
( )

12 5

1
i i i i

i
i i i

n n x
t

a n S

α µ+ − −
=

−
 

And then (11) simplifies to 

( )
( ) ( )1 1 2 22 4 2 2 4 22 2

1 2
1 2

1 1 2 2

, | 1 1
2 5 2 5

n n
Ga t tx

n n

α α

π µ µ
α α

− + − − + −
   

∝ + +   + − + −   
 (12) 

where clearly, (12) is the kernel of the joint distribution of two independent t 
random variables 1t  and 2t  with 1 12 5n α+ −  and 2 22 5n α+ −  degrees of 
freedom respectively. 

Also, we have that 

( )
( )

( ) ( )
( )

( )
( )

2
2

2

1

2 5

21 1
1

2 5

1 2

2 5

i i i i
i i

i i i

i
i i i

i i
i

i i i

i i i i
i

i i i

t S a n
x

n n

t S n
n S

x
n n

t n S
x

n n

µ
α

β

α

β

α

−
= −

+ −

 
− +  − = −

+ −

− +
= −

+ −

 

And this implies that the posterior distribution of θ , the difference of the 
two means 1µ  and 2µ  is given as 

( )
( )

( )
( )

2 2
1 1 1 2 2 2

1 2 1 2
1 1 1 2 2 2

1 2 1 2
| ~

2 5 2 5
n S n S

x x x T T
n n n n

β β
θ

α α

 − + − +
 − − −
 + − + −      

 (13) 

and 

( ) 1 2|E x x xθ = −  

where iT  is a random variable that follows a t distribution with 2 5i in α+ −  
degrees of freedom, where 1,2i = . The Bayesian measure of evidence under a 
Gamma Prior is then given by 

  

( ) ( )
( )

( )
( )

2 2
1 1 1 2 2 2

1 2 1 2
1 1 1 2 2 2

1 2 1 2
2 5 2 5

BF
Ga

n S n S
P x P T T x x

n n n n
β β

α α

 − + − + = − ≥ −
 + − + −
 

  (14) 

To establish that the Bayesian measure of evidence of Yin (2012) solves the 
paradox in Lindley (1957) when a Gamma prior is assigned to the nuisance pa-
rameters, we need to show that 

( ) ( )
( )

1 2, ,
lim 0BF

Gan n
P x

→ ∞ ∞
=                      (15) 

Recall that 

( ) ( ) ( )( )
( )
( )

0

0

2 2
1 0

| | |
2 1

2 1

BP x P E x E x x
P Z Z

P Z

θ θ θ θ

χ

= − ≥ −

 = − < 
 = − < 
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where Z is a standard normal random variable. Now, under the Gamma prior, 
we have that 

( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )

02
0

2
1 1 1 2 2 2 0 1 22

0 2 2
2 2 2 1 1 1 1 1 1 2 2 2

|

|

2 7 2 7

2 7 1 2 2 7 1 2

E x
Z

Var x

n n n n x x
Z

n n n S n n n S

θ θ

θ

α α θ

α β α β

−
=

+ − + − − −  =
   + − − + + + − − +   

 (16) 

Then, it can easily be shown that 

( ) ( )1 2

2
0, ,

lim
n n

Z
→ ∞ ∞

= ∞
                     

 (17) 

which implies that (15) holds. To show that (17) holds, we now need to show 
that 

1 2 2 1

2 2
0 0lim lim lim lim

n n n n
Z Z

→∞ →∞ →∞ →∞

   = = ∞      
               (18) 

Let 
1 2

2
1 0lim limn nf Z→∞ →∞ =   , 1 12 7a α= − , 2 22 7a α= −  and  

( ) 2
0 1 2A x xθ= − −    then we have that 

( )( )
( ) ( ) ( ) ( )

( )

( ) ( )

2 2

2

2 2
1 1 1 2 2 22

0 2 2 2 2
2 2 2 1 1 1 1 1 1 2 2 2

2 2 2
2 1 1 1

2

2 2 2 22 2
2 1 1 1 2 1 1 1 2

2 2 2

lim lim
1 2 1 2

1
lim

211 1 2 1

n n

n

n n a n n a A
Z

n n a n S n n a n S

an n n a A
n

an n S n n n a S
n n n

β β

ββ

→∞ →∞

→∞

 + +
 =

    + − + + + − +    
  

+ +  
  =        + − + + + − +           

( )

( ) ( )
( )

( )

