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Abstract 
A floating-point wavelet-based and an integer wavelet-based image interpola-
tions in lifting structures and polynomial curve fitting for image resolution 
enhancement are proposed in this paper. The proposed prediction methods 
estimate high-frequency wavelet coefficients of the original image based on 
the available low-frequency wavelet coefficients, so that the original image 
can be reconstructed by using the proposed prediction method. To further 
improve the reconstruction performance, we use polynomial curve fitting to 
build relationships between actual high-frequency wavelet coefficients and es-
timated high-frequency wavelet coefficients. Results of the proposed predic-
tion algorithm for different wavelet transforms are compared to show the 
proposed prediction algorithm outperforms other methods. 
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1. Introduction 

Resolution of an image has been always an important issue in many image- and 
video-processing applications. Image interpolation can be used for image resolu-
tion enhancement and many interpolation techniques have been developed to 
increase the quality of this task. Image and video codings, such as spatial scala-
bility and transcoding, rely on image interpolation methods. Hence, these re-
quire fast and accurate interpolation methods. 
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Recently, various interpolation methods are proposed to improve the perfor-
mance of image resolution enhancement, such as bilinear [1] and bicubic [2] in-
terpolation methods. Bilinear is simple to be implemented and the computation 
complexity is low. However, this method fails to capture the value changes near 
the edge and blurs the image details. Bicubic interpolation is another popular 
approach used for resolution enhancement. It has high accuracy but its high 
computation complexity results in heavy time consumption. Besides, the per-
formance of bicubic convolution is poor in edge regions of images. In [3], Guo et 
al. combined bilinear interpolation and discrete cosine transform (DCT) to im-
prove qualities of images, but it still suffers from high computation time. 

Another approach for image interpolation is wavelet-based method which can 
mitigate the problems of blurring and contrast abating. These algorithms predict 
the high-pass filtered coefficients, and the reconstructed image can be obtained 
by these estimated coefficients. Hence, the main problem of wavelet-based in-
terpolation is how to estimate the high-pass coefficients correctly. In [4], detail 
coefficients in the strong edge area are estimated using the regularity of wavelet 
transform in coarser subbands. However, it only estimates the coefficients on the 
region with strong edges, so that its improvement is limited. Temizel and Vla-
chos [5] used a method that exploits wavelet coefficient correlation in a local 
neighborhood sense and employs linear least-squares regression to estimate the 
unknown detail coefficients for image-resolution enhancement. Piao et al. [6] 
proposed an image-resolution enhancement approach using intersubband cor-
relation in the wavelet domain. However, linear least-squares regression cannot 
obtain the optimal solutions. The methods based on the probability model 
usually employ the hidden Markov tree (HMT) model. The HMT scheme can 
effectively capture the interscale transition characteristics and intrascale statistics. 
This scheme reflects magnitude of coefficients, but none of the signs of coeffi-
cients is reflected. Besides, the accuracy of the prediction of the signs of coeffi-
cients is limited [7] [8]. 

Kim et al. [9] used the multilayer perceptron (MLP) neural networks to train a 
mapping from the coarser scale to the finer scale for each specified image. The 
weakness of this method is the limited scaling factor. Lee et al. [10] proposed a 
different Haar-transform-based lifting filter to predict high-frequency subbands 
from the LL-band for wavelet-based interpolation scheme to enhance resolution 
of medical images. Guo et al. [11] proposed novel 5/3 and 9/7 wavelet-based 
image interpolations in lifting structures for image resolution enhancement. 
Demirel and Anbarjafari [12] proposed the methods by using difference between 
low resolution image and interpolated low-frequency subband as an interme-
diate stage for estimating the high-frequency subbands to achieve a sharper sa-
tellite image. Chavez-Roman et al. [13] designed the technique which is based on 
additional edge preservation procedure and mutual interpolation between the 
high frequency subband images performed via the discrete wavelet transform 
(DWT) and the input low resolution image. In [14], a wavelet-domain approach 
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based on the dual-tree complex wavelet transform (DT-CWT) and nonlocal 
means (NLM) is proposed for resolution enhancement of the satellite images. In 
[15] [16], an image resolution enhancement technique based on interpolation of 
the high frequency subband images is obtained by DWT and the difference im-
age. The edges are enhanced by using stationary wavelet transform (SWT). Then 
all these subbands are combined to generate a new high resolution image by us-
ing inverse DWT (IDWT). Furthermore, in [16], generalized histogram equali-
zation (GHE) is used to obtain high resolution and high contrast satellite image. 

Invertible wavelet transforms that map integers to integers [17] are important 
in the applications of lossless coding [18] [19]. In this paper, we propose float-
ing-point wavelet-based and integer wavelet-based image interpolations in lifting 
structures. It uses the low-band wavelet coefficients to estimate high-frequency 
wavelet coefficients of the original image, so that the original image can be re-
constructed from the low-band wavelet coefficients by using the proposed pre-
diction algorithms. Furthermore, the proposed method utilizes linear relations 
between original high-frequency coefficients and estimated high-frequency coef-
ficients to further improve the accuracy of the predicted high-frequency coeffi-
cients. The coefficients of predicted high-frequency subbands can be formed in 
floating-point or in integers. And then, the inverse wavelet transform is per-
formed for synthesis of an interpolated image. 

The paper is organized as follows: The standard interpolation method and a 
brief overview of wavelet transform and reversible integer wavelet transforms are 
introduced in Section 2. Section 3 derives the proposed methods. Experiment 
results for the proposed methods are given in Section 4. Finally, Section 5 pro-
vides conclusions and future works. 

2. Background 

This section first introduces the common interpolation concept and its main 
drawback in Section 2.1. The detailed description of wavelet transform is in [20]. 
Section 2.2 simply presents the concepts of the wavelet transform. Then, the 
wavelet-based interpolation framework with lifting structure [21] is described in 
Section 2.3. Reversible integer wavelet transforms and their advantages in com-
pression systems are introduced in the following subsection. 

2.1. Image Interpolation 

The definition of interpolation is to determine the parameters of a continuous 
image representation from a set of discrete points. The resolution enhancement 
process can be conceptually regarded as a two-step operation. Initially, the dis-
crete data is interpolated into a continuous curve. Second, for the additional 
samples, we need to stuff those added points with values to be determined. Here, 
the simplest method—bilinear interpolation—is selected to demonstrate the 
process of interpolation. Let the original image be denoted by f and the interpo-
lated image be f . In the following example, the interpolation ratio is assumed 
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to be 2. In order to simplify the process, the one-dimensional linear interpola-
tion is separately applied in vertical and horizontal directions of an image to 
achieve the two-dimensional bilinear interpolation. The bilinear interpolation 
with an interpolation ratio 2 can be formulated as 

( ) ( )2f x f x=                         (1a) 

( ) ( ) ( )2 1 1 2f x f x f x+ = + +

                 (1b) 

where 0,1,2,x =  . After performing the bilinear interpolation, the image can 
be zoomed in or out. 

Wavelet-based interpolation is to predict high-frequency subbands, LH-band, 
HL-band, and HH-band, from the low-frequency subband. Figure 1 shows the 
forward two-dimensional wavelet transform, and the right side is the backward 
wavelet transform. By assuming that the input is a low-pass filtered image 
(LL-band), the unknown high-frequency subbands can be predicted from the 
low-frequency subband. The easiest prediction algorithm is shown in Figure 1. 
is to pad zero values to high-frequency subbands as LH-band, HL-band, and 
HH-band. However, the image interpolation model in wavelet transform is de-
sired to present a better prediction algorithm for effectively predicting the 
high-frequency subbands. 

Because bilinear interpolation assumes the original data are first-derivative 
continuous, the result is usually blurred when it interpolates the points at edges. 
Nevertheless, the wavelet-based interpolation can avoid this artifact by its good 
approximation property. 

2.2. Wavelet Transform 

Wavelet transform is a valuable tool for image compression. It provides efficient 
time-frequency localization and multiresolution analysis; thus, it is suitable for 
image interpolation. Wavelet transformation decomposes data into different 
subbands hierarchically and each high-frequency subband can locate the regions 
of edges and details in the original image. Figure 2 shows single stage of a 
two-channel analysis and synthesis filter bank. In Figure 2, h0 and h1 are analysis 
filters, and g0 and g1 are synthesis filters. In the analysis step an input signal x is 
filtered with h0 and h1 and downsampled to generate the low-pass band s and the 
high-pass band d. In the synthesis step s and d are upsampled and filtered with 
g0 and g1. The sum of the filter outputs results in the reconstructed signal x̂ . 

 

 
Figure 1. Image interpolation model in wavelet transform. 
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Two-dimensional wavelet transform can be implemented using a one-dimensional 
filter on an image in each column vertically and in each row horizontally, which 
induces four subbands (i.e., LL-, LH-, HL-, and HH-band). The LL-band is the 
approximation of the original image, the LH-band represents vertical informa-
tion, the HL-band represents horizontal information, and the HH-band 
represents diagonal information shown in Figure 3. The LH-, HL-, and 
HH-subbands will be estimated from the LL-band in our framework for image 
resolution enhancement. 

2.3. Lifting Scheme 

The wavelet transform uses two filters L and H to conduct the convolution oper-
ation. However, such convolution operation suffers from high computation cost 
and requires more memory for storage. Thus, an improved approach called lift-
ing scheme for computing the discrete wavelet transform was developed. Any 
discrete wavelet transform can be computed with this scheme, and almost all 
these transforms have reduced computational complexity compared with the 
standard filtering algorithm. In this scheme a trivial wavelet transform, called 
lazy transform, is computed. This transform splits the input signal into even- 
and odd-indexed sequences. 

[ ] [ ]0 2s n x n=                         (2a) 

[ ] [ ]0 2 1d n x n= +                       (2b) 

 

 
Figure 2. Wavelet analysis and synthesis. 

 

 
Figure 3. Two-dimensional wavelet transform in four subbands. 
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Next, dual lifting and lifting steps are applied to obtain 
 [ ] [ ] [ ] [ ]1 1i i i i

k
d n d n p k s n k− −= − −∑

               
 (3a) 

[ ] [ ] [ ] [ ]1i i i i
k

s n s n u k d n k−= − −∑
               

 (3b) 

Figure 4 illustrates the above process with M pairs of dual and lifting steps. 
The samples [ ]Ms n  become the low-pass coefficients [ ]s n  and the samples 

[ ]Md n  become the high-pass coefficients [ ]d n  when scaled with a factor K: 

[ ] [ ]Ms n
s n

K
=

                       
 (4a) 

[ ] [ ]Md n Kd n=                        (4b) 

We can find the inverse transform by reversing the operations and flipping 
the signs. The inverse transform is illustrated in Figure 5. 

[ ] [ ]Ms n Ks n=                         (5a) 

[ ] [ ]
M

d n
d n

K
=                         (5b) 

Then undo the M lifting steps and dual lifting steps to obtain 

[ ] [ ] [ ] [ ]1i i i i
k

s n s n u k d n k− = + −∑
               

 (6a) 

[ ] [ ] [ ] [ ]1 1i i i i
k

d n d n p k s n k− −= + −∑
 

              (6b) 

Finally, the even and odd samples is retrieved 

[ ] [ ]02x n s n=                         (7a) 

[ ] [ ]02 1x n d n+ =                        (7b) 

2.4. Integer Wavelet Transform 

The wavelet transform produces floating-point coefficients in most cases. Although 
this allows perfect reconstruction of the original image, the use of finite-precision 

 

 
Figure 4. The forward wavelet transform using lifting. 

 

 
Figure 5. The inverse wavelet transform using lifting. 
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arithmetic and quantization results in lossy compression. For lossless compres-
sion, integer transform are needed. Traditionally, integer wavelet transform are 
difficulty to construct. However, the construction becomes very simple with lifting 
scheme. Since we can write every wavelet transform using lifting, it was shown that 
an integer version of every floating-point wavelet transform can be built by use of 
the lifting scheme. Integer wavelet transforms can be created by rounding-off the 
result of each dual lifting and lifting steps before adding and subtracting. 

The dual lifting and the lifting step thus becomes 

[ ] [ ] [ ] [ ]1 1
1
2i i i i

k
d n d n p k s n k− −

 = − − +  
∑

            
 (8a) 

[ ] [ ] [ ] [ ]1
1
2i i i i

k
s n s n u k d n k−

 = − − +  
∑

             
 (8b) 

It is invertible and the inverse can be obtained by reversing the lifting and the 
dual lifting steps and flipping signs: 

[ ] [ ] [ ] [ ]1
1
2i i i i

k
s n s n u k d n k−

 
= + − + 

 
∑

             
 (9a) 

[ ] [ ] [ ] [ ]1 1
1
2i i i i

k
d n d n p k s n k− −

 
= + − + 

 
∑              (9b) 

This obviously results in an integer to integer transform. But the coefficients 
[ ]ip k  and [ ]iu k  are not necessarily integers. Thus computing the integer 

transform coefficients still requires floating-point operations. However, all 
floating-point operations can be avoided when rational coefficients are power of 
two denominators in the transform. Here, we use the following integer wavelet 
transforms of the form ( ),N N , where N is the number of vanishing moments 
of the analyzing high pass filter, while N  is the number of vanishing moments 
of the synthesizing high pass filter. The S is for sequence, and the P is for predic-
tion in S P+  transform. ( )2 2,2+  transform is inspired by the S P+  trans-
form, using one extra lifting step to build the earlier ( )2, 2  into a transform 
with four vanishing moments of the high pass analyzing filter. The resulting 
transform is different from the earlier ( )4, 2  transform and therefore is called 
the ( )2 2,2+  transform. The analysis low pass filter of 9 7 F−  has nine coef-
ficients, while the analysis high pass filter has seven coefficients. Both analysis 
and synthesis high pass filters have four vanishing moments. 2/6 transform has 
two coefficients of the analysis low pass filter, while the analysis high pass filter 
has six coefficients. 2/6 transform is a version of the ( )3,1  transform. 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]( ) [ ] [ ]( ) [ ]

1 0 0

0 1

1 1

1
2
1 3 2 11 1 1
4 8 8 2

d n d n s n

S P s n s n d n

d n d n s n s n s n s n d n


 = −
  + = +   
  = + − − + − + + + +   

 (10) 
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( )

[ ] [ ] [ ] [ ]( )

[ ] [ ] [ ] [ ]( )

[ ] [ ] [ ] [ ] [ ] [ ]( )

1 0 0 0

0 1 1

1

1 11
2 2

1 12 2,2 1
4 2
1 11 1 2

16 2

d n d n s n s n

s n s n d n d n

d n d n s n s n s n s n

  = − + + +   
  + = + − + +   
  = − − − + + + − + +   

 (11) 

( )
[ ] [ ] [ ] [ ]( )

[ ] [ ] [ ] [ ]( )

0 0 0

0

1 11
2 2

2,2
1 11
4 2

d n d n s n s n

s n s n d n d n

  = − + + +    


  = + − + +   

          (12) 

( )
[ ] [ ] [ ] [ ]( ) [ ] [ ]( )

[ ] [ ] [ ] [ ]( )

0 0 0 0 0

0

9 1 11 1 2
16 16 2

4, 2
1 11
4 2

d n d n s n s n s n s n

s n s n d n d n

  = − + + − − + + +    


  = + − + +   

 (13) 

( )
[ ] [ ] [ ] [ ]( )

[ ] [ ] [ ] [ ]( ) [ ] [ ]( )

0 0 0

0

1 11
2 2

2,4
19 3 11 2 1
64 64 2

d n d n s n s n

s n s n d n d n d n d n

  = − + + +    


  = + − + − − + + +   

 (14) 

( )
[ ] [ ] [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )

[ ] [ ] [ ] [ ]( )

0 0 0 0 0 0 0

0

75 25 3 11 1 2 2 3
128 256 256 2

6,2
1 11
4 2

d n d n s n s n s n s n s n s n

s n s n d n d n

  = − + + − − + + + − + + +    


  = + − + +   

 (15) 

( )
[ ] [ ] [ ] [ ]( ) [ ] [ ]( )

[ ] [ ] [ ] [ ]( ) [ ] [ ]( )

0 0 0 0 0

0

9 1 11 1 2
16 16 2

4, 4
9 1 11 2 1

32 32 2

d n d n s n s n s n s n

s n s n d n d n d n d n

  = − + + − − + + +    


  = + − + − − + + +   

 (16) 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]( )

1 0 0

0 1

1

12 6
2
1 11 1
4 2

d n d n s n

s n s n d n

d n d n s n s n


 = −
  = +   
  = + − − + +   

           (17) 

[ ] [ ] [ ] [ ]( )

[ ] [ ] [ ] [ ]( )

[ ] [ ] [ ] [ ]( )

[ ] [ ] [ ] [ ]( )

1 0 0 0

1 0 1 1

1 1 1

1 1 1

203 11
128 2
217 11
4096 2
11

9 7
3 11

128 2
1817 11
4096 2

d n d n s n s n

s n s n d n d n

d n d n s n s n

s n s n d n

F

d n

  = − + + +   
  = − + − +    


  = + + + +   


  = + + − + 

−

  

        (18) 
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3. Proposed Method 

This section illustrates the proposed prediction algorithm using the low-frequency 
coefficients to estimate the unknown high-frequency coefficients in order to en-
hance resolution of images to obtain a well-reconstructed image. 

3.1. Prediction 

Padding zero values into high-frequency subbands is an easy way to reconstruct 
the image. However, it causes blurred image. The proposed prediction method 
can solve this problem. The proposed prediction algorithm can estimate 
high-frequency subbands by 



Row ColLH J I LL= ∗ ∗                     (19a) 



Row ColHL I J LL= ∗ ∗                     (19b) 



Row ColHH J J LL= ∗ ∗                     (19c) 

where I is the proposed low-pass prediction filter and J is the proposed high-pass 
prediction filter to each row and column of an image, notation * represents a 
convolution operator, and LL is the input low-pass filtered image. The next sub-
section derives ( ) ( ){ }4,2 4,2,I J  according to ( )4, 2  filters as an example to ex-
plain the algorithm. 

3.2. (4,2) Filter-Based Prediction Algorithm 

The lifting of ( )4, 2  filter is shown in Figure 6, which is equal to (13). 

2 2 2 1 2

2 1 2 2 2 3 2 4

1 90
16 16

9 11 0
16

      
16

i i i i

i i i i

d x x x

x x x x

− −

+ + + +

 = ⋅ + ⋅ + − ⋅ 
 

 + ⋅ + − ⋅ + ⋅ + ⋅ 
 

          (20a) 

2 4 2 3 2 2 2 1 2

2 1 2 2 2 3 2 4

1 8 1 460
64 64 4 64

1 8 10
4 64 64

i i i i i i

i i i i

s x x x x x

x x x x

− − − −

+ + + +

 = ⋅ + ⋅ + − ⋅ + ⋅ + ⋅ 
 

 + ⋅ + − ⋅ + ⋅ + ⋅ 
       

 (20b) 

where ( )0,1, 2, , 2 1i M= −  (M is the input data size). The boundary condi-
tions of an input image are extended symmetrically by  i ix x−= , for 0i <  and 

2i M ix x −= , for 1i M> − . 
 

 

Figure 6. Lifting scheme for the ( )4, 2  filter. 
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id  and is  induce the corresponding low-pass filter  

1 8 1 46 1 8 1,0, , , , , ,0,
64 64 4 64 4 64 64
    − −        

 and the high-pass filter  

9 9
16 1

1 1,0, ,1, ,0,
616 16

    − −        
. 

In the prediction problem, we need to find out the relationships between the 
input and the low-band images. In (20b), is  shows the input image has nine 
sequential pixels connected to one wavelet coefficient in the low-band image by 
dotted lines in Figure 7. Here, the input image is downsampled to the low-band 
image in the even sequence, where is  is dominated by 2ix  for  

( ) 0,1, 2, , 2 1i M= − . In order to produce the low-band image from the input 
image, split the input image into even sequence ( ix  for 0,2,4, , 1i M= − ) for 

is  and odd sequence ( ix  for 1,3,5, , 2i M= − ) for id . The relations from 
the low-band image to the even and odd sequences of the input image are given 
by Figure 8. 

2 0 2 1 1 2 3 1 4 2i i i i i ix a s a s a s a s a s− − + += + + + +⋅ ⋅ ⋅ ⋅ ⋅           (21a) 

and 

2 1 0 1 1 2 1 3 2i i i i ix b s b s b s b s+ − + += ⋅ + ⋅ + ⋅ + ⋅              (21b) 

respectively, where ( ) 0,1, 2, , 2 1i M= −  and 0 1 2 3 4, , , ,a a a a a  and 0 1 2 3, , ,b b b b  
have constraints as below 

0 1 2 3 4 1a a a a a+ + + + =                    (22a) 

and 

0 1 2 3 1b b b b+ + + =                      (22b) 

 

 
Figure 7. Relationship between the input image and the low-band image for the even sequence of input image. 

 

 
Figure 8. Relation from the low-band image to the input image for the even sequence and the odd sequence. 
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Then, substituting 2ix , 2 1ix +  in (21a) and (21b) to 2ix , 2 1ix +  in (20a) and 
(20b) yields 

( )

( )( )

( )

( )

0 4 1 3 2 2 3 1 4

0 3 1 2 2 1 3

0 3 1 2 2 1 3 4 1

0 2 1 1 2 3 1

0 2 1 1 2

1
64

0
8
64

1
4
46
64

i i i i i i

i i i i

i i i i i

i i i i

i i i

s a s a s a s a s a s

b s b s b s b s

a s a s a s a s a s

b s b s b s b s

a s a s a s

− − − −

− − −

− − − +

− − +

− −

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

 = + + + + 
 
+ + + +

 + − + + + + 
 
 + ⋅ + ⋅ + ⋅ + ⋅ 
 
 + + + + 


⋅ ⋅

⋅ ⋅


⋅



( )3 1 4 2i ia s a s+ ++⋅ ⋅

  

( )

( )

( )( )

( )

0 1 1 2 1 3 2

0 1 1 2 1 3 2 4 3

0 1 1 2 2 3 3

0 1 1 2 2 3 3 4 4

1
4

8
64

0
1
64

i i i i

i i i i i

i i i i

i i i i i

b s b s b s b s

a s a s a s a s a s

b s b s b s b s

a s a s a s a s a s

− + +

− + + +

+ + +

+ + + +

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

 + + + + 
 
 + − + + + + 
 

+ + + +

 + + + +

⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅+ 
 

  

0 0 0 01 1 2
4 3 2

0 3 01 2 1
1

0 31 2 4 1 2

3 31 2 2
1

8 46 8
64 64 64 64 64 64 4

8 46 8
64 64 64 64 4 4

88 46
64 64 64 64 64 4 4

468
64 64 64 4 4

i i i

i

i

i

a a a ba a as s s

a a ba a b s

a aa a a b b s

a ba a b s

− − −

−

+

     ⋅ + − + ⋅ + − + + ⋅     
     
 + − + − + + + ⋅ 
 
 + − + − + + + ⋅ 
 
 + − + + + ⋅ 
 

=

+ 3 3 32 4 4 4
2 3 4

8 46 8
64 64 64 4 64 64 64i i i

a b aa a a as s s+ + +
     − + + ⋅ + − ⋅ + ⋅    

    
   

 (23a) 

( )

( )( )

( )

( )( )

0 3 1 2 2 1 3 4 1

0 2 1 1 2 3 1

0 2 1 1 2 3 1 4 2

0 1 1 2 1 3 2

0 1 1 2 1 3 2

1
16

0
9

16
1

9
16

i i i i i i

i i i i

i i i i i

i i i i

i i i i

d a s a s a s a s a s

b s b s b s b s

a s a s a s a s a s

b s b s b s b s

a s a s a s a s

− − − +

− − +

− − + +

− + +

− + +

  ⋅ + ⋅ + ⋅ + ⋅ + ⋅ 
 
+ ⋅ + ⋅ + ⋅ + ⋅
 + − ⋅ + ⋅ + ⋅ + ⋅ + ⋅ 
 

+ ⋅ + ⋅ + ⋅ + ⋅
 + − ⋅ + ⋅ + ⋅ + ⋅ 
 

=

( )4 3ia s ++ ⋅

  

( )( )

( )
0 1 1 2 2 3 3

0 1 1 2 2 3 3 4 4

0 0 01 1 2
3 2 0 1

0 3 31 2 1 2
1

0
1

16
9 9 9

16 16 16 16 16 16
99 9 9

16 16 16 16 16 16 16

i i i i

i i i i i

i i i

i

b s b s b s b s

a s a s a s a s a s

a a aa a as s b s

a a aa a a ab s

+ + +

+ + + +

− − −

+ ⋅ + ⋅ + ⋅ + ⋅
 + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ 
 

     ⋅ + − + ⋅ + − − + + ⋅     
     
 + − − + + ⋅ + − − 
 

=

4
2 1

3 32 4 4 4
3 2 3 4

16
9 9 9

16 16 16 16 16 16

i

i i i

a b s

a aa a a ab s s s

+

+ + +

 + + ⋅ 
 

     + − − + ⋅ + − ⋅ + ⋅    
    

  

(23b) 
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which implies the low-pass prediction filter ( )4,2I  and the high-pass prediction 
filter ( )4,2J  are respectively given by 

( )
0 0 0 01 1 2

4,2

0 3 01 2 1

0 31 2 4 1 2

3 31 2 2

3 32 4

8 46 8
, , ,

64 64 64 64 64 64 4
8 46 8

,
64 64 64 64 4 4

88 46
,

64 64 64 64 64 4 4
468

,
64 64 64 4 4

8 46
64 64 64 4

a a a ba a aI

a a ba a b

a aa a a b b

a ba a b

a ba a

     = − + − + +     
     
 − + − + + + 
 
 − + − + + + 
 
 − + + + 
 

− + + 3 4 48
, ,

64 64 64
a a a      −     

     
      

 (24a) 

( )
0 0 01 1 2

04,2

0 3 31 2 1 2 4
1 2

3 32 4 4 4
3

9 9 9
, , ,

16 16 16 16 16 16
99 9 9

, ,
16 16 16 16 16 16 16 16

9 9 9
, ,

16 16 16 16 16 16

a a aa a aJ b

a a aa a a a ab b

a aa a a ab

     = − + − − + +     
     
   − − + + − − + +   
   

     − − + −     
         

 (24b) 

The prediction filters ( )4,2I  and ( )4,2J  should be symmetric and the low-pass 
wavelet filter of ( )4, 2  is dominated by the intermediate coefficient (46/64 in 
(20b)), thus they have extra constraints as following 

0 4a a=                           (25a) 

1 3a a=                           (25b) 

0 3b b=                           (25c) 

1 2b b=                           (25d) 

2 1 0a a a> >                         (25e) 

1 0b b>                           (25f) 

By setting 0 0a = , 1 1 4a = , 2 1 2a = , 3 1 4a = , 4 0a =  and 0 0b = , 

1 1 2b = , 2 1 2b = , 3 0b =  empirically as one solution for general images, one has 

( )4,2
1 3 63 35 63 3 10, , , , , , , ,0

256 128 256 64 256 128 256
I     = − −        

      (26a) 

( )4,2
1 7 3 3 7 10, , , , , , ,0
64 64 32 32 64 64

J     = − −        
          (26b) 

As a result, the unknown subbands ( LH , HL , HH ) can be constructed by 
substituting ( )4,2I  to I and ( )4,2J  to J in (19a)-(19c). 

If we know the actual high-frequency coefficients of the reconstructed image, 
then we can build the relationship between actual high-frequency coefficients and 
estimated high-frequency coefficients. The relationship improves prediction algo-
rithm which is based on polynomial curve fitting. In Section 4, we denote this sit-
uation as one layer. If we do not know the actual high-frequency coefficients of the 
reconstructed image, we can decompose the original low-frequency image into 
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four subbands as layer two in wavelet transform of the reconstructed image. And 
we use LL in layer two to predict the other three high-frequency subbands in layer 
two. Then, we can build the relationship between actual high-frequency coeffi-
cients and estimated high-frequency coefficients in layer two to improve predic-
tion algorithm on polynomial curve fitting. In Section 4, we denote this situation 
as two layers. By denoting the exact coefficients at position ( ),m n  in LH as 

( ),LH m ny  and the estimated coefficients at position ( ),m n  in LH as ( ),LH m nx . 
Applying to all coefficients of LH, we can obtain the weights LHa  and LHb  by 

( ) ( ), ,LH LHLH m n LH m ny a x b= × +                   (27) 

These weights are subsequently used to gain accuracy of the coefficients of the 
estimated LH subband. Then, we round-off the result to get the integer version 
of wavelet coefficients of LH. 

( ) ( ), ,LH LHLH m n LH m ny a x b′ = × + 
  ,                 (28) 

where ( ),LH m ny′  is the improved integer coefficient at position ( ),m n . 
A similar process is possible for HL and HH subbands. After coefficient im-

provement, LHy′ , HLy′  and HHy′  are carried out as above, then the high-resolution 
image is obtained by applying the inverse integer wavelet transform. Table 1  

 
Table 1. Prediction filters of all integer wavelet filters used in this paper. 

