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Abstract 
The paper aims to study the invulnerability of directed interdependent net-
works with multiple dependency relations: dependent and supportive. We 
establish three models and simulate in three network systems to deal with this 
question. To improve network invulnerability, we’d better avoid dependent 
relations transmission and add supportive relations symmetrically. 
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1. Introduction 

In recent years, there has been a significant advance in studying the proportion 
of complex networks. Most of the studies focus on the structure and function of 
single networks which do not contact with other networks [1]. But in fact, al-
most all networks are connected with each other, such as power grid, transporta-
tion and computer control systems. As a result, the failure in one network may 
cause the failure in connected networks, and vice versa. Along with this process, 
it may lead to cascading failure and cause serious damage. These networks are 
called interdependent networks [2]. 

Previous studies on interdependent networks are mostly restricted by this as-
sumption: there are two networks, network A and network B. If node a in A 
which depends on node b in B, node b must depend on node a [3]. However, in 
real-world network systems, dependent relations transmission may exit. For 
example, node a1 in A depends on node b1 in B, node b1 doesn’t depend on a1 
and it depends on another node a2 in A, node a2 doesn’t depend on b1 and it de-
pends on another node b2 in B. a1 depends on b1, b1 depends on a2, a2 depends on 
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b2; thus dependent relations are passed on. These networks are called directed 
interdependent networks. 

There are two different types of dependency relations in current studies: 1) 
dependent—if node b depends on node a, the failure of node a must cause the 
failure of node b [4]. 2) supportive—if node a supports node b, the failure of 
node a may not cause the failure of node b; only if all nodes which support node 
b fail, there will be a failure of node b [5]. But it is a pity that most researchers 
only study one case, either dependent or supportive relation. In real-world net-
work systems, these two types of dependency relations may exit simultaneously 
in one network system. For example, power grid and computer control system 
are connected with each other. A control center controls many generators 
dependently, so if there is a failure of the control center, all the generators will 
fail. But many generators support the control center; if a generator is failure, it 
may not cause the failure of the control center [6]. 

This paper focuses on the invulnerability of directed interdependent networks 
with multiple dependency relations. Three interdependent networks have been 
considered: interdependent scale-free (SF) networks, interdependent Er-
dos-Renyi (ER) networks, and SF connected with ER network under random at-
tack (ER network is common model for complex network research, in which 
each node was connected with a fix probability). Our work extends current study 
of interdependent network from undirected ones to directed ones, from single 
dependency relations to multiple dependency relations. The paper is organized 
as follows. In Section 2, three models will be established to study the invulner-
ability of interdependent networks. In Section 3, the model will be simulated in 
interdependent SF networks, interdependent ER networks, and SF connected 
with ER network. In Section 4, the conclusion got from this paper will be shown. 

2. Model 

An interdependent network system has been generated, which includes network 
A and network B. For simplicity and without loss of generality, the number of 
nodes in network A and B are equal. To study the invulnerability of directed in-
terdependent networks with multiple dependency relations, we build three mod-
els: undirected interdependent networks connected by one-to-one dependent 
relations-UNOs; directed interdependent networks connected by one-to-one 
dependent relations-DNOs; directed interdependent networks connected by de-
pendent and supportive relations-DNMs [7]. These three models are shown in 
Table 1 and Figures 1(a)-(c). 

Supposing that a node in network A fails if it meets anyone of the following 
three conditions (the same as the node in network B): isolated failure (isolated in 
network A), dependent failure (anyone of the nodes in network B which it de-
pends on fails) and supportive failure (all of the nodes in network B which sup-
port it fail). There are three common strategies to attack complex networks: at-
tack based on degree, attack based on betweenness and random attack. This pa-
per doesn’t focus on attack strategies, so that random attack is chosen as the  
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Table 1. All available cases studied in the paper. 

Interdependent networks 

Undirected interdpendent  
networks 

Directed interdpendent networks 

Only consider one-to-one  
dependent relations (UNOs) 

Only consider one-to-one  
dependent relations (DNOs) 

Consider dependent and  
supportive relations (DNMs) 

 

 
(a) 

 
(b)                                      (c) 

Figure 1. (a) Undirected interdependent networks connected by one-to-one dependent 
relations-UNOs; (b): Directed interdependent networks connected by one-to-one de-
pendent relations-DNOs (lines of different colors represent dependent relations of dif-
ferent directions: black lines represent dependent relations from network B to network A; 
blue lines represent dependent relations from network A to network B); (c): Directed in-
terdependent networks connected by dependent and supportive relations-DNMs (solid 
line and dashed line represent different types of dependency relations respectively: solid 
lines represent supportive relations; dashed lines represent dependent relations). 
 
attack strategy for simplify, which means that one node in network A is removed 
randomly each time. The cascading failure process of the three models is a little 
different [8]. 