2

2 2
1 1 1

2

2 1 2 22 2
1 1 1 2 1 1 1 2

2 2 2
2
1 1 1

2
1 1 1

1
lim

211 1 2 1

1 2

n

an n a A
n

a n S n n n a S
n n n

n n a A

n S

ββ

β

→∞
−





  
+ +  

  =        + − + + + − +           
+

=
− +

 

( )
( )

( )
1 1

2
1 1 1 1 1

1 2
21 1 1 1

1
1 1

lim lim
1 2 211

n n

n n a A n a A
f

n S
S

n n
β β→∞ →∞

 
  + +  = = = ∞ − +     − +  
         

 (19) 

Secondly, let 
2 1

2
2 0lim limn nf Z→∞ →∞ =   , then we have that 

( )( )
( ) ( ) ( ) ( )

( )

( ) ( )

1 1

1

2 2
1 1 1 2 2 22

0 2 2 2 2
2 2 2 1 1 1 1 1 1 2 2 2

2 21
1 2 2 2

1

2 2 2 21 1
2 2 2 1 1 1 2 2 2

1 1 1

lim lim
1 2 1 2

1
lim

211 1 1 2

n n

n

n n a n n a A
Z

n n a n S n n a n S

an n n a A
n

an n a n S n n S
n n n

β β

β β

→∞ →∞

→∞

 + +
 =

    + − + + + − +    
  

+ +  
  =        + − + + + − +            
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( )

( ) ( )
1

21
2 2 2

1

1 2 2 21 1
1 2 2 2 1 2 2 2

1 1 1

1
lim

211 1 1 2
n

a n n a A
n

an n n a S n S
n n n

β β
→∞

−

  
+ +  

  =        + − + + + − +            

 

( )
( )1

2
2 2 22

0 2
2 2 2

lim
1 2n

n n a A
Z

n S β→∞

+
=

− +
 

( )
( )

( )
2 2

2
2 2 2 2 2

2 2
22 2 2 2
2

2 2

lim lim
1 2 211

n n

n n a A n a A
f

n S
S

n n
β β→∞ →∞

 
  + +  = = = ∞ − +     − +  
   

     (20) 

Since from (19) and (20) we have that 1 2f f= = ∞ , it has been shown that the 
Bayesian measure of evidence of Yin (2012) under the Gamma prior solves the 
paradox in Lindley[3]. 

Consequently, since it can be easily seen from (13) that the posterior distribu-
tion of θ  is symmetric about its expected value, ( ) 1 2|E x x xθ = − , then 
Theorem 2 of Yin and Li [2] applies here. This implies that under the Gamma 
Prior, the Bayesian measure of evidence of Yin [1] yields the 1 α−  credible in-
tervals for 1 2θ µ µ= −  centered at 1 2x x− . 

Lemma 1. Let Gamma Priors be assigned to the precisions 1τ  and 2τ . Then, 
for values of 1 21, 1β β   and 1 2 2α α= = , the Posterior distribution of θ , 
denoted by | xθ  is the same as the Posterior distribution under Jeffreys’ inde-
pendent prior given by ( )2 2 2 2

1 2 1 2 1 2, , ,π µ µ σ σ σ σ− −∝  
Proof. By considering the values of 1β  and 2β  that satisfy 1 1β   and 

2 1β  , we can safely assume that 

( ) ( )
1 2

2 2
1 1 2 2

0 and 0
1 1n S n S
β β

≈ ≈
− −

 

especially where 2 1iS 
, and in  is sufficiently large, 1,2i∀ = . Then by set-

ting 1 2 2α α= = ,we have from (10) that 

( ) ( )
( )

( )
( )

1 2

1 2

2 22 2
1 1 1 2 2 2

1 2 2 2
1 1 2 2

2 22 2
1 2

1 2

, | 1 1
1 1

1 1
1 1

n n

Ga

n n

n x n x
x

n S n S

t t
n n

µ µ
π µ µ

− −

− −

   − −
∝ + +   

− −      

   
∝ + +   − −   

     (21) 

which is the kernel of the joint distribution of two independent t random va-
riables with 1t  having 1 1n −  degrees of freedom and 2t  having 2 1n −  de-
grees of freedom respectively. The nit can be easily seen that 

, 1, 2.i i
i i

i

t S
x i

n
µ = − =  

and consequently, 
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1 1 2 2
1 2

1 2

| ~
S T S Tx x x

n n
θ

 
− − −  

 
                  (22) 

where iT  is a t random variable with 1in −  degrees of freedom. 
Lemma 1 shows that the posterior distribution of the difference in means un-

der Jeffreys’ independent prior is a special case of the posterior distribution of 
the difference in means under the Gamma prior. 

4. Simulation Results and Discussion 

For the purpose of this discussion, we shall refer to the methodology of Yin [1] 
as the New Bayesian measure of evidence. The Metropolis-Hastings algorithm 
was used for the simulation with a thinning length of 12. The values in Table 1 
were obtained by fixing the following values: 

2 2
1 2 1 2 1 21.5, 2.0, 0.5, 0.5, 11, 14S Sα α β β= = = = = = . These results reveal that for 

the different sample sizes, whether large or small, equal or unequal, the conclu-
sions of a hypothesis test based on either the Generalized p-value, the Posterior 
Predictive p-value, the New Bayesian measure of evidence under the objective 
prior, or the New Bayesian measure of evidence under the Gamma prior are in 
the same direction. However, the New Bayesian measure of evidence under the 
Gamma prior gives consistently smaller evidence against the null hypothesis, 
whether the sample sizes are equal or unequal except for large sample sizes 
where the new Bayesian measure of evidence gives stronger evidence against the 
null compared to the Posterior Predictive P-value. 

On the other hand, the values in Table 2 were obtained by fixing the following 
values: 2 2

1 2 1 22.0, 2.0, 20, 25S Sα α= = = = . The values in this table reflect the ac-
curacy of the approximation of the new Bayesian measure of evidence under Jef-
freys’ independent prior to the new Bayesian measure of evidence under the 
Gamma prior. Results here show that when the sample sizes are at least 30, the 
approximation seems to be good and the values of the i sβ ′  do not need to be 
far less than 1. The approximation is good only contingent on the fact that the 
values of the i sβ ′  are less than 1. 

Thirdly, the values in Table 3 were obtained by fixing the following values: 
2 2

1 2 1 22.0, 2.0, 3, 5S Sα α= = = = . The values in this table also reflect for smaller 
variances, the accuracy of the approximation of the new Bayesian measure of 
evidence under Jeffreys’ independent prior by the new Bayesian measure of evi-
dence under the Gamma prior. In a similar manner, results here show that the 
approximation is equally good for smaller variances. In fact, the approximation 
is good where samples sizes can be at least as large as 10 so long as the values of 
the i sβ ′  are considerably less than 1. Note that the parameter values are fixed to 
demonstrate the behaviour of the conclusion from the New Bayesian measure of 
evidence under different circumstances like when the sample variances are small 
or moderate or large. Also, in Table 2, the values were fixed to see how well the 
New Bayesian measure of evidence under Jeffreys’ prior can be approximated by 
the New Bayesian measure of evidence under the Gamma prior. 
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Table 1. The four different probability values for different values of n1 and n2.  