Integer analysis wavelet filter  
Low-pass/High-pass prediction filter 

Coefficients 

S P+  
S PI +  [0.5000] 

S PJ +  [0.1250, 0.0625, −0.1875] 

( )2 2,2+  
( )2 2,2I +  [−0.0313, 0.2500, 0.5625, 0.2500, −0.0313] 

( )2 2,2J +  [−0.0020, 0.0176, −0.1035, 0.0879, 0.0879, −0.1035, 0.0176, −0.0020] 

( )2,2  
( )2,2I  [−0.0313, 0.2500, 0.5625, 0.2500, −0.0313] 

( )2,2J  [−0.1250, 0.1250, 0.1250, −0.1250] 

( )4,2  
( )4,2I  [0, 0.0039, −0.0234, 0.2461, 0.5469, 0.2461, −0.0234, 0.0039, 0] 

( )4,2J  [0, 0.0156, −0.1094, 0.0938, 0.0938, −0.1094, 0.0156, 0] 

( )2,4  
( )2,4I  [0, 0.0059, −0.0430, 0.2441, 0.5859, 0.2441, −0.0430, 0.0059, 0] 

( )2,4J  [0, −0.1250, 0.1250, 0.1250, −0.1250, 0] 

( )6,2  
( )6,2I  [0, −0.0002, 0.0008, −0.0051, 0.0627, 0.1927, 0.4979, 0.1927, 0.0627, −0.0051, 0.0008, −0.0002, 0] 

( )6,2J  [0, −0.0075, 0.0039, −0.0242, 0.0251, −0.0042, −0.0042, 0.0251, −0.0242, 0.0039, −0.0007, 0] 

( )4,4  
( )4,4I  [0, −0.0001, 0.0018, −0.0060, 0.0601, 0.1936, 0.5012, 0.1936, 0.0601, −0.0060, 0.0018, −0.0001, 0] 

( )4,4J  [0, 0.0039, −0.0234, 0.0156, 0.0039, 0.0039, 0.0156, −0.0234, 0.0039, 0] 

2/6 2 6I  [0.5000] 

2 6J  [0.1250, 0, −0.1250] 

9 7 F−  
9 7 FI −  [0, 0.0067, −0.0146, 0.2433, 0.5292, 0.2433, −0.0146, 0.0067, 0] 

9 7 FJ −  [0, 0.0228, −0.1310, 0.1081, 0.1081, −0.1310, 0.0228, 0] 
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shows prediction filters of all integer wavelet filters used in this paper. 

4. Experimental Results 

In this paper, we evaluate the quality of the proposed interpolation method. The 
test images are shown in Figure 9. Lena has various types of image components, 
Baboon has many detailed components, Barbara has mainly diagonal edges, Boat 
has mainly horizontal edges, and Peppers has strongly vertical edges. Medical 1 
and Medical 2 are x-ray images of the breast and the tooth, respectively. These 
512 512×  images (Lena, Baboon, Barbara, Boat, Peppers) are from the USC 
image database [22]. Color images are transformed to gray images by Matlab 
function rgb2gray. All the experiments are done on a PC with AMD Phenom(tm) 
II × 4955 Processor 3.20 GHz with 4.00 GB ram, and implemented using 
MATLAB R2013a codes. To evaluate the objective quality of the reconstructed 
high-resolution image based on the proposed method, the peak signal noise ratio 
(PSNR) measurement is manipulated. The LL-band of images is totally stored, 
and it is used to recover to the original size of images. 

Tables 2-8 show that the proposed interpolation method reconstructed for 
test images in each integer wavelet transform for a zooming ratio 1/2. These test 
images are reduced by the different integer wavelet transforms and then the re-
duced images are enlarged with the proposed method. One layer in the table 
represents that the original input images are decomposed into one layer and the 
LL-band in layer one is used to predict the other high frequency subbands. Then 
build the linear relations between predicted high frequency coefficients in layer 
one and actual high frequency coefficients in layer one to reconstruct the origi-
nal images. Two layers in the table represent that the original input images are 
decomposed into two layers and the LL-band in layer two is used to predict the 
other high frequency subbands. Then build the linear relations between pre-
dicted high frequency coefficients in layer two and actual high frequency coeffi-
cients in layer two to reconstruct the original images. Tables 2-8 show that the 
linear relationship built from one layer decomposition and two layers decompo-
sition has similar effects. 

Tables 9-15 show that reconstructed images using proposed method in dif-
ferent wavelet transforms and different integer wavelet transforms which are 
compared with the original image in PSNR. Tables 9-15 present that the esti-
mated high-frequency coefficients in floating-point are better than the estimated 
high-frequency coefficients in integer, but the advantages in compression for in-
teger wavelet transform can let us tolerate the distortion in integer. 

The proposed method is compared with other interpolation methods, such as, 
zero padding, [11] without evolutionary programming (EP), [11] with EP, 
DT-CWT-NLM [14] and SWT-DWT [15]. The methodologies in [11] are only 
for ( )2,2  and 9 7 F−  analysis filters, so we compare the results with ( )2,2  
and 9 7 F−  analysis filters between the methodologies in [11] and the pro-
posed algorithm. First, we show PSNR values of different prediction algorithms  
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Figure 9. Test natural images (a) Lena (b) Baboon (c) Barbara (d) Boat (e) Peppers (f) 
Medical 1 (g) Medical 2. 
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Table 2. PSNR (in dB) of proposed method in different integer wavelet transforms in two layers and one layer for Lena. 

Lena ( )2,2  ( )2,4  ( )4,2  ( )4,4  ( )6,2  9 7 F−  2/6 S P+  ( )2 2,2+  

Integer/Two layers 35.85 36.03 36.01 36.00 36.06 35.84 35.29 35.54 35.93 

Integer/One layer 35.86 36.02 36.01 36.01 36.07 35.85 35.29 35.53 35.97 

 
Table 3. PSNR (in dB) of proposed method in different integer wavelet transforms in two layers and one layer for Baboon. 

Baboon ( )2,2  ( )2,4  ( )4,2  ( )4,4  ( )6,2  9 7 F−  2/6 S P+  ( )2 2,2+  

Integer/Two layers 24.14 24.30 24.18 24.32 24.20 24.28 24.01 23.97 24.20 

Integer/One layer 24.20 24.32 24.23 24.32 24.21 24.28 24.02 23.98 24.20 

 
Table 4. PSNR (in dB) of proposed method in different integer wavelet transforms in two layers and one layer for Barbara. 

Barbara ( )2,2  ( )2,4  ( )4,2  ( )4,4  ( )6,2  9 7 F−  2/6 S P+  ( )2 2,2+  

Integer/Two layers 25.84 25.90 25.72 25.81 25.52 25.86 25.71 25.58 25.62 

Integer/One layer 26.06 26.00 26.11 26.03 25.92 26.00 25.91 25.76 26.13 

 
Table 5. PSNR (in dB) of proposed method in different integer wavelet transforms in two layers and one layer for Boat. 

Boat ( )2,2  ( )2,4  ( )4,2  ( )4,4  ( )6,2  9 7 F−  2/6 S P+  ( )2 2,2+  

Integer/Two layers 30.26 30.24 30.70 30.77 30.76 30.59 30.45 30.54 30.69 

Integer/One layer 30.73 30.89 30.77 30.82 30.78 30.79 30.46 30.55 30.75 

 
Table 6. PSNR (in dB) of proposed method in different integer wavelet transforms in two layers and one layer for Peppers. 

Peppers ( )2,2  ( )2,4  ( )4,2  ( )4,4  ( )6,2  9 7 F−  2/6 S P+  ( )2 2,2+  

Integer/Two layers 32.51 32.53 32.86 33.03 33.00 32.52 31.99 32.11 32.92 

Integer/One layer 33.10 33.18 33.16 33.30 33.19 32.85 31.99 32.11 33.16 

 
Table 7. PSNR (in dB) of proposed method in different integer wavelet transforms in two layers and one layer for Medical 1. 

Medical 1 ( )2,2  ( )2,4  ( )4,2  ( )4,4  ( )6,2  9 7 F−  2/6 S P+  ( )2 2,2+  

Integer/Two layers 37.24 37.21 37.23 37.30 37.20 37.25 36.73 36.77 37.29 

Integer/One layer 37.28 37.30 37.22 37.31 37.19 37.27 36.73 36.77 37.28 

 
Table 8. PSNR (in dB) of proposed method in different integer wavelet transforms in two layers and one layer for Medical 2. 

Medical 2 ( )2,2  ( )2,4  ( )4,2  ( )4,4  ( )6,2  9 7 F−  2/6 S P+  ( )2 2,2+  

Integer/Two layers 44.12 44.17 44.34 44.39 44.25 43.05 43.85 43.73 44.47 

Integer/One layer 44.33 44.36 44.34 44.39 44.31 43.07 43.85 43.73 44.46 

 
Table 9. PSNR (in dB) of proposed method by different wavelet transforms in floating-point and in integer for Lena. 

Lena ( )2,2  ( )2,4  ( )4,2  ( )4,4  ( )6,2  9 7 F−  2/6 S P+  ( )2 2,2+  

Floating-point/One layer 35.90 36.09 36.04 36.04 36.08 36.16 35.37 35.63 36.01 

Integer/One layer 35.86 36.02 36.01 36.01 36.07 35.85 35.29 35.53 35.97 
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Table 10. PSNR (in dB) of proposed method by different wavelet transforms in floating-point and in integer for Baboon. 

Baboon ( )2,2  ( )2,4  ( )4,2  ( )4,4  ( )6,2  9 7 F−  2/6 S P+  ( )2 2,2+  

Floating-point/One layer 24.20 24.33 24.22 24.33 24.20 24.31 24.03 23.99 24.20 

Integer/One layer 24.20 24.32 24.23 24.32 24.21 24.28 24.02 23.98 24.20 

 
Table 11. PSNR (in dB) of proposed method by different wavelet transforms in floating-point and in integer for Barbara. 

Barbara ( )2,2  ( )2,4  ( )4,2  ( )4,4  ( )6,2  9 7 F−  2/6 S P+  ( )2 2,2+  

Floating-point/One layer 26.07 26.01 26.12 26.04 25.93 26.05 25.93 25.78 26.13 

Integer/One layer 26.06 26.00 26.11 26.03 25.92 26.00 25.91 25.76 26.13 

 
Table 12. PSNR (in dB) of proposed method by different wavelet transforms in floating-point and in integer for Boat. 

Boat ( )2,2  ( )2,4  ( )4,2  ( )4,4  ( )6,2  9 7 F−  2/6 S P+  ( )2 2,2+  

Floating-point/One layer 30.74 30.91 30.78 30.84 30.78 30.92 30.49 30.59 30.75 

Integer/One layer 30.73 30.89 30.77 30.82 30.78 30.79 30.46 30.55 30.75 

 
Table 13. PSNR (in dB) of proposed method by different wavelet transforms in floating-point and in integer for Peppers. 

Peppers ( )2,2  ( )2,4  ( )4,2  ( )4,4  ( )6,2  9 7 F−  2/6 S P+  ( )2 2,2+  

Floating-point/One layer 33.12 33.22 33.17 33.32 33.24 33.05 32.05 32.16 33.15 

Integer/One layer 33.10 33.18 33.16 33.30 33.19 32.85 31.99 32.11 33.16 

 
Table 14. PSNR (in dB) of proposed method by different wavelet transforms in floating-point and in integer for Medical 1. 

Medical 1 ( )2,2  ( )2,4  ( )4,2  ( )4,4  ( )6,2  9 7 F−  2/6 S P+  ( )2 2,2+  

Floating-point/One layer 37.31 37.44 37.32 37.43 37.30 37.44 36.85 36.90 37.29 

Integer/One layer 37.28 37.30 37.22 37.31 37.19 37.27 36.73 36.77 37.28 

 
Table 15. PSNR (in dB) of proposed method by different wavelet transforms in floating-point and in integer for Medical 2. 

Medical 2 ( )2,2  ( )2,4  ( )4,2  ( )4,4  ( )6,2  9 7 F−  2/6 S P+  ( )2 2,2+  

Floating-point/One layer 44.52 44.61 44.51 44.60 44.47 44.61 44.44 44.40 44.49 

Integer/One layer 44.33 44.36 44.34 44.39 44.31 43.07 43.85 43.73 44.46 

 
for ( )2,2  wavelet filter with zooming ratio 1/2 in Table 16. These test images 
are reduced by the ( )2, 2  wavelet transform in one layer and then the reduced 
images are enlarged with corresponding methods respectively. Then, we com-
pare different prediction algorithms with 9 7 F−  wavelet filter for zooming 
ratio 1/2 in Table 17. These test images are reduced by the 9 7 F−  wavelet 
transform in one layer and then the reduced images are enlarged with corres-
ponding methods respectively. 

The results for ( )2, 2  wavelet filter in Table 16 show that the proposed me-
thod outperforms other methods for Lena, Baboon, Barbara, Boat and Medical 1. 
Because the parameters of the proposed method derived in Section 3 assume the 
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Table 16. Comparison with different methods in zooming ratio 1/2 for ( )2, 2  filter in PSNR (in dB). 

( )2,2  Zero padding [11] without EP [11] with EP DT-CWT-NLM [14] SWT-DWT [15] 
Proposed Method 

(integer) 
Proposed Method 
(floating-point) 

Lena 34.60 35.26 35.33 29.08 31.60 35.86 35.90 

Baboon 24.12 24.11 24.19 21.28 21.73 24.20 24.20 

Barbara 25.77 25.53 25.85 22.83 23.28 26.06 26.07 

Boat 30.29 30.68 30.73 26.06 27.66 30.73 30.74 

Peppers 30.87 33.07 33.13 28.73 29.91 33.10 33.12 

Medical 1 36.81 37.13 37.23 34.32 34.89 37.28 37.31 

Medical 2 44.41 44.40 44.64 37.52 40.19 44.33 44.52 

 

Table 17. Comparison with different methods in zooming ratio 1
2

 for 9 7 F−  filter in PSNR (in dB). 

9 7 F−  Zero padding [11] without EP [11] with EP DT-CWT-NLM [14] SWT-DWT [15] 
Proposed Method 

(integer) 
Proposed Method  
(floating-point) 

Lena 35.33 35.48 35.63 29.48 33.03 35.85 36.16 

Baboon 24.28 24.27 24.30 21.90 22.84 24.28 24.31 

Barbara 25.80 25.67 25.91 23.48 24.49 26.00 26.05 

Boat 30.74 30.87 30.93 26.56 28.72 30.79 30.92 

Peppers 31.37 33.03 33.22 29.14 30.94 32.85 33.05 

Medical 1 37.11 37.26 37.34 34.62 35.76 37.27 37.44 

Medical 2 44.54 44.52 44.75 36.37 40.90 43.07 44.61 

 
input images are continuous, so it is suitable to predict images which are smooth 
and soft, and not so well with images with a lot of edges and high frequency 
components. Peppers and Medical 2 have worse results because of the conti-
nuous assumption. By applying the linear relation to tune the coefficients in the 
proposed method, it reconstructs better results. Literature [11] with EP has bet-
ter performance than the proposed method for Peppers and Medical 2. The re-
sults for 9 7 F−  wavelet filter in Table 17 show that the proposed method 
outperforms other methods for Lena, Baboon, Barbara and Medical 1. Boat, 
Peppers, Medical 2 have worse results because of the continuous assumption. 
But, the methodology [11] with EP needs more computational time to obtain the 
better results and it is used to verify the method in [11] without EP closes to op-
timal solution. The approach in [14] is used in satellite images; DTCWT can 
preserve more high-frequency components of original images. The interpolation 
algorithm used in this method does not estimate the high-frequency information, 
so it cannot obtain a better performance. 

One can find which filter is the best in different condition from Table 18. Us-
ing high-order wavelet analysis filter can lead to a better performance than 
low-order wavelet analysis filter, because high-order wavelet analysis filter has 
higher vanishing moments. Consequently, the reconstructed high-order filtered 
signal will produce a better approximation and get a better reconstruction result. 

Figure 10 and Figure 11 present the subjective image quality of the proposed  
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Figure 10. Image Lena reconstructed by bilinear, bicubic, zero padding and the proposed 
algorithm. 
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Figure 11. Image Baboon reconstructed by bilinear, bicubic, zero padding and the pro-
posed algorithm. 
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Table 18. Best wavelet filter of different conditions using proposed method for different 
filters and images. 

Conditions 
Images 

Floating-point/Two 
layers 

Floating-point/One 
layer 

Integer/Two 
layers 

Integer/One layer 

Lena 9 7 F−  9 7 F−  ( )6,2  ( )6,2  

Baboon ( )4,4  
( )2,4  

( )4,4  
( )4,4  

( )2,4  

( )4,4  

Barbara ( )2,4  ( )2 2,2+  ( )2,4  ( )2 2,2+  

Boat ( )4,4  9 7 F−  ( )4,4  ( )2,4  

Peppers ( )4,4  ( )4,4  ( )4,4  ( )4,4  

Medical 1 
( )4,4  

9 7 F−  
( )2,4  

9 7 F−  
( )4,4  ( )4,4  

Medical 2 
( )2,4  

9 7 F−  
( )2,4  

9 7 F−  
( )2 2,2+  ( )2 2,2+  

 
algorithm. Figure 10 and Figure 11 show the proposed method is sharper than 
zero padding method and show the bilinear and bicubic methods blur the im-
ages. 

4. Conclusion 

In this paper, wavelet-based image interpolation for high performance image 
resolution enhancement is proposed to predict the detail coefficients in the 
original image from the low-pass filtered image by observing the wavelet trans-
form in lifting scheme. The proposed method can predict the vertical and hori-
zontal subbands and the diagonal subband, so the proposed method is quite 
suitable to reconstruct the original image. Then, we utilize polynomial curve fit-
ting to build the linear relationships between the actual high frequency subbands 
and the predicted high frequency subbands. These relationships improve the 
accuracy of prediction algorithm. Reconstructed images by the proposed method 
are also in the form of integers. Experimental results compare the performances 
of different integer wavelet transforms with the proposed method in some 
well-known natural images. The proposed methods have been shown better 
performance than bilinear, bicubic, and other wavelet-based methods. 
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