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Abstract 
Certain distributions do not have a closed-form density, but it is simple to 
draw samples from them. For such distributions, simulated minimum Hel-
linger distance (SMHD) estimation appears to be useful. Since the method is 
distance-based, it happens to be naturally robust. This paper is a follow-up to 
a previous paper where the SMHD estimators were only shown to be consis-
tent; this paper establishes their asymptotic normality. For any parametric 
family of distributions for which all positive integer moments exist, asymp-
totic properties for the SMHD method indicate that the variance of the 
SMHD estimators attains the lower bound for simulation-based estimators, 
which is based on the inverse of the Fisher information matrix, adjusted by a 
constant that reflects the loss of efficiency due to simulations. All these fea-
tures suggest that the SMHD method is applicable in many fields such as 
finance or actuarial science where we often encounter distributions without 
closed-form density. 
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1. Introduction 

In actuarial science and finance, we often have to fit data with a distribution that 
is continuous. In several instances, though the distribution does not have a 
closed-form density, it is not complicated to simulate from it. Such distribution 
can be infinitely divisible. Also, new distributions can be created by means of a 
mixing mechanism. 
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For those distributions, Luong and Bilodeau [1] have introduced simulated 
minimum Hellinger distance (SMHD) estimation. They have shown that the 
SMHD estimators are consistent in general with less regularity conditions 
needed than the maximum likelihood estimators and that they have the potential 
to be robust and have high efficiency. 

It is conjectured that, asymptotically, the SMHD estimators could attain the 
lower bound given by the Fisher information matrix adjusted by a factor which is a 
constant reflecting the loss of efficiency due to simulations from the parametric  

models. This constant can be expressed as 
11
τ

 + 
 

, with 
U
n

τ =  assumed to  

remain constant, where n is the original sample size of the data and U is the si-
mulated sample size used to estimate the model density function or distribution. 
This factor also appears in various methods of estimation based on simulations 
and reflects the loss of efficiency due to the model density or distribution having 
to be estimated using a simulated sample drawn from the model distribution. 
Section 2 of the paper further discusses this factor which appears in simulated 
unweighted minimum chi-square method and simulated quasi-likelihood me-
thod. 

In this paper, which can be viewed as a follow-up to the previous paper, we 
shall show that, indeed, under some regularity conditions, the SMHD estimators 
will follow an asymptotic normal distribution, and the asymptotic covariance 
matrix is given by the inverse of the Fisher information matrix adjusted by the  

constant 
11
τ

 + 
 

, as conjectured in Luong and Bilodeau [1]. Consequently, the  

SMHD estimators are fully efficient among the class of simulated estimators, just 
as the maximum likelihood (ML) estimators are in the classical set-up. 

We shall closely follow the work of Tamura and Boos [2] and restrict our-
selves to the case of the univariate parametric family to establish asymptotic 
normality of the SMHD estimators. Under those restrictions, Tamura and Boos 
worked with kernel density estimates with nonrandom bandwidths and the as-
sumption that the parametric family has a closed-form density. Under those as-
sumptions, they can relax the requirement that the parametric family needs a 
compact support, as given by Beran [3] in his seminal paper. Rather, they have 
obtained the result that, in general, if parametric families have positive integer 
moments of all orders, then the minimum Hellinger distance (MHD) estimators 
in the univariate case will have the same efficiency as the ML estimators and the 
asymptotic covariance matrix can be based on the Fisher information matrix just 
as for the ML estimators. 

We shall call version D the version based on a parametric family having a 
closed-form density. We extend the results to a simulated version, version S, 
where the parametric family requires a density estimate using a random sample 
drawn from the parametric family as introduced in Luong and Bilodeau [1]. The 
results we obtain in this paper can be summarized as follows: under the same 
conditions required by Tamura and Boos [2], the SMHD estimators are fully ef-
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ficient among the class of simulated estimators just as the MHD estimators are 
fully efficient when they are based on a parametric family with a closed-form 
density. It only requires an adjustment by a constant which depends on τ, the ra-
tio between the sample size U drawn from the parametric family and the original 
sample size n of the data. Since the constant τ can be controlled, the efficiency of 
SMHD estimators will be close to that of the MHD estimators of the classical 
version D. 

Furthermore, since minimum distance estimators are in general robust, it 
makes SMHD estimators applicable whenever there is a need for robustness and 
evidence that data are contaminated. 

In actuarial science and finance, there are many useful densities without 
closed forms with semi-heavy tails which satisfy the requirements needed for 
asymptotic efficiency of the SMHD estimators. For examples in actuarial science, 
see Klugman, Panjer and Wilmot [4], or Luong [5]. For examples in finance, see 
Schoutens [6], or Grigoletto and Provasi [7]. 

To establish asymptotic normality, we shall also make use of Theorem 7.1, 
given by Newey and McFadden [8], that provides conditions and results for es-
timators obtained by minimizing or maximizing a nonsmooth objective function. 
In addition, we need the concepts of continuity in probability and differentiabil-
ity in probability, as they will be used in this paper to justify the asymptotic dis-
tribution of SMHD estimators. 

For count data, Luong, Bilodeau and Blier-Wong [9] used a similar approach 
to establish asymptotic normality for the SMHD estimators in the discrete case. 

The paper is organized as follows. The classical version, version D, is 
re-examined in section 2. We also extract the relevant results given by Tamura 
and Boos [2] which are subsequently needed for developing the simulated ver-
sion, i.e., version S. Version S is studied in section 3. In section 3.1, we define the 
notions of continuity in probability and differentiability in probability. Those 
two notions are needed to apply the Theorem 7.1 given by Newey and McFad-
den [8]. Section 3.2 shows that the Theorem 7.1 is applicable to SMHD estima-
tion. Hence, though the objective function to be minimized is nonsmooth, we 
can establish asymptotic normality for the SMHD estimators and show that the 
SMHD estimators attain the lower bound within the class of simulated estima-
tors just as, for the parametric model, the MHD or ML estimators attain the 
lower bound based on the Fisher information matrix when simulations are not 
needed because the parametric model density has a closed-form expression. 

2. Hellinger Distance Estimation: Classical Results 

In this section, we shall review some of the results already established by Tamura 
and Boos [2] but will focus on the univariate set-up for Hellinger distance esti-
mation. Subsequently, building on their work, we shall establish the asymptotic 
normality of Hellinger distance estimators for the simulated version, i.e., 
asymptotic normality of the SMHD estimators, in section 3. SMHD estimators 
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have been introduced and consistency for version S has been established in our 
previous paper; see Luong and Bilodeau [1]. Hence, section 3 will complete the 
results already obtained. 

We shall define some notation before restating Theorem 4.1 given by Tamura 
and Boos [2] as Theorem 1 below. Their theorem is for the multivariate case but, 
when restricted to the univariate case, some simplifications can be made as the 
bias term in their theorem will converge to zero in probability, i.e.,  

0p
nnB → , and thus can be ignored. Also, we want to use the notation that is 

directly related to the notions of Fisher information matrix and ML estimation. 
We assume we have independent and identically distributed observations 

1, , nX X  from a parametric family { }fθ , with ( )1, , mθ θ ′= θ , and the true 
vector of parameters is denoted by 0θ . For version D as considered by Tamura 
and Boos [2], it leads to minimizing the following objective function: 

( ) ( ) ( ){ }21 2 1 2
dn nQ f x f x x

∞

−∞
= −      ∫ θθ ,             (1) 

where 

( ) 1

1 n i
n i

n n

x xf x
nh h

ω
=

 −
=  

 
∑                     (2) 

is a kernel density estimate based on the sample with nonrandom bandwidth nh , 
and ω is the kernel density used to obtain MHD estimators. This is version D 
and we shall state the relevant results in this section. 

For version S, which we will consider in section 3, the model density ( )f xθ  
is replaced by a density estimate ( )Sf xθ  that is constructed similarly to ( )nf x  
but using a random sample of size U nτ=  drawn from ( )f xθ  instead of the 
original sample given by the data. SMHD estimators are obtained by minimizing 

( ) ( ) ( ){ }21 21 2
dS S

n nQ f x f x x
∞

−∞
 = −    ∫ θθ              (3) 

and will be discussed in section 3. 
Let ( )1 2s f=θ θ  and denote the vector of its first partial derivatives by sθ  

and the matrix of its second partial derivatives by sθ . All the partial derivatives 
are assumed to be continuous with respect to θ . 

It is easy to see that, if we can interchange the order of integration and differ-
entiation, ( )df x x

∞

−∞∫ 

θ  is an m m×  matrix with entries 0, where fθ  is the 
matrix of second partial derivatives of fθ . It is assumed implicitly that this re-
quirement is met subsequently. 

From the definitions of sθ  and sθ , and with the previous assumption, we 
have 

( )1 2

log1
42

f
f

∂
=

∂
sθ θ

θ
θ

                        (4) 

and 

( ) ( )( ) ( )1 2
d d

4
I

s f x x x
∞ ∞

−∞ −∞
′− = =  ∫ ∫ s s θ θ θ θ

θ
,            (5) 
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where ( )I θ  is the commonly used Fisher information matrix for ML estima-
tion. 

The following equalities might be used to derive Equations (4) and (5). Using 
differentiability rules, we have 

( )1 2

1
2

f
f

∂
=

∂
s θ
θ

θ
θ

 

and 

( ) ( )

2

3 2 1 2

1 1
4 2

f f fs
f f

∂ ∂ ∂
= − +

′ ′∂ ∂ ∂ ∂


θ θ θ
θ

θ θ
θ θ θ θ

 

if 
2

0
fE

 ∂
= ′∂ ∂ 

θ
θ θ θ

 

and 

( )log logf fE I∂ ∂  = ′∂ ∂ 
θ θ

θ θ
θ θ

, 

by assuming that we can interchange the order of integration and differentiation, 
and [ ]E ⋅θ  is the expectation of the expression inside the brackets under fθ . 

Now, we consider the following expression, 

( ){ } ( )
11 2

1 2d
2

s f x x
f

−∞

−∞
= −   ∫

s


θ
θ θ θ

θ

ψ ,               (6) 

as given by Tamura and Boos [2] (page 225), which can be re-expressed as 

( ) 1 log fI
− ∂

=    ∂
θ

θψ θ
θ

,                     (7) 

where ( )I θ  is the Fisher information matrix and 
log f∂
∂

θ

θ
 is the vector of the 

score functions. 
Tamura and Boos [2] also define the expression ( )1 22 f=θ θ θρ ψ , which can 

be re-expressed as 

( ) 1
4 I

−
=    sθ θρ θ .                       (8) 

With these equalities and simplifications, we shall restate Theorem 4.1 given 
by Tamura and Boos [2] (pages 225-226) as Theorem 1, which is version D as 
given below. We shall also highlight some of the results in their proof to be used 
for version S in the next section together with Theorem 7.1 given by Newey and 
McFadden [8]. The proof of Theorem 1 can be found in the proof of Theorem 
4.1 by Tamura and Boos [2]. 

Theorem 1 
If we can find a sequence of positive numbers { }nα  with nα →∞  as 

n →∞ , then, provided the following conditions 1 - 8 are met, the MHD estima-
tors θ̂  obtained by minimizing Equation (1) have an asymptotic normal dis-
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tribution and attain the Cramer-Rao lower bound based on the Fisher informa-
tion matrix, i.e., 

( ) ( )( )1
0

ˆ 0,Ln N I
−

− →   θ θ θ  

and θ̂  is first-order as efficient as ˆ
MLθ , where ˆ

MLθ  is the vector of classical 
ML estimators. 

Here are the eight conditions to meet: 
1) The kernel density ω used to construct the density estimate has a compact 

support W and the bandwidth nh  used satisfies the property  
( ) 1 0n nh nh −+ →  as n →∞ . 

2) The parameter space Θ  is compact and 0θ  is an interior point. 
3) The parameterization of the model has no problem of identification, i.e., if 

1 2≠θ θ , then 
1 2

f f≠θ θ . 
4) sup Pr 0t W n nn X h t α∈  − > →   as n →∞ . 

5) The ratio 

( )log
d

0

n

n

n

f x
x

nh

α

α−

∂
∂

→
∫ θ

θ
 as n →∞ . 

6) The sequence nM  with 
( )
( )

sup sup
n

n
n t Wx

f x h t
M

f xα ∈≤

+
= θ

θ

 is bounded as  

n →∞ . 
7) The Fisher information matrix ( )I θ  exists and we can interchange the or-

der of differentiation and integration so that Equation (5) holds. 
8) The function ( )1 2s f=θ θ  has first partial derivatives vector sθ  and second 

partial derivatives matrix sθ , and all the partial derivatives are continuous 
with respect to θ . 

Conditions 1, 2 and 3 are standard and easily satisfied. Regarding condition 4, 
Tamura and Boos [2] commented that it is almost equivalent to 1 lE X  < ∞  , 

0l > . It is not difficult to see this equivalence as we often restrict our attention 
to l

n nα =  and the use of Markov’s type of inequality allows us to obtain this 
equivalence. Furthermore, Tamura and Boos [2] also commented that condi-
tions 4 and 5 will be satisfied if X has all positive integer order moments. Despite 
this restriction, many useful distributions in finance fall into this category, even 
when the distribution has semi-heavy tails as mentioned earlier. Condition 6, 
imposed directly on the parametric family, is often met for parametric families 
encountered in practice. As for the bandwidth nh , we can choose nh  such that 

0nh →  and nnh →∞  as n →∞ , thus meeting the requirements set in con-
dition 1 for the bandwidth. 

We shall follow these recommendations and will show, in section 3.2, that, for 
version S, the SHMD estimators given by the vector ˆSθ  which minimizes the 
objective function as given by Equation (3) will have the following asymptotic 
normality distribution: 

( ) ( ) 1
0

1ˆ 0, 1LSn N I
τ

− − → +     

 
 
  

θ θ θ . 
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The factor 
11
τ

 + 
 

 also appears in other simulated methods of inference. It is  

used to discount the efficiency of the minimum unweighted chi-square method 
to obtain the efficiency of the simulated version; see Pakes and Pollard [10] 
(page 1069). Similarly, it is used as a discount factor for obtaining the efficiency 
of the simulated quasi-likelihood method by discounting the efficiency of the re-
lated quasi-likelihood method; see Smith [11] (page S69). This factor can be in-
terpreted as a universal adjusting factor when the true distribution is replaced by 
an estimate using simulated samples. With this interpretation, the SMHD esti-
mators can be viewed as estimators which attain the lower bounds among the 
class of estimators based on simulated techniques. 

Before we proceed, we would like to extract a few results given by Tamura and 
Boos [2] in their proof of Theorem 4.1. These results will be needed to prove 
asymptotic normality for version S. For version D, from the proof of their Theo-
rem 4.1 and by taking into account the bias 0p

nnB →  for the univariate 
case, we have the following results using equality in distribution: 

( ) ( ) ( ){ }1 2 1 2ˆ dd
nn n f x f x x

∞

−∞
− = −      ∫ θ θθ θ ρ            (9) 

( )
( ) ( )1 2 d

2
d

nn f x f x x
f x

∞

−∞
= −  

  
∫ θ

θ

θ

ρ
              (10) 

( ) ( ) dd
nn f x f x x

∞

−∞
= −  ∫ θ θψ                  (11) 

( )d ,d
nn F F

∞

−∞
= −∫ θ θψ                      (12) 

where nF  is the commonly used sample distribution function and Fθ  is the 
model distribution function. 

Now, under the commonly used assumption 
( )log f X

E
∂ 

= ∂ 

θ
θ θ

0 , justified  

if interchanging the order of integration and differentiation is permissible, the 
last equality can be re-expressed as 

( ) ( ) ( )1

1

log1ˆ d n i
i

f X
n I

n
−

=

∂
− =    ∂∑ θθ θ θ

θ
,            (13) 

from which we can see easily that θ̂  is as efficient as ˆ
MLθ . Besides, θ̂  is ro-

bust, whereas that may not be the case for ˆ
MLθ . We can also see that, using 

Equations (9)-(13), we have the following equalities: 

( ) ( ){ }

( )
( ) ( )

1 2 1 2

1 2

2 d

d

n

d
n

n f x f x x

n f x f x x
f x

∞

−∞

∞

−∞

−      

= −  
  

∫

∫

s

s





θ θ

θ
θ

θ

             (14) 

( ) ( ) ( )
log1 d

2
d

n

f x
n f x f x x

∞

−∞

∂
= −  ∂∫ θ

θθ
            (15) 

( )
1

log1
2

n id
i

f X
n =

∂
=

∂∑ θ

θ
                  (16) 
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Beran [3] had obtained these results earlier but using a compact support as-
sumption for the parametric family and random bandwidths; see Equations (3.7) 
and (3.12) given by Beran [3] (pages 451-452). 

3. Asymptotic Normality Distribution for SMHD Estimators 

The equalities given by Equations (9)-(16) will be used for establishing asymp-
totic normality for SMHD estimators in section 3.2. A few notions, namely the 
notions of continuity in probability and differentiability in probability, which 
extend the related notions in classical real analysis for nonrandom functions, are 
needed and they will be presented in section 3.1. 

3.1. Some Preliminary Notions 

These notions have been introduced and discussed for SMHD estimation for 
count data, see Luong, Bilodeau and Blier-Wong [9] (pages 201-203). They are 
reproduced below to make it easier to follow the results of this paper and make 
the paper more self-contained. 

Definition 1 (Continuity in probability) 
A sequence of random functions ( ){ }ng θ  is continuous in probability at *θ  

if ( ) ( )*p
n ng g→θ θ  whenever *→θ θ . Equivalently, for any 0ε >  and 

1 0δ > , there exist 0δ ≥  and 0n  such that 

( ) ( )*
1Pr 1n ng g ε δ − ≤ ≥ − θ θ , for 0n n≥ , 

whenever * δ− ≤θ θ . This can be viewed as a stochastic version, or an exten-
sion, of the classical definition of continuity in real analysis. 

It is well known that the supremum of a continuous function on a compact 
domain is attained at a point in the compact domain; see Davidson and Donsig 
[12] (page 81) or Rudin [13] (page 89) for this classical result. The equivalent 
property for a random function which is only continuous in probability is that 
the supremum of the random function is attained at a point in the compact do-
main in probability. This property will be given as property 1 given below. 

In order to use Theorem 7.1 of Newey and McFadden [8], we need to consider 
the compact domain of the form 

( ) { }0 0, n nS δ δ= − ≤θ θ θ θ , 

and we note that, as n →∞ , 0nδ → , and ( )0 0, nS δ →θ θ . 
Property 1 
The random function ( )ng θ , which is continuous in probability and 

bounded in probability on a compact set Θ , will attain its supremum on a point 
of Θ  in probability. 

The justification of this property is similar to the deterministic case, which is a 
classical result in real analysis. For the random case, again, it suffices to pick a 
sequence { }jθ  in Θ  with the property that ( ) ( )supp

n j ng g∈Θ→ θθ θ . Since 
Θ  is compact, we can extract a subsequence { }kj

θ  from { }jθ  having the 
property **

kj
→θ θ  which belongs to Θ . Then ( ) ( )**

k

p
n j ng g→θ θ  and 

https://doi.org/10.4236/ojs.2018.85056


A. Luong, C. Bilodeau 
 

 

DOI: 10.4236/ojs.2018.85056 854 Open Journal of Statistics 
 

( ) ( )**sup p
n ng g∈Θ =θ θ θ . 

Beside the concept of continuity in probability, we also need the concept of 
differentiability in probability which is given below. 

Definition 2 (Differentiability in probability) 
A sequence of random functions ( ){ }ng θ  is differentiable with respect to  

θ  at 0θ  in probability if 
( ) ( ) ( ) ( )

0
lim n j n jp

n

g e g
v

ε

ε

ε→

+ −
=

θ θ
θ , for  

1,2, ,j m= 
, where ( )0,0, ,0,1,0, ,0j

′=e    with 1 appearing only in the jth 
entry. We also require that ( ) ( )j

nv θ  be continuous in probability for  
1,2, ,j m= 

. 
We can let the derivatives vector be denoted as ( ) ( ) ( ) ( ) ( )( )1 , , m

n n nv v ′=v θ θ θ . 
From definition 2, we can see that differentiability in probability is a notion 

which parallels the classical notion of differentiability, where each partial deriva-
tive of the nonrandom function is required to be continuous. 

A similar notion of differentiability in probability has been used in the sto-
chastic processes literature; see Gusak et al. [14]. A more stringent differentiabil-
ity notion, namely differentiability in quadratic means, has been introduced to 
study the local asymptotic normality property for a parametric family; see Keen-
er [15] (page 326). Also, see Pollard [16] for the notion of stochastic differentia-
bility, which is also more stringent than differentiability in probability. 

Below are the assumptions we need to make to establish asymptotic normality 
for SMHD estimators in section 3.2, and they appear to be satisfied in general. 

For the simulated version, we implicitly assume that the sample size U used to 
draw samples from the parametric family { }fθ  is proportional to the sample 
size n, i.e., U nτ= . Moreover, the same seed is used across different values of 
θ  to draw the simulated samples. Under those assumptions, { }Sfθ  can be 
viewed as a proxy model for { }fθ . However, unlike other methods of simulated in-
ference that require that we look for another parametric model that is different from 
the model { }fθ , the proxy model here is directly based on the parametric model. 

Assumption 1 
The density of the parametric model has the continuity property with 

( ) ( )*

1 21 2f f→θ θ
 whenever *→θ θ . 

Assumption 2 
The simulated counterpart has the continuity in probability property with 

( ) ( )*

1 21 2 pS Sf f→θ θ
 whenever *→θ θ . 

In general, assumption 2 is met if assumption 1 is. 
Assumption 3 
( )1 2fθ  is differentiable with respect to θ . 
We also need the following assumption for applying Theorem 7.1 given by 

Newey and McFadden [8] (pages 2185-2186). 
Assumption 4 

( )1 2Sfθ , with the same seed being used across different values of θ , is dif-
ferentiable in probability with the same derivatives vector as fθ , namely 
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1

, ,
m

f f
θ θ

 ∂ ∂
=   ∂ ∂ 

s 


θ θ
θ .                   (17) 

This assumption appears to be reasonable as ( ) ( )
1 2 1 2S pf f→θ θ  and 

( )1 2Sfθ  is continuous in probability. Also, the partial derivatives in probability 
can be found using definition 2, which involves considering limits which are 
similar to the deterministic case of real analysis. We can summarize the assump-
tion as follows: by assuming ( )1 2fθ  to be differentiable, we have that ( )1 2Sfθ  
is differentiable in probability. This appears to be reasonable. 

3.2. Asymptotic Normality 

For version S, because the objective function to be minimized is nonsmooth, we 
will use Theorem 7.1 of Newey and McFadden [8] (pages 2185-2186) to establish 
the asymptotic normality for SMHD estimators. The ideas behind Theorem 7.1 
can be summarized as follows. 

The objective function ( )S
nQ θ  is nonsmooth and the estimators are given by 

the vector θ  which is obtained by minimizing ( )S
nQ θ . We can consider the 

vector *θ  which is obtained by minimizing a smooth function ( )a
nQ θ  which 

approximates ( )S
nQ θ . We assume ( )S

nQ θ  is differentiable in probability at 

0θ , with the derivatives vector given by ( )0nD θ . 
Also, if ( ) ( )pS

nQ Q→θ θ  and we assume that ( )Q θ  is nonrandom and  

twice differentiable with ( ) ( )2
0

0

Q
H H

∂
= =

′∂ ∂

θ
θ

θ θ
, and ( )Q θ  attains its mini-

mum at 0=θ θ , then we can define 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0
1
2

a S
n n nQ Q H′ ′ = + − + − − Dθ θ θ θ θ θ θ θ θ .      (18) 

The vector *θ  which minimizes ( )a
nQ θ  can be obtained explicitly since 

( )a
nQ θ  is a quadratic function of θ . It is given by ( )* 1

0 0nH −= − Dθ θ θ . Us-
ing equality in distribution, we have 

( ) ( )* 1
0 0

d
nn H n−− = − Dθ θ θ .               (19) 

If the remainder of the approximation is small, we also have 

( ) ( ) ( )* 1
0 0 0

d d
nn n H n−− = − = − Dθ θ θ θ θ .         (20) 

Before defining the remainder term ( )nR θ , we note that the following ap-
proximation ( )b

nQ θ , 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0
b S
n n nQ Q Q Q′ = + − + − Dθ θ θ θ θ θ θ ,          (21) 

can be viewed as equivalent since ( ) ( ) ( ) ( )0 0 0
1
2

Q Q H′− ≈ − −θ θ θ θ θ θ  when 

we account for the fact that, since ( )Q θ  is minimized at 0=θ θ , 

( )0 0
Q∂

=
∂

θ
θ

. 
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The remainder term is defined as 

( )
( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0 0

0

S S
n n n

n

n Q Q Q Q
R

′     − − − − −    
=

−

Dθ θ θ θ θ θ θ
θ

θ θ
,(22) 

and, for the approximation to be valid, we require that  
( )

0
sup 0

n

p
nRδ− ≤ →θ θ θ  as n →∞  and 0nδ → . 

The following Theorem 2 is essentially Theorem 7.1 given by Newey and 
McFadden [8], except for the following three differences. First, we restate it for 
estimators obtained by minimizing, instead of maximizing, an objective function. 
Second, we require ( )

0
sup 0

n

p
nRδ− ≤ →θ θ θ , which is slightly more stringent 

than the original condition (v) of their Theorem 7.1. Third, we require com-
pactness of the parameter space Θ . 

Theorem 2 

Suppose that ( ) ( ) 1infS S
n n pQ Q

n
ο∈Θ

 ≤ +  
 



θθ θ , and 

1) ( )Q θ  is minimized at 0=θ θ ; 
2) 0θ  is an interior point of the compact parameter space Θ ; 
3) ( )Q θ  is twice differentiable at 0=θ θ  with nonsingular matrix H; 
4) ( ) ( )0 0,L

nn N K→D θ ; 

5) ( )
0

sup 0
n

p
nRδ− ≤ →θ θ θ  as n →∞  and 0nδ → . 

Then, ( ) ( )1 1
0 0,Ln N H KH− −− →θ θ . 

Regularity conditions 1 - 3 of Theorem 2 can easily be checked. Condition 4 is 
a consequence of the results already obtained for version D. The most difficult 
condition to be verified is condition 5. Because it involves technicalities, its veri-
fication will be done toward the end of this section. 

Here, assuming all conditions can be validated, we apply Theorem 2 for 
SMHD estimation with ˆS=θ θ . 

Clearly, the objective function ( )S
nQ θ  is as defined by Equation (3) and 

( ) ( ) ( ) ( ){ }0

21 2 1 2
dpS

nQ Q f x f x x
∞

−∞
 → = −    ∫ θ θθ θ ,        (23) 

with ( ) ( )0

1 21 2 p
nf f→ θ  and ( ) ( )

1 2 1 2pSf f→θ θ  as n →∞ . 
Under the differentiability assumptions for sθ , the second derivatives matrix  

of ( )Q θ  at 0=θ θ  is given by 
( ) ( )( ) ( )

2
0 12 d

2
Q

H x I
∞

−∞

∂ ′= = =
′∂ ∂ ∫ s s θ θ

θ
θ

θ θ
.  

Therefore, 

( ) 11
02H I

−−  =  θ .                        (24) 

Using assumptions 1 - 4 and by performing limit operations as for finding de-
rivatives in real analysis, we can conclude ( )S

nnQ θ  is differentiable in prob-
ability with derivatives vector ( )0nnD θ  at 0=θ θ  and 

( ) ( ) ( ){ }0 0

1 21 2
0 2 dS

n nn n f x f x x
∞

−∞
 = − −    ∫D sθ θθ ,            (25) 
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which can be re-expressed as 

( ) ( ) ( ){ }
( ) ( ){ }

0 0

0 0 0

1 21 2
0

1 2 1 2

2 d

2 d

n n

S

n n f x f x x

n f x f x x

∞

−∞

∞

−∞

 − = −    

   − −   

∫

∫

D s

s





θ θ

θ θ θ

θ
        (26) 

Let us denote the first and second terms of Equation (26) by 1Y  and 2Y  re-
spectively. Then ( )0 1 2nn− = −D Y Yθ , with 1Y  and 2Y  being independent 
since the simulated sample is independent from the original sample. 

( )0nn− D θ  will have a limit distribution, hence it is bounded in probability 
and ( )nn− D θ  will be continuous in probability for  

( ) { }0 0, n nS δ δ∈ = − ≤θ θ θ θ θ  for 0n n≥ , where 0n  is a positive integer, by 
invoking the Dominated Convergence Theorem if necessary. 

We have ( )1 1 1
0 1 2

d
nH n H H− − −− = −D Y Yθ , and, using Equations (24)-(26), 

we can conclude 

( ) ( ) 11
0 0

10, 1n
dH n N I

τ
−−    − +   

 
→ 

 



D θ θ ,           (27) 

which implies 

( ) ( ) 1
0 0

1ˆ 0, 1dSn N I
τ

−   − → +   

 
 
  

θ θ θ .            (28) 

From the results given by Equations (27) and (28), asymptotic properties sug-
gest that the SMHD estimators will have high efficiency in large samples as the 
lower bound for simulated estimators is attained. We should also keep 10τ ≥  if 
possible to minimize the loss of efficiency due to simulations and the same seed 
should be used to generate simulated samples across different values of θ . 

To assess the performance of the SMHD estimators in finite samples, we need 
simulation studies which are based on the parametric family being considered as 
asymptotic theory, despite being quite general, might not be applicable for finite 
samples, especially with sample size 100n ≤ . 

We now proceed to verify ( )
0

sup 0
n

p
nRδ− ≤ →θ θ θ , where 

( )
( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0 0

0

S S
n n n

n

n Q Q Q Q
R

′     − − − − −    
=

−

Dθ θ θ θ θ θ θ
θ

θ θ
. 

Once again, ( ) { }0 0, n nS δ δ= − ≤θ θ θ θ  is a shrinking compact set: we note 
that, as n →∞ , 0nδ → , and ( )0 0, nS δ →θ θ . 

In order to confirm that Theorem 2 is applicable, we need to study the prop-
erties of ( )nR θ . Given that ( )nR θ  can be defined at 0=θ θ  as ( )0 0nR =θ , 
we would like to establish the following for ( )nR θ : 
1) ( )nR θ  is bounded in probability. 
2) ( )nR θ  is continuous in probability for all ( )0 , nS δ∈θ θ , for 0n n≥ . 

Clearly, if conditions 1 and 2 hold, then ( )
0

sup
n nRδ− ≤θ θ θ  is attained at a 

point ( )0 ,n nS δ∗ ∈θ θ  in probability for 0n n≥  as ( )nR θ  is continuous in 
probability. It would then follow that, for 0n n≥ , we have the following equality 
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in probability: 

( ) ( )0

*sup
n

p
n n nR Rδ− ≤ =θ θ θ θ , 

with ( ) ( )*
0 0p

n n nR R→ =θ θ  as *
0n →θ θ . Therefore, Theorem 2 will be jus-

tified for SMHD estimators. 
We still need to establish the above results. 
Define ( ) ( ) ( )S

n nnG n Q Q = − θ θ θ . Then, clearly, ( )nnG θ  is differ-
entiable in probability at 0=θ θ  with the derivatives vector given by  

( )0n
′  D θ  since 

( )0 0
Q∂

=
∂

θ
θ

 and ( )0 0Q =θ . 

We also have ( ) 0p
nR →θ  as 0→θ θ . If we define ( )0 0nR =θ , we can 

extend ( )nR θ  to be continuous in probability for ( )0 , nS δ∈θ θ , including the 
point 0=θ θ , for 0n n≥ . 

The expression ( ) ( )0n nnG nG−θ θ  can be assumed to be bounded in 
probability in a neighborhood of 0θ , since it can be approximated by 

( ) ( )0 0nn ′  − D θ θ θ  and ( )0nnD θ  has a limit distribution as discussed ear-
lier; see Equations (26) and (27). 

Note that we can also write 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }
0 0 0

0 0 0 0

n n n

S S
n n n

nG nG n

n Q Q Q Q

′ − − − 

′     = − − − − −    

D

D

θ θ θ θ θ

θ θ θ θ θ θ θ
 

Therefore, it is not difficult to see that the above expression is continuous in 
probability. As a result, ( )nR θ  is bounded in probability and continuous in 
probability, and so is ( )nR θ . 

Hence, the use of Theorem 2 is justified for the SMHD estimators. 
Moreover, SMHD estimators are robust as they are obtained by minimizing a 

distance; see Donoho and Liu [17] and Lindsay [18]. 

4. Conclusion 

Asymptotic properties established in this paper suggest that SMHD estimators 
are very efficient for large samples for parametric models where all the positive 
integer moment exists. For the subset of such parametric models that have no 
closed-form densities, as often are encountered in finance and actuarial science, 
SMHD estimators appear to be very suitable for large samples based on asymp-
totic normality results obtained. For any parametric family failing to have finite 
moments of all positive integer orders, SMHD estimators remain consistent and 
robust, but large-scale simulation studies seem to be necessary to study the effi-
ciency of the estimators for the specific parametric model being considered. 
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