The cascading failure process of UNOs is shown below. 
Step 1: Randomly remove a node in network A (remove the node together 

with all the edges connected to it, the same as the following ones). 
Step 2: Remove the isolated node in network A and remove nodes in network 

Network A

Network B

a

b

Network B

Network A Network A

Network B

c
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B corresponding to the failing nodes in network A. 
Step 3: Remove the isolated node in network B and remove nodes in network 

A corresponding to the failing nodes in network B. 
…… 
The cascading failure process stops unless the number of nodes either in net-

work A or in network B is no longer dropping. 
The cascading failure process of DNOs is below. 
Step 1: Randomly remove a node in network A. 
Step 2: Remove the isolated node in network A and remove nodes in network 

B which depend on the failing nodes in network A. 
Step 3: Remove the isolated node in network B and remove nodes in network 

A which depend on the failing nodes in network B. 
…… 
The cascading failure process stops unless the number of nodes either in net-

work A or in network B is no longer dropping. 
The cascading failure process of DNMs is a little difficult, so that there are 

eight steps to describe this process. 
Step 1: Randomly remove a node in the network A, and then turn to Step 2. 
Step 2: Remove the isolated node in the network A and judge the dependency 

relations from the failing node ai in the network A to bj in the network B. If the 
relation is supportive, turn to Step 3; if the relation is dependent, remove bj and 
turn to Step 4. 

Step 3: Judge if there is any functional node in the network A that supports bj. 
Yes, turn to Step 4; no, remove bj and turn to Step 4. 

Step 4: Judge if there is any node in the network B removed in the Step 2 and 
Step 3. Yes, turn to Step 5; no, turn to Step 8. 

Step 5: Remove the isolated node in the network B and judge the dependency 
relations from the failing node bi in the network B to aj in the network A. If the 
relation is supportive, turn to Step 6; if the relation is dependent, remove aj and 
turn to Step 7. 

Step 6: Judge if there is any functional node in the network B that supports aj. 
Yes, turn to Step 7; no, remove aj and turn to Step 8. 

Step 7: Judge if there is any node in the network A removed in the Step 5 and 
Step 6. Yes, turn to Step 2; no, turn to Step 8. 

Step 8: Judge if there is any functional node in the network A or network B. 
Yes, turn to Step 1; no, end. 

The form of graph has been adopted in order to express a better understand-
ing of cascading failure process of model 3 (regard it as a stage if one network 
causes changes in the other network). 

As shown in Figure 2(a), the node a2 is chosen to attack. The failure of a2 
causes the isolation of a6, so a6 fails (isolated failure). As shown in Figure 2(b), a2 
fails, a2 cannot support b1 anymore and there is no node in network A support-
ing b1, so b1 fails (supportive failure). By the way, the failure of a6 cannot cause 
the failure of b5, because a3 is functional and a3 still supports b5. The failure  
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(a)                                                         (b) 

 
(c)                                                          (d) 

Figure 2. Description of the dynamic process of cascading failures of DNMs (transparent dots and lines represent the failure part). 

 
of b1 causes the isolation of b5, so b5 fails (isolated failure). As shown in Figure 
2(c), on the one hand, b1 fails, and a1 cannot depend on b1, so that a1 fails (de-
pendent failure). On the other hand, b5 fails, and b5 cannot support a4 anymore 
and there is no node in network B supporting a4, so that a4 fails (supportive fail-
ure). As shown in Figure 2(d), on the one hand, a1 fails, and a1 cannot support 
b2 anymore and there is no node in network A supporting b2, so that b2 fails 
(supportive failure). On the other hand, a4 fails, and b3 cannot depend on a4, so 
that b3 fails (dependent failure). The failure of b2 and b3 causes the isolation of b4 
and b6, so b4 and b6 fail. So far, all the nodes in network B fail, and the attack is 
over. A different situation is that the number of nodes in network A or network 
B is no longer dropping and the cascading failure is over, therefore, more attacks 
should be made to test the invulnerability of interdependent networks. 

3. Simulation 

In this section, the invulnerability of UNOs, DNOs and DNMs will be tested. 
These tested models involve three interdependent networks: interdependent SF 

Network A

Network B

a1a1 a3a3 a4a4a2a2 a6a6a5a5

b1b1 b5b5b2b2 b3b3 b4b4 b6b6

Attacka
a2a2 a4a4a3a3

b2b2 b3b3 b4b4 b5b5 b6b6

a1a1 a5a5 a6a6

b1b1

I stage

b

a4a4

b3b3 b4b4b2b2 b5b5 b6b6

a1a1 a2a2 a3a3 a5a5 a6a6

b1b1

II stage

c

a4a4a1a1 a2a2 a3a3 a5a5 a6a6

b1b1 b2b2 b3b3 b4b4 b5b5 b6b6

III stage

d
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networks, SF connected with ER network and interