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Abstract 
Using piecewise constant orthonormal functions, an approximation of the 
monodromy operator of a Linear Periodic Delay Differential Equation (PDDE) 
is obtained by approximating the integral equation corresponding to the 
PDDE as a linear operator over the space of initial conditions. This approxi-
mation allows us to consider the state space as finite dimensional resulting in 
a finite matrix approximation whose spectrum converges to the spectrum of 
the monodromy operator. 
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1. Introduction 

Linear Periodic Differential Equations (PDDEs) have been of importance for 
studying problems of vibration, mechanics, astronomy, electric circuits, biology 
among others in [1] several examples of delay effects on mechanical systems are 
given, in [2] and [3] effects of the delay in physics and biological processes are 
considered. Neglecting the fact that interaction between particles does not occur 
instantaneously sometimes is no longer possible or practical, these finite velocity 
interactions bring new behaviors that modify significantly the behavior of the 
system, see for example [4] and [5]. In the study of these Delay Differential 
Equations many problems arise, mainly due to the infinite dimensional nature of 
the system, in the case of linear PDDEs the stability depends on the spectrum of 
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the monodromy operator, which in the non delayed case corresponds to the 
monodromy matrix. 

Approximation methods of the monodromy operator have been proposed a 
number of times, [6] and [7] make use of pseudospectral collocation methods to 
approximate the monodromy operator. The well known method of semidis- 
cretization [8] has also been used to determine the stability of a PDDE. In [9] 
using a Walsh approximation method from [10] a set of approximated solutions 
of a PDDE was used to construct an approximation of the monodromy operator 
by numerical integration. 

In this work, the main contribution is an approximation of the monodromy 
operator of the PDDE by a linear Equation (35) of the form 0kx x=  , where the 
directly obtained matrix k  will correspond to the approximated monodromy 
operator, with no need of approximating solutions or numerical integration. 
Stability of the PDDE can then be determined by the spectrum of k  without 
any need of solving any equation. Convergence of k  and its spectrum is 
stated in Theorems 10, 14 and 15. This approximation is made by projecting the 
integral equation corresponding to the PDDE in to a a finite dimensional 
subspace spanned by finitely many piecewise constant functions. The utilized 
functions must belong to a complete set of piecewise constant orthonormal 
functions with discontinuities only in dyadic rationals, such as Haar, Walsh or 
Block Pulse Functions (BPF). The theoretical framework of this paper will be 
based on Walsh functions since most results are stated for these functions. Once 
obtained the finite dimensional approximation of the monodromy operator will 
be stated in terms of BPF to reduce the computational cost of the stability 
analysis. 

The main goal of this paper is to provide a computationally light method, with 
straightforward implementation, to approximate the monodromy operator of a 
delay differential equation, in order to facilitate the computation of stability 
diagrams used to study the behavior of the equation with respect to changes in 
its parameters. 

2. Linear Periodic Delay Differential Equations 

Consider the linear PDDE:  

( ) ( ) ( ) ( ) ( ) ,x t A t x t B t x t τ= + −�                   (1) 

where ( ) nx t ∈ , ,t τ +∈ , 0 τ ω< ≤ , ( ) ( ),A t B t  are n n×  matrices of 
ω-periodic functions continuous on [ ]0,1  . Denote as   the space of conti- 
nuous functions from [ ],0τ−  into n , this space is a Banach space with the 
norm ( )

0
max
τ θ

ϕ ϕ θ
− ≤ ≤

=  [11]. 
A solution of (1) with initial condition ϕ ∈  at 0t  is understood as a 

mapping [ ]: ,0 nCξ τ− × × →  , such that ( ) ( )0, ,tξ θ ϕ ϕ θ=  for 0τ θ− ≤ ≤  
and that ( ) ( ), ,t x tξ θ ϕ θ= +  for 0τ θ− ≤ ≤  and 0t tθ+ ≥ , where ( )x t  sa- 
tisfies (1) for 0t t≥  with ( ) ( )x θ ϕ θ=  for [ ],0θ τ∈ − . At time t a solution 
will be an element of space C. Explicitly we will have:  
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( )( ) ( ) ( )0 0 0 0, , , , , , , ,t t T t t t tξ θ ξ θ ϕ ξ θ ϕ= +             (2) 

with [ ],0θ τ∈ − . The operator T is called the solution mapping and is analogous 
to the state transition matrix of the undelayed case. 

2.1. Monodromy Operator 

Taking into account the periodic nature of (1) it is relevant to consider (2) when 

0t t ω= + , in this case we will denote the solution mapping as ( ) ( )0 0 0,U t T t t ω+� . 
Next some properties consequence of ( )U ⋅  being completely continuous are 

enlisted, [12]:  
 The spectrum ( )( )0U tσ  is a countable compact set in the complex plane. 
 ( )( )00 U tσ∈ , and if ( )( )0U tλ σ∈  then ( )( )0U tϕ λϕ=  has a nonzero 

solution Cϕ ∈ . 
 If the cardinality of the set ( )( )0U tσ  is infinite then the only limit point of 

( )( )0U tσ  is 0.  
 The cardinality of ( )( )0U tσ  outside any disc rR  of radius r,  

{ },rR z z r= ∈ ≤  is finite. 
 ( )( ) ( )( )0 1U t U tσ σ=  0 1,t t∀ ∈ .  

( )0U  henceforth denoted simply as U will be called the monodromy opera- 
tor of (1) and the elements ( )Uλ σ∈ , 0λ ≠  will be called characteristic 
multipliers. 

2.2. Stability 

It was shown [12] that Floquet theory is valid for PDDEs in a certain sense, and 
that stability of (1) will be related to the spectrum of U. The following theorem 
from [13] establishes the conditions for the stability of (1):  

Theorem 1. If the characteristic multipliers are situated inside the unit circle 
{ }, 1λ λ < , then the zero solution of the system is uniformly asymptotically 
stable. If the multipliers of the system are inside the closed unit circle, and if 
multipliers situated on the unit circumference correspond to simple elementary 
divisors then the zero solution is uniformly stable.  

Remark 1. If τ ω>  all the above statements are valid for rU , where  
rω τ≥  and r∈  [12].  

Remark 2. Note that Theorem 1 extends the properties of an undelayed case 
[14] [15].  

3. Walsh Functions 
3.1. Definition 

Walsh functions are a set of piecewise constant complete orthonormal functions 
introduced in [16] and defined on the interval [ )0,1 , although easily translated 
to any other interval. Formal definition of the Walsh functions may be done in 
many ways [17], with the use of Rademacher functions the �-th Walsh function 
may be defined as [17]:  
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( ) ( )1

0
sign sin 2 π ,

ik
i

i
w t t

ε
−

=

 =  ∏�                    (3) 

where the iε  are the coefficients of the unique binary expansion of � , namely  

{ }
0

2 , with 0,1
k

i
i i

i
ε ε

=

= ∈∑�                      (4) 

There are as well many ways of ordering the Walsh functions, in this paper we 
will use the so called Dyadic ordering [18]. Figure 1 shows the first eight Walsh 
functions in this ordering. 

To a function [ ]
2
0,1f L∈  will correspond the Walsh approximation:  

( ) ( )
0

~ ,
n

i i
i

f t h w t
=
∑                          (5) 

where ( ) ( )1

0
d .i ih f t w t t= ∫  The right side of (5) will converge in norm to f for 

any [ ]
2
0,1f L∈  and if 2kn = , it will converge uniformly for any continuous 

function that has, at most, jump discontinuities at dyadic rationals (numbers of 
the form , ,

2b
a a b∈ ∈  ) [16]. When n = ∞ , (5) will be called a Walsh expan- 

sion. 

3.2. Properties of Walsh Functions 

We will define a Walsh matrix [ ]W k  as the 2 2k k×  matrix consisting on the 
discretization values of the Walsh functions over the interval [ ]0,1 . 

For example we will have for 3k = : 

[ ]

1 1 1 1
1 1 1 1

4 .
1 1 1 1
1 1 1 1

W

 
 − − =
 − −
 

− − 

 

We can also define the Delayed Walsh Matrix [ ],W m k−  as a Walsh matrix 
of order 2k  shifted m columns to the right and with the first m columns being 
zeros. In the same manner we define a Forwarded Walsh Matrix [ ],W m k+ , but 
shifted to the left: 
 

 
Figure 1. Walsh functions in dyadic ordering. 
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[ ] [ ]
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 02,4 ; 2,4
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0

W W

   
   − −

− = + =   
− −   

   − −   

        (6) 

We define the vector consisting on the first 2k  Walsh functions as:  

( ) ( ) ( ) ( )
T

0 1 2 1
.kkw t w t w t w t

−
 =  �                 (7) 

Since the order of the approximation should be clear from context we write 
simply ( )w t . We define as well the dyadic sum ⊕  between tho nonnegative 
integers as:  

0
2 ,

k
i

i i
i

q r q r
=

⊕ = −∑                        (8) 

where iq  and ir  are respectively the coefficients of the binary expansions of q 
and r as in (4). To a vector 

T

0 2 2 1kσ σ σ σ
−

 =  �  we associate a 2 2k k×  sym- 
metric matrix ( )σΛ  whose i, jth entry will be given by 1 1i jσ − ⊕ − . If for example 

[ ]T0 1 2 3σ σ σ σ σ= , then:  

( )

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

.

σ σ σ σ
σ σ σ σ

σ
σ σ σ σ
σ σ σ σ

 
 
 Λ =
 
 
 

 

We make use of the following Lemma:  
Lemma 2. [19] Let 2k

σ ∈ , then:  

( ) ( ) ( ) ( )T .w t w t w tσ σ= Λ                     (9) 

The integral of a Walsh vector can be approximated by a Walsh expansion of 
the form:  

( ) ( )
0

d ,
t
w s s Pw t=∫                       (10) 

where P is given by [20]: 

  (11) 

The approximated integral converges to the exact integral uniformly [21]. 
To a function matrix ( )A t  we associate the Walsh approximation ( )Â t :  

( ) ( )ˆ ,A t tα= Ω                        (12) 

where  

( )

( )
( )

( )

T T T
11 12 1
T T T
21 22 2

T T T
1 2

0 0
0 0

, ,

0 0

n

n

n n nn

w t
w t

t

w t

α α α
α α α

α

α α α

  
  
  = Ω =   
  

      

��
��

� � � �� � � �
��

     (13) 
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and each ,i jα  is the vector of coefficients of the Walsh approximation of each 
entry of ( )A t . 

Let ( )A t  be a n n×  function matrix with Walsh approximation ( )Â t  and 
( )f t  a function vector with Walsh approximation ( )f̂ t , whose elements are 

of the form ( ) ( )T
i if t h w t= , 1, ,i n= �  where 2k

ih ∈  is the vector of Walsh 
coefficients of the approximation of each element of f. Define  

TT T
1 nH h h =  � , then from (9) we have:  

( ) ( ) ( )

( )
( )

( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )

( ) ( )

( )

T T
1 1

T T
2 2

T T

TT T T
1, 1,

1 1

TT T T
2, 2,

1 1

TT T T
, ,

1 1

ˆˆ

n n

n n

r r r r
r r
n n

r r r r
r r

n n

r n r n
r r

w t h w t w t h
w t h w t w t h

A t f t t

w t h w t w t h

h w t w t w t h

h w t w t w t h

h w t w t w t

α α

α α

α α

α α

= =

= =

= =

   
   
   = Ω =   
   
      

  Λ 
 
  Λ = = 
 
 
  Λ
  

∑ ∑

∑ ∑

∑ ∑

� �

� �

( )

( ) ( )T ,

r rh

t Hα

 
 
 
 
 
 
 
 
 
  

= Ω Λ

    (14) 

where:  

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

.

n

n

n n nn

α α α
α α α

α

α α α

 Λ Λ Λ
 Λ Λ Λ Λ =  
 
Λ Λ Λ  

�
�

� � � �
�

             (15) 

3.3. Approximation Error 

Regarding the error of Walsh approximation we have:  
Lemma 3. [17] If f satisfies the Lipschitz condition, then:  

( ) ( )
2

0
2 ,

kp
k

k i i
i

E c w t f t C
=

−

=
∞

= − ≤∑                  (16) 

for some constant C.  

3.4. Block Pulse Functions 

The set of Block pulse functions of order p is defined on the interval [ )0,1  as 
the set ( ) ( ){ }0 1, , mt tψ ψ −� , where [22]:  

( )
11, ,

1, , 1.
0, otherwise

i

i it
t i pp pψ

  +
∈ = = −  




�            (17) 

Block Pulse Functions, shown on Figure 2, are orthogonal, easily normalizable 
[23] and when m →∞  they form a complete set [22]. We restrict ourselves to  
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Figure 2. Block pulse functions. 

 
the case 2kp =  for k integer. Walsh functions and Block Pulse Functions are 
related by a one on one correspondence, meaning that there exists a unique 
bijective linear transformation that maps the first 2k  Walsh functions on to the 
set of Block Pulse Functions of order 2k  [24]. The existence of this transfor- 
mation and the completeness of the Block Pulse functions ensure that the 
properties of Walsh functions are inherited to Block Pulse Functions. In 
particular we have the following:  

Lemma 4. [24] Matrix P in (10) is similar to the upper triangular matrix  

[ ] [ ] 2 2 1
* 2

1
2

k

kP W k PW k I Q Q Q −= + + + +� � , where Q is a nilpotent matrix  

with ones above the diagonal and zeros everywhere else:  

*

1 1 1
2

10 1
.2

10 0
2

P

 
 
 
 
 =
 
 
 
 
 

�

�

� � � �

�

                    (18) 

Lemma 5. [25] Let ( ) ( )Tf̂ t w tσ=  be the Walsh approximation of the 
function ( )f t , with 2k

σ ∈  being the vector of coefficients of the Walsh 
approximation. Then ( )σΛ  is similar to a diagonal matrix: 

( ) [ ] ( ) [ ]1
*

0ˆ 0 0
2

1ˆ0 0
2 .

2 1ˆ0 0
2

k

k

k

k

W k W k

f

f

f

σ σ−Λ = Λ

  
    

  
  =   
 
 

 − 
  
  

�

�

� � � �

�

            (19) 
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4. Approximation of the Monodromy Operator 

Without loss of generality we assume 1ω = . We approximate the monodromy 
operator by projecting (1) on a finite dimensional subspace of [ )2 0,1L  formed 
by the span of 2k  piecewise constant orthonormal functions. We will assume 
the orthonormal functions to be Walsh functions, the analysis can be carried to 
the case of Block Pulse Functions or Haar functions by means of similarity 
transformations. We also restrict ourselves to the case of commensurable delays, 
that is mτ ω=  for some m∈ . 

Integrating (1) from 0 to t we will have: 

( ) ( ) ( ) ( ) ( ) ( )
0 0

0 d d ,
t t

x t x A s x s s B s x s sτ− = + −∫ ∫           (20) 

with ( ) ( )x θ ϕ θ=  for [ ],0θ τ∈ − . A solution of (20) will correspond to a 
solution of (1) [26]. Let kπ  denote the projection mapping that takes the 
Walsh expansion ( ) ( )0f t c w t∞

=
= ∑ � ��  to the Walsh approximation  

( ) ( )2
0

ˆ k

f t c w t
=

= ∑ � �� . Along with (20) we introduce its projection onto the space  

{ }0 1 2 1
, , , k

n
M span w w w

−
= � :  

( ) ( ) ( ) ( ) ( ) ( )
0 0

ˆ ˆˆ ˆ ˆ0 d d ,
t t

k qx t x A s x s s B s x s sπ π τ− = + −∫ ∫        (21) 

where ( )x̂ t M∈  and ( )0 Mϕ ∈  since it is a constant. ( )Â t  and ( )B̂ t  
correspond to ( )k A tπ  and ( )k B tπ , this is, the approximations of ( )A t  and 
( )B t , respectively, as in (12). ( )( )x̂ x θ  is still not defined for [ ),0θ τ∈ − , we 

cant define yet the projection of the initial condition since its defined on a 
different domain than the domain of definition of the Walsh functions. For this 
we have: 

Proposition 6. The value of the Walsh approximation of order 2k  at an 

interval 1,
2 2k k
i i + 

 
, 0, ,2 1ki = −� , depends only on the value of the function 

at that same interval.  
Proof. It follows immediately from Theorem 2.1.3 in [17].  
Thus we define the projection ( ) ( ) ( )2 1

0
ˆ

k

k c wπ ϕ θ θ ω ϕ θ−

=
= +∑ � ��

�  as the 
Walsh approximation of order 2k  of an integrable function ( )*ϕ θ  defined 
on [ ),0ω− , that is equal to ( )ϕ θ  in [ ),0τ−  and 0 everywhere else, and we 
make ( ) ( )ˆx̂ θ ϕ θ=  for [ ],0θ τ∈ − . Since Walsh functions were not defined at 

1t =   

we simply set ( ) 1ˆ ˆ0
2kϕ ϕ  = − 

 
. 

We split the second integral in (20) as:  

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )

0

0

0

0 0

d

d d

d d

1 d d ,

t

t

t

t t

B s x s s

B s x s s B s x s s

B s s s B s x s s

S s B s s s S s B s x s s

τ

τ

τ

τ

τ

τ τ

ϕ τ τ

τ ϕ τ τ τ

−

= − + −

= − + −

= − − − + − −

∫

∫ ∫

∫ ∫

∫ ∫

    (22) 
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where ( )S t  is the unit step function. 
We make use of the following Lemma:  
Lemma 7. [17] Any function ( )f t  constant on the intervals of the form 

1,
2 2k k
i i + 

 
, 0 2 1ki≤ ≤ −  can be represented in the form:  

( ) ( )
2 1

0
,

k

f t c w t
−

=

= ∑ � �
�

                      (23) 

i.e. the non zero coefficients of the Walsh expansion of ( )f t  have indices no 
greater than 2 1k − . Moreover, this representation is unique.  

From linearity of kπ  and from Lemma 7. we have that we can split the 
second integral in (21) as in (22) with this being consistent with the projection: 

( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )
0

0 0

ˆ ˆ d

ˆ ˆˆ ˆ1 d d ,

t
k

t t
k k

B s x s s

S s B s s s S s B s x s s

π τ

π τ ϕ τ π τ τ

−

= − − − + − −

∫

∫ ∫
   (24) 

Since ( )x̂ t M∈  we have that ( ) ( ) ( )
TT

1ˆ , , nx t h w t h w t =  � , we also have that 

( ) ( ) ( )
TT

1ˆ , , nc w c wϕ θ θ ω θ ω = + + �  with each ih  and ic  being vectors of 

Walsh coefficients. Defining 
TT T

1 , , nH h h =  � , 
TT T

1 , , nc c Φ =  � , and recalling 

(7) and (12), we can write (21) as: 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

T

T T
0 0

T
0

ˆ 0

d d

1 d ,

t t
q k

t
k

t H x

s s H s s S s s H s

s S s s s

π α π β τ τ

π β τ τ ω

Ω −

= Ω Ω + Ω − Ω −

+ Ω − − Ω − + Φ

∫ ∫

∫

     (25) 

From Lemma 7. we have that both, ( ) ( )TS t tτ τ− Ω −  and  
( )( ) ( )T1 S t sτ τ ω− − Ω − + , can be uniquely represented in terms of ( )tΩ :  

( ) ( ) ( )T T ,DS t t t Wτ τ− Ω − = Ω  

( )( ) ( ) ( )T T1 ,FS t s t Wτ τ ω− − Ω − + = Ω              (26) 

FW  and DW  are 2 2k kn n×  block diagonal matrices, whose diagonal entries 
are given respectively by T

FW  and T
DW , which satisfy  

( ) ( )( ) ( )1FW w t S t w sτ τ ω= − − − +  and ( ) ( ) ( )DW w t S t w tτ τ= − −  When ap- 
proximating by Walsh functions, matrix DW  is given by  

[ ] [ ]( )1 ,
2D kW W m k W k= −  and it is called the Walsh Shift Operator [10]. FW  is 

given in an analogous way as ( ) [ ]( )1 1 ,
2F kW W m k W k = + −  . The term ( )ˆ 0x  

will also have an unique representation:  

( ) ( )Tˆ 0 ,Cx t W= Ω Φ                       (27) 

since ( ) ( )ˆˆ 0 0x ϕ= . CW  will be again a 2 2k kn n×  block diagonal matrix, 
whose diagonal entries are given by T

CW . In the case of Walsh functions, matrix 

CW  evaluates ( )tφ  at time 2 1k −  and assigns its value to the coefficient of the 
constant Walsh function ( )0w t , hence ( ) TT 2 1 ,0, ,0k

CW w = − � . 
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From (14), (27) and (26) we have that we can write (25) as: 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

T T

T T
0 0

T
0

d d

d .

C

t t
k k F

t
k D

t H t W

s s H s s W

s s W H

π α π β

π β

Ω −Ω Φ

= Ω Λ + Ω Λ Φ

+ Ω Λ

∫ ∫

∫

        (28) 

From (10) we have that:  

( ) ( )T T
0

d ,
t

k s s t Pπ Ω = Ω∫                   (29) 

where P  is a 2 2k kn n×  matrix given by:  
T

T

T

0 0
0 0

,

0 0

P
P

P

P

 
 
 =
 
 
  

�
�

� � � �
�

                  (30) 

from which we arrive at:  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

T T

T T T .
C

F D

t H t W

t P H t P W t P W Hα β β

Ω −Ω Φ

= Ω Λ Ω + Λ Φ+Ω Λ
    (31) 

Since ( )tΩ  is nonsingular we have:  

( ) ( ) ( )1
.D C FH I P P W W P Wα β β

−
   = − Λ − Λ + Λ Φ          (32) 

From (32) we can define a mapping :k M M→ :  

( ) ( ) ( )1
k D C FI P P W W P Wα β β

−
   = − Λ − Λ + Λ           (33) 

However by construction we can see that the domain of k  is in fact the 
subspace of M consisting of al functions generated by linear combinations of the 
first 2k  Walsh functions, that are equal to 0 for [ )0,t ω τ∈ − , we denote this 
subspace as M ′ . Likewise we can extend the domain of definition of the 
solution map of (1) from the space [ ],0τ− , to the subspace of [ ]

2
,0L ω−  consisting 

of al functions that are continuous on [ ],0τ−  that are equal to 0 for [ ),t ω τ∈ − , 
this space, denoted ′  is isomorphic to the space [ ],0τ−  and its projection on 
the space M corresponds to M ′ . We can say now that k  is an approximation 
of the solution mapping T of (1), we obtain an approximated solution  

( ) ( )Tx̂ t t H= Ω  which satisfies (21), and thus, we have an approximation of the 
solution map of (1). 

In order to study the monodromy operator of (1), we must study the state at 
t ω= , this is, we must know the solution of (1) for [ ],t ω τ ω∈ −  corresponding 
to an initial condition. Since M ′  is the projection in the space M of ′  and 
since ′  is isomorphic to [ ],ω τ ω− , the approximation of the state at t ω=  
will be given by the projection of the approximated solution into M ′ . Hence, by 
Lemma 7 we will have:  

.PH W H′ =                          (34) 

where pW  is a 2 2k kn n×  is a block diagonal matrix which projects the 
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approximated solution ( )T t HΩ  into the subspace M ′ , with diagonal entries 
T

PW . In the case of Walsh functions, we will have  

( )( ) [ ] [ ]T
1

1
2P k S t mW W k W k− −=

 
where ( )( ) [ ]1S t mW k− −  are given by Walsh matrices of order k that instead have 

0s in the first (1 − m)th columns. 
From (34) we obtain our approximated monodromy operator, given by:  

( ) ( ) ( )1
.k P D C FW I P P W W P Wα β β

−
   = − Λ − Λ + Λ          (35) 

Approximation by Block Pulse Functions 

Equation (35) for the approximation of k  is valid for all sets of orthonormal 
functions that can be obtained by linear combinations of Walsh functions. For 
the numerical calculation of the approximation of the monodromy operator, 
Block Pulse Functions are the most advantageous set since with their simplicity 
comes a lesser computational load. In particular for the Block Pulse Function 
approximation we will have: 

{ }T T, , ,P P PW diag W W= �                     (36) 

2 2 2T

2

0 0
,

0
k k k

k

m m m m
P

m mm m

W
I

− × − − ×

×× −

 
=  
  

 

{ }T T, , ,C C CW diag W W= �                    (37) 

T

0 0 0 1
0 0 0 1

,

0 0 0 1

CW

 
 
 =
 
 
 

�
�

� � � � �
�

 

{ }T T, ,P diag P P= �                      (38) 

1 1 1
2

10 11 .2
2

10 0
2

kP

 
 
 
 
 =
 
 
 
 
 

�

�

� � � �

�

 

If we define:  

0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0

, ,
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

Q Q− +

   
   
   
   = =
   
   
      

� �
� �

� � � � � � � � � �
� �
� �

         (39) 
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we will have:  

{ }T T, ,D D DW diag W W= �                     (40) 

T ,m
DW Q−=  

and  

{ }T T, ,F F FW diag W W= �                     (41) 

T 2 .
k m

FW Q −
+=  

Finally, if in (15) we have ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

n

n

n n nn

a t a t a t
a t a t a t

A t

a t a t a t

 
 
 =  
 
  

�
�

� � � �
�

, then ( )αΛ  

will be given as in (15) with:  

( )

0ˆ 0 0
2

1ˆ0 0
2 ,

2 1ˆ0 0
2

ij k

ij k
ij

k

ij k

a

a

a

α

  
    

  
  Λ =   
 
 

 − 
  
  

�

�

� � � �

�

          (42) 

where 

( )
1

2

2

ˆ d , 0,1, ,2 1,
2

k

k

i
k

iij ijk
ia a t t i

+
  = = − 
  ∫ �              (43) 

with the same for ( )βΛ  and ( )B t . 

5. Convergence of k  

We denote as ∆  the space of functions from [ ]0,1  to n , whose limit from 
the left exist at every point in ( ]0,1  and whose limit from the right exists at 
every point in [ )0,1  and that are also continuous at every point that is not a 
dyadic rational, this is, ∆  is the space of continuous functions on [ ]0,1  that 
may have jump discontinuities at dyadic rationals. 

Proposition 8. The space ∆  is a Banach space with the sup norm.  
Proof. Let { }nx  be a Cauchy sequence in ∆ , then 0ε∀ > , N∃  such that 

,n m N≥  implies:  

[ ]
( ) ( )

0,1
sup .n m
t

x t x t ε
∈

− <  

Therefore for every [ ]0 0,1t ∈  we have ( ) ( )0 0n mx t x t ε− < , for ,n m N≥ . 
Thus ( ){ }0nx t  is a Cauchy sequence in n , therefore convergent, we denote 
such limit as ( )*

0x t , then we have that for every ε , there exists N, such that for 
n N≥ :  

( ) ( ) [ ]*
0 0 , 0,1 ,nx x x x xε− ≤ ∀ ∈  
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this is { }nx  converges to *x  uniformly. 
Now let [ )0 0,1t ∈ , then for every nx  the limit from the right at 0t  exists, 

this is, { }n nx x∀ ∈ , ! nL+∃  such that for every 0ε > , there exist 0nδ >  such 
that:  

( )00 .n nt t x t Lδ ε+< − < ⇒ − <                 (44) 

The sequence { }nL+  is defined on n , therefore is convergent if and only if 
it is Cauchy. We assume by contradiction that { }nL+  is not Cauchy, then there 
exist 1ε  such that for every 1N , there exist 1 1 1,n m N≥  such that:  

1 1 1.m nL L ε− ≥                        (45) 

Since { }nx  is Cauchy we have that there exists 2N  such that 2,n m N≥  
implies:  

[ ]
( ) ( ) 1

0,1
sup .

3n n
t

x t x t ε
∈

− <  

Let 1 1 2,n m N≥  such that (45) holds. Let 1δ  such that for 0 10 t t δ< − <  we 
have:  

( )
1 1

1 ,
3n nx t L ε

− <  

similarly let 2δ  such that 0 20 t t δ< − <  we have:  

( )
1 1

1 .
3m mx t L ε

− <  

Take { }1 2min ,δ δ δ= , then for 00 t t δ< − <  we have:  

( ) ( )
1 1

1

3n mx t x t ε
− <  

( ) ( )( ) ( )1 1 1 1 1 1
1

3n n m m m nx t L x t L L L ε+ + + +− + − − − <  

( ) ( )
1 1 1 1 1 1

1 ,
3n n m m m nx t L x t L L L ε+ + + +− + − − − <  

but 
1 1 1m nL L ε+ +− ≥  and ( ) ( )

1 1 1 1
12

3n n m mx t L x t L ε+ +− + − < , therefore:  

( ) ( )
1 1 1 1 1 1

1
1 3m n n n m mL L x t L x t L εε + + + +≤ − − − + − <  

( ) ( )
1 1 1 1 1 1

1
1 3m n n n m mL L x t L x t Lεε + + + +≤ − < + − + −  

1 1
1 1 1

1 1,3 3 3m nL L ε ε εε ε+ +≤ − < + + =  

which is a contradiction, therefore the sequence { }nL+  converges to a limit L+ . 
Now let 0ε > , let N ∈  and δ  such that for 00 t t δ< + < :  

( ) ( )*

3Nx t x t ε
− <  

( )
3N Nx t L ε+− <  
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,
3NL L ε+ +− <  

then: 

( ) ( ) ( ) ( )* * .
3 3 3N N N Nx t L x t x t x t L L L ε ε ε ε+ + + +− ≤ − + − + − < + + =  

Therefore L+  is a right limit of *x  at 0t t= , hence the right limits exist. 
Repeating the process for the left limits we conclude that the left limits of *x  
exist where required. 