1 23, 3n n= =  

( )1 2x x−  2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100 

( )p x  0.4353 0.4885 0.5464 0.6089 0.6758 0.7465 0.8203 0.8965 0.9740 

( )ppp x  0.3685 0.4170 0.4732 0.5375 0.6100 0.6905 0.7781 0.8711 0.9675 

BF
JP  0.5412 0.5877 0.6363 0.6880 0.7425 0.7993 0.8584 0.9186 0.9795 

BF
GaP  0.6829 0.7165 0.7515 0.7878 0.8259 0.8653 0.9050 0.9454 0.9864 

1 210, 10n n= =  

( )1 2x x−  2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100 

( )p x  0.1313 0.1811 0.2451 0.3250 0.4217 0.5350 0.6632 0.8031 0.9503 

( )ppp x  0.1344 0.1790 0.2374 0.3120 0.4051 0.5172 0.6476 0.7928 0.9475 

BF
JP  0.1546 0.2069 0.2723 0.3524 0.4474 0.5574 0.6801 0.8131 0.9531 

BF
GaP  0.1692 0.2229 0.2896 0.3694 0.4634 0.5718 0.6911 0.8203 0.9548 

1 230, 30n n= =  

( )1 2x x−  2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100 

( )p x  0.0082 0.0191 0.0418 0.0849 0.1598 0.2778 0.4463 0.6629 0.9131 

( )ppp x  0.0112 0.0229 0.0457 0.0876 0.1598 0.2746 0.4408 0.6580 0.9117 

BF
JP  0.0094 0.0214 0.0456 0.0909 0.1675 0.2856 0.4531 0.6675 0.9144 

BF
GaP  0.0102 0.0229 0.0480 0.0939 0.1714 0.2909 0.4580 0.6709 0.9154 

1 23, 5n n= =  

( )1 2x x−  2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100 

( )p x  0.3635 0.4202 0.4832 0.5524 0.6275 0.7077 0.7923 0.8802 0.9699 

( )ppp x  0.3212 0.3708 0.4292 0.4969 0.5743 0.6612 0.7564 0.8583 0.9643 

BF
JP  0.4579 0.5094 0.5654 0.6255 0.6898 0.7576 0.8284 0.9010 0.9754 

BF
GaP  0.6340 0.6712 0.7108 0.7525 0.7960 0.8414 0.8883 0.9359 0.9838 

1 212, 15n n= =  

( )1 2x x−  2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100 

( )p x  0.0780 0.1183 0.1747 0.2505 0.3483 0.4691 0.6113 0.7711 0.9420 

( )ppp x  0.0843 0.1214 0.1734 0.2443 0.3378 0.4561 0.5989 0.7625 0.9396 

BF
JP  0.0917 0.1348 0.1936 0.2712 0.3686 0.4869 0.6258 0.7798 0.9441 

BF
GaP  0.1020 0.1468 0.2073 0.2852 0.3824 0.4997 0.6359 0.7862 0.9461 

1 240, 35n n= =  

( )1 2x x−  2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100 

( )p x  0.0033 0.0091 0.0236 0.0553 0.1179 0.2275 0.3970 0.6278 0.9035 

( )ppp x  0.0050 0.0117 0.0268 0.0584 0.1193 0.2260 0.3929 0.6236 0.9021 

https://doi.org/10.4236/ojs.2018.86060


N. E. Goltong, S. I. Doguwa 
 

 

DOI: 10.4236/ojs.2018.86060 911 Open Journal of Statistics 

 

Continued 
BF

JP  0.0038 0.0105 0.0260 0.0592 0.1233 0.2343 0.4039 0.6327 0.9044 

BF
GaP  0.0040 0.0110 0.0269 0.0607 0.1257 0.2371 0.4065 0.6348 0.9052 

1 2100, 110n n= =  

( )1 2x x−  2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100 

( )p x  0.0000 0.0000 1e-04 0.0012 0.0082 0.0413 0.1522 0.4125 0.8375 

( )ppp x  0.0000 0.0000 2e-04 0.0015 0.0090 0.0424 0.1523 0.4110 0.8368 

BF
JP  0.0000 0.0000 1e-04 0.0013 0.0087 0.0426 0.1548 0.4157 0.8386 

BF
GaP  0.0000 0.0000 1e-04 0.0013 0.0088 0.0432 0.1546 0.4149 0.8388 

 
Table 2. The four different probability values for different values of 1 2 1, ,α α β  and 2β . 

1 2 1 20.5, 0.5, 2.5, 2.5α α β β= = = =  

( )1 2x x−  2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100 

( )p x  0.0022 0.0068 0.0186 0.0464 0.1041 0.2097 0.3786 0.6143 0.8997 

( )ppp x  0.0035 0.0088 0.0214 0.0492 0.1056 0.2085 0.3750 0.6104 0.8984 

BF
JP  0.0025 0.0073 0.0202 0.0493 0.1086 0.2151 0.3840 0.6182 0.9006 

BF
GaP  0.0040 0.0107 0.0267 0.0612 0.1263 0.2373 0.4077 0.6347 0.9053 

1 2 1 20.5, 1.5, 2.5, 2.0α α β β= = = =  

( )1 2x x−  2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100 

( )p x  0.0022 0.0068 0.0186 0.0464 0.1041 0.2097 0.3786 0.6143 0.8997 

( )ppp x  0.0035 0.0088 0.0214 0.0492 0.1056 0.2085 0.3750 0.6104 0.8984 

BF
JP  0.0025 0.0073 0.0202 0.0493 0.1086 0.2151 0.3840 0.6182 0.9006 

BF
GaP  0.0034 0.0094 0.0242 0.0568 0.1202 0.2301 0.3998 0.6297 0.9040 

1 2 1 22, 2, 0.0005, 0.0005α α β β= = = =  

( )1 2x x−  2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100 

( )p x  0.0022 0.0068 0.0186 0.0464 0.1041 0.2097 0.3786 0.6143 0.8997 

( )ppp x  0.0035 0.0088 0.0214 0.0492 0.1056 0.2085 0.3750 0.6104 0.8984 

BF
JP  0.0025 0.0073 0.0202 0.0493 0.1086 0.2151 0.3840 0.6182 0.9006 

BF
GaP  0.0026 0.0076 0.0202 0.0494 0.1088 0.2154 0.3852 0.6191 0.9007 

1 2 1 24, 5, 2.5, 2.0α α β β= = = =  

( )1 2x x−  2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100 

( )p x  0.0022 0.0068 0.0186 0.0464 0.1041 0.2097 0.3786 0.6143 0.8997 

( )ppp x  0.0035 0.0088 0.0214 0.0492 0.1056 0.2085 0.3750 0.6104 0.8984 

BF
JP  0.0025 0.0073 0.0202 0.0493 0.1086 0.2151 0.3840 0.6182 0.9006 

BF
GaP  0.0014 0.0044 0.0134 0.0361 0.0882 0.1877 0.3551 0.5960 0.8945 
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Table 3. The four different probability values for different values of 1 2 1, ,α α β  and 2β . 

1 2 1 22, 2, 0.0005, 0.0005α α β β= = = =  

( )1 2x x−  2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100 

( )p x  0.0000 0.0000 0.0000 0.0000 0.0001 0.0026 0.0329 0.2189 0.7577 

( )ppp x  0.0000 0.0000 0.0000 0.0000 0.0003 0.0037 0.0353 0.2178 0.7553 

BF
JP  0.0000 0.0000 0.0000 0.0000 0.0002 0.0028 0.0349 0.2244 0.7611 

BF
GaP  0.0000 0.0000 0.0000 0.0000 0.0001 0.0028 0.0349 0.2234 0.7592 

1 2 1 22, 1.2, 3.5, 3.0α α β β= = = =  

( )1 2x x−  2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100 

( )p x  0.0000 0.0000 0.0000 0.0000 0.0001 0.0026 0.0329 0.2189 0.7577 

( )ppp x  0.0000 0.0000 0.0000 0.0000 0.0003 0.0037 0.0353 0.2178 0.7553 

BF
JP  0.0000 0.0000 0.0000 0.0000 0.0002 0.0028 0.0349 0.2244 0.7611 

BF
GaP  0.0000 0.0000 0.0000 0.0000 0.0002 0.0041 0.0418 0.2402 0.7678 

1 2 1 20.3, 0.7, 15, 10α α β β= = = =  

( )1 2x x−  2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100 

( )p x  0.0000 0.0000 0.0000 0.0000 0.0001 0.0026 0.0329 0.2189 0.7577 

( )ppp x  0.0000 0.0000 0.0000 0.0000 0.0003 0.0037 0.0353 0.2178 0.7553 

BF
JP  0.0000 0.0000 0.0000 0.0000 0.0002 0.0028 0.0349 0.2244 0.7611 

BF
GaP  0.0000 0.0000 0.0000 0.0000 0.0008 0.0090 0.0644 0.2871 0.7891 

1 2 1 29, 4, 15, 10α α β β= = = =  

( )1 2x x−  2.500 2.200 1.900 1.600 1.300 1.000 0.700 0.400 0.100 

( )p x  0.0000 0.0000 0.0000 0.0000 0.0001 0.0026 0.0329 0.2189 0.7577 

( )ppp x  0.0000 0.0000 0.0000 0.0000 0.0003 0.0037 0.0353 0.2178 0.7553 

BF
JP  0.0000 0.0000 0.0000 0.0000 0.0002 0.0028 0.0349 0.2244 0.7611 

BF
GaP  0.0000 0.0000 0.0000 0.0000 0.0002 0.0032 0.0369 0.2299 0.7631 

 

Finally, Lehmann’s data on measures of driving times from following two dif-
ferent routes and Sahu’s data on scores of surgical and non-surgical treatments 
both displayed as Table 1 and Table 2 respectively in Yin and Li [2] were used 
as real examples to demonstrate the performance of the four measures of evi-
dence (results not shown). All conclusions were in the same direction for all four 
measures of evidence against the null hypothesis. 

5. Conclusions 

In this paper, we looked at the Bayesian analysis of the Behrens-Fisher problem 
using the methodology of Yin [1] by assigning Gamma Priors to the two un-
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known variances. We were able to show analytically, that the Bayesian measure 
of evidence of Yin [1] solves simultaneously, the Behrens-Fisher problem and 
Lindley’s paradox when Gamma Priors are assigned to the unknown variances. 
In fact, we were able to show that the solution obtained by Yin and Li [2] is a 
special case of ours, where Gamma Prior is used instead of Jeffreys’ independent 
prior. 

Simulation results further confirm the fact that extending the methodology of 
Yin [1] while assigning Gamma Prior to each of the nuisance parameters also 
solves Lindley’s paradox. This implies that the prowess of the methodology of 
Yin [1] does not only lie in the use of noninformative priors. In fact, simulation 
results reveal that for large sample sizes, the measure of evidence against the null 
hypothesis is stronger when the nuisance parameters are assigned Gamma Priors 
with carefully selected parameter values. 
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