Now let [ ]0 0,1t ∈ , 0t  not a dyadic rational, then each nx  is continuous at 

0t , therefore *lim nn
x x

→∞
=  is continuous at 0t . Then we have *x ∆∈ , which 

concludes the proof.  
We make use of the following: 

Lemma 9. [20] Let the dyadic intervals ( ) 1,
2 2k k k
− ∆ =  

� �
� , k∈Γ�  with  

{ }1, ,2k
kΓ = �  and let ( ) ( )k

tχ∆ �  be the characteristic function of the interval 
( )k∆ � , then:  

( ) ( ) 10

10, 0
2

1 1d ,
2 2 2
1 1,
2 2 1

k

k

t
k k k k

k k

t

s s t

t

π χ∆ +

− ≤ <


−= ≤ <


−
≤ <

∫ �

�

� �

� �

            (46) 

Now we state: 
Theorem 10. Let the Banach space ∆ , the approximated monodromy 

operator k  converges in the strong operator sense to the monodromy operator 
U. 

Proof. Let kπ  denote the projection mapping that takes the Walsh expansion 
( ) ( )0f t c w t∞

=
= ∑ � ��  to the Walsh approximation ( ) ( )2

0
ˆ k

f t c w t
=

= ∑ � �� . 
Without risk of confusion we will denote as ( )kϕ θ  the operator ( )k kπ ϕ θ  
and as ( )kϕ θ  to the operator ( )k kπ ϕ θ . 

Denote as ( ) ( )x t Tϕ θ=  the solution of (20) corresponding to an initial 
condition ( )ϕ θ  for [ ],0θ τ∈ − . Likewise denote as ( ) ( )ˆˆ kx t ϕ θ=   the solu- 
tion of (21). Clearly ( ) ( )x t Uϕ θ=  and ( ) ( )ˆ kx t ϕ θ=   for [ ],t ω τ ω∈ −  

Let ( ) ( )ˆ
kA t A tπ= , ( ) ( )ˆ

kB t B tπ=  and ( ) ( )ˆ kt tϕ π ϕ= . Then:  

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ .k kx t x t x t x t x t x tπ π− ≤ − + −          (47) 

Since the solution ( )x t  is continuous we have that the first term on the right 
converges to 0 as k →∞ . We now observe that ( )x̂ t  and ( )x t  satisfy:  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )
0 0

0

ˆ ˆˆ ˆ ˆ0 d d

ˆ ˆ1 d

t t
k k

t
k

x t A s x s s S t B s x s s

S t B s s s

ϕ π π τ τ

π τ ϕ τ

= + + − −

+ − − −

∫ ∫

∫
    (48) 

and 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )
0 0

0

0 d d

1 d ,

t t

t

x t A s x s s S t B s x s s

S t B s s s

ϕ τ τ

τ ϕ τ

= + + − −

+ − − −

∫ ∫

∫
      (49) 

respectively. Set ( ) ( ) ( ) ( )t A t S t B tτ= + − , ( ) ( )( ) ( )1t S t B tτ= − − , the 
same way set ( )ˆ t  and ( )ˆ t  as their respective approximations. Define  

( ) ( ) ( )ˆk ky t x t x tπ= − . We have:  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0 0

0

ˆ ˆˆ d d d

ˆ ˆ d d ,

t t t
k k k k k

t
k

y t s x s s s x s s s x s s

s s s s s s

π π π π

π ϕ τ ϕ τ

= + −

 + − − −  

∫ ∫ ∫

∫

  

 
   (50) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 0

0

ˆ ˆˆ d d

ˆ ˆ d .

t t
k k k k

t
k

y t s x s s s x s s x s s

s s s s s

π π π

π ϕ τ ϕ τ

 = + − 

 + − − − 

∫ ∫

∫

  

 
   (51) 

We have that the right side of (51) is piecewise constant, so if we define the 

dyadic intervals ( ) 1,
2 2k k k
− ∆ =  

� �
� , for ∈Γ�  with { }1, ,2kΓ = � , we can write:  

( ) ( ) ( ) ( )
2

0 0
1

1 1ˆ ˆd d ,
2 2

k

k

t t
k k k k qk k

q

q qs y s s y s sπ π χ∆
=

− −   =    
   

∑∫ ∫        (52) 

where ( ) ( )k q tχ∆  is the characteristic function of the interval ( )k q∆ . From 
Lemma 9, we will have for ( )kt ∈∆ � :  

( ) ( )
1

10
1

1 1 1 1 1 1ˆ ˆ ˆ .
2 2 2 2 2 2

t
k k k kk k k k k k

q

q qs y s y yπ
−

+
=

− − − −       = +       
       

∑∫
� � �

    (53) 

Since ( )ky t  is constant on the dyadic intervals then ( ) 1
2k k ky t y − =  

 

�  for 
( )kt ∈∆ � . Therefore:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1
1

00 1

1 100 1

1 1 1 1 1 1 1ˆ ˆ
2 2 2 2 2 2 2

ˆ ˆmax d

ˆmax d .

k k kk k k k k k k
q

t
kt

t
k kt

q qy y y

s s s s s

s x s t x t s

π ϕ τ ϕ τ

π π

−

+
=

≤ ≤

≤ ≤

− − − − −         ≤ +         
         

 + − − − 

 + − 

∑

∫

∫

�� � �
 

 

 

 (54) 

Define *
1

1 1ˆ1 max
2 2k k kq

qC + ∈Γ

− = −  
 

 , and assume * 0kC > . This restraint is 

not significant since ( )A t  and ( )B t  are bounded, therefore ( )Â t  and  

( )B̂ t  are bounded, and 1

1 0
2k + →  as k →∞ . 

We have:  
1 1

1 1

1 1 1 1ˆ ˆmax .
2 2 2 2k kk k k kqq q

q q q qy y
− −

∈Γ= =

− − − −       ≤       
       

∑ ∑
� �

        (55) 

From all of the above and defining 
*

*
*

1
2

k
k k

k

AD
C

� , with * 1ˆmax
2k kq

qA
∈Γ

− =  
 

  
and denoting:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*
* 00 1

00 1

1 ˆmax d

ˆ ˆmax d ,

t
k k kt

k

t
kt

B s x s t x t s
C

s s s s s

π π

π ϕ τ ϕ τ

≤ ≤

≤ ≤

  = − 

 + − − −  

∫

∫

 

 
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we arrive at:  
1

* *

1

1 1 .
2 2k k k kk k

q

qy B D y
−

=

− −   ≤ +   
   

∑
��

                (56) 

Which gives:  

( ) 1* *1 1 .
2k k kky B D

−−  ≤ + 
 

��
                   (57) 

Indeed, for 1=� , *1
2k kky B−  ≤ 

 

�
, and assuming  

( )
2 2* * * *

1

1 1
2k k k k kk

q

qB D y B D
− −

=

− + ≤ + 
 

∑
� �

 we have:  

( ) ( )
( )

2
* * *

1

2 2* * * * *

1* *

1 1 2
2 2 2

1 1

1 .

k k k k k kk k k
q

k k k k k

k k

qy B D y D y

B D D B D

B D

−

=

− −

−

− − −     ≤ + +     
     

≤ + + +

≤ +

∑
�

� �

�

� �

        (58) 

For ( )kt ∈∆ �  we have 1
2k t−

≤
� , then 1 2k t− ≤� , therefore:  

( ) ( )2* *1 .
k t

k k ky t B D≤ +                     (59) 

Taking into account the definition of *
kD  we have:  

( )

* *
2 2

2 2
* * *2*

* * *1 1 1 1 .
2 2 2

2 2 2

k k k k

k

A A
t t t t

t k k k
k

k k kk k k

A A AD
A A A

−
     
     

+ ≤ + ≤ + +     
     − − −     
     

   (60) 

Since [ ]0,1t ∈  and we assumed *
1

11 0
2 kk A+− >  , then:  

**

* *

22 2 22
* * *

* * *
11 1 e e
2!2 2 2

2 2 2

k kk k

k k

AA t tt t

A t Ak k k

k k kk k k

A A A
A A A

−−         
 + ≤ + + + ≤ ≤   
    − − −        

�  (61) 

and 

( ) ( )

*

* *
2

*
* *2 2

*1 1 1 .
2

2

k

k k

A
t

A A
tk

k k
k k

A D D
A

 
 
+ = + ≤ + 

 − 
 

           (62) 

From (61), (62) and (59) we arrive at:  

( ) ( ) [ ]
*

** * 2e 1 , 0,1 .
k

k

A
A

k k ky t B D t≤ + ∀ ∈               (63) 

The expresion ( )
*

* * 2e 1
k

k

A
A

kD+  is bounded, and clearly x ∆∈ , and since  
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( )tϕ ω ∆− ∈ , we have * 0kB →  as k →∞ , therefore we have 0ky →  as 
k →∞ , this is:  

0, ,k kTϕ ϕ ϕ ∆→∞− → ∀ ∈                  (64) 

from where it follows immediately that:  

0, ,k kUϕ ϕ ϕ ∆→∞− → ∀ ∈                  (65) 

which concludes the proof.  
Corollary 1. If ϕ  is Lipschitz, then the error of the approximation k , 

satisfies 
1
2k kU Oϕ ϕ  − ∈  

 
 . 

Proof. From (59), we have that since ϕ  is Lipschitz and ( )x t  is differentiable, 
the result follows immediately from Lemma 3.  

We now prove that the approximated solution is indeed equal to the Walsh 
approximation of the exact solution. First we state:  

Lemma 11. [21] Let ( )0c w t∞

=∑ � ��  be the Walsh expansion of a function 
( )f t , if ( )0c w t∞

=∑ � ��  converges to zero everywhere, then 0ic = , 0i ≥ .  
Now we are ready to prove:  
Theorem 12. Let ( ) ( )x t Tϕ θ= , the solution of (20) corresponding to an 

initial condition ( )ϕ θ  for [ ],0θ τ∈ − . Likewise let ( ) ( )ˆˆ kx t ϕ θ=  , the solution 
of (21), then ( ) ( )ˆ kx t x tπ= . 

Proof. We have ( ) ( )2
0

ˆ
k

x t c w t
=

= ∑ � ��  and ( ) ( )2
0

k

k x t d w tπ
=

= ∑ � �� , for some 
coefficients c�  and d� , then :  

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ .k kx t x t x t x t x t x tπ π− ≤ − + −           (66) 

Since the solution ( )x t  is continuous and from (64) we have that the two 
terms on the right converge to zero, therefore ( ) ( )2

0

k

c d w t
=

−∑ � ��
�  converges 

to zero uniformly, hence everywhere, and from Lemma 11. we have c d=� � , for 
0, ,2k=� � , this is ( ) ( )ˆ kx t x tπ=   

Corollary 2. ( ) ( )k kt U tϕ π ϕ= ,  
Lemma 13. Let X ∆⊂   compact, then for very 0ε > , there exists k ∈ , 

such that:  

, .k x x x Xπ ε− < ∀ ∈                     (67) 

Proof. Let 0ε > , since X is compact, there exist finite open balls of radius 
3
ε

 

centered around finite 1, , Nx x X∈�  that cover X, then x X∀ ∈ , 
3ix x ε

− < , 

for some { }1, ,i N∈ � . Let k such that for any { }1, ,i N∈ � , 
3k i ix x επ − < . 

Let x X∈ , then for some { }1, ,i N∈ � :  

.
k k k i i k i i

k i i k i i

x x x x x x x x

x x x x x x

π π π π

π π ε

− ≤ − + − + −

≤ − + − + − <
 

Since there are finitely many ix , the desired result follows immediately.  
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The solution of (1) will be given by: 

( ) ( ) ( ) ( ) ( ) ( )0
,0 0 , d ,x t X t X t s B s s s

τ
ϕ τ τ ϕ

−
= + + +∫          (68) 

where X is a solution matrix such that ( )0,0X I=  and ( ),0 0X t =  for 0t <  
[13]. If ϕ ∆∈  then the solution ( )x t  will be continuous and the solution 
matrix X will be the same that in  . Furthermore we will have a bounded 
operator:  

( ) ( )( ) ( ) ,x t T Tϕ θ ϕ θ= ≤                   (69) 

and like in  , we will have that T maps arbitrary bounded sequences into 
equicontinuous sequences, then by the Arzelá-Ascoli Theorem we will have that 
T is compact in ∆ . 

We now have: 
Theorem 14 The approximated monodromy operator k  converges uni- 

formly to the monodromy operator U.  
Proof. Let B  denote the closed unit ball on δ . Since T is compact, then the 

image TB  is also compact, and by Lemma 13 we will have that for any 0ε >  
there exists k such that:  

1
sup .k k
x

T Tx Txπ ε
=

− = − <                    (70) 

The fact that 0k U− →  as k →∞  follows immediately.  
With this we can establish convergence of the spectrum: 
Theorem 15. The spectrum of the approximated monodromy operator k  

converges to the spectrum of the monodromy operator U. More precisely, for 
any open set  , such that ( )σ ⊂  , then there exist K such that 
( )kσ ⊂  , for any k K≥ . Furthermore, let ( )0 Uλ σ∈  and let Γ  be a 

small circle centered at 0λ  such that any other eigenvalue of U is outside Γ , 
then the sum of the multiplicities of the eigenvalues of   within Γ  will be 
equal to the multiplicity of 0λ .  

Proof. Let Γ  be a small circle with center at ( )0 Uλ σ∈ , such that any other 
eigenvalue of U is outside this circle. Then the spectral projection of 0λ  is 
given by:  

( ) 11 d .
2π

P I U
i

λ λ−

Γ
= −∫�                     (71) 

The spectral projection of the spectrum of k  inside Γ  will be given by:  

( ) 11 d .
2πk kP I

i
λ λ−

Γ
= −∫�                     (72) 

Since 0kU − → , then kP  converges uniformly to P, therefore, there 
must exist k such that part of the spectrum of k  is in Γ . 

Since P and kP  are finite dimensional operators and since kP  converges 
uniformly to P, we will have that for sufficiently large k:  

( ) ( )dim dim ,kP P v=                      (73) 
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this is, the algebraic multiplicity of 0λ  will be the same as the algebraic 
multiplicity of the spectrum of k  contained in Γ . 

6. Approximation of the Solution of a Delayed Mathieu  
Equation 

If one considers a generalization of a Mathieu Differential Equation to a 
Functional Differential Equation, we will find that we can consider different 
cases depending on where the parametric excitation is placed [9]. We consider 
the scalar equation: 

( ) ( ) ( )cos cos .x t x t x tα β γ τ+ + = −��                 (74) 

The operator k  in (33) provides a natural way to approximate the solution of 
a periodic delay differential equation. Consider Equation (74), with 5.35α = ,  

2.5β = , 0.5γ = , and 
2π

128
τ = . Figure 3 and Figure 4, show the comparison  

between the solution obtained by simulation and the approximation of the 
solution obtained from k , for 7k =  and 10k =  respectively, for  

[ ]0,2πt ∈ . 
Figure 5 and Figure 6, show the magnitude of the error for the appro- 

ximation of the solution obtained with the approximated operator k , for 
7k =  and 10k = , respectively. 

 

 
Figure 3. Solution of (74) for [ ]0, 2πt∈ . The solid line corresponds to the simulated 

solution and the dashed line corresponds to the approximated solution for 7k = . 
 

 
Figure 4. Solution of (74) for [ ]0, 2πt∈ . The solid line corresponds to the simulated 

solution and the dashed line corresponds to the approximated solution for 10k = . 
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Figure 5. Magnitude of error of the approximated solution corresponding to 7k = . 
 

 
Figure 6. Magnitude of error of the approximate solution corresponding to 10k = . 

7. Stability Chart of the Delayed Mathieu Equation 

We will use the approximated monodromy operator to determine the stability 
chart of a particular case of delayed Mathieu equation:  

( ) ( )( ) ( ) ( ) ( )cos cos .x t t x t t x tα β γ τ+ + = −��              (75) 

Stability charts are used to to determine the stability of periodic differential 
equations with respect to some parameters. Figure 7 shows the stability diagram  

of (75) for the plane αβ  with 
2π
32

τ =  and 1.5γ = . For this equation stability  

zones are disconnected and there is no symmetry with respect to the horizontal 
axis, contrary to the case of the undelayed Mathieu equation. 

Now consider the equation:  

( ) ( ) ( ) ( )cos 2π .x t t x t x tα β δ τ + + = − ��                (76) 

This equation has been studied in [8]. Figure 8 shows the stability diagram for 
the parametric plane αβ  with 0.15δ =  and 

2π
16

τ = . 

8. Conclusion 

The use of Walsh functions provides the finite dimensional approximation (35) 
of the monodromy operator. This approximation and the analysis leading to it 
are virtually the same for any piecewise constant orthonormal basis which can be 
formed by linear combinations of Walsh functions such as Block Pulse 
Functions. The use of Block Pulse Functions provides a computationally  
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Figure 7. Stability diagram for the parametric plane αβ of Equation (75). 
Asymptotically stable zones (grey) and unstable zones (white) are shown. 

 

 
Figure 8. Stability diagram for the parametric plane αβ of Equation (76). 
Asymptotically stable zones (grey) and unstable zones (white) are shown. 

 
inexpensive method that is useful when obtaining stability diagrams. The rate of 
decay of the error will be maintained regardless of the orthonormal set used [27]. 
The use of Block Pulse Functions provides a method with a light computational 
load, due to the simplicity of the functions and the sparse structure of the 
involved matrices. Implementation of the algorithm is straightforward, it is only 
necessary to compute matrices (42) corresponding to the matrices ( )A t  and 
( )B t  in (1), and to substitute the remaining matrices in Section 4.1. Furthermore, 

the approximated monodromy operator might be used to provide insight in the 
nature of the PDDE, specially with a second order equation if the solution space 
is confined to a two dimensional vector space [28], since a similar approximation 
with the use of Block Pulse Functions has been used to analytically prove 
properties of Periodic Ordinary Differential Equations. [29]. However a downside 
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of the proposed method lies in the rate of convergence, which for certain cases 
is slower than the convergence of Fourier functions, and is certainly slower than 
the rate of convergence of approximations with, for example, Chebyshev 
polynomials.  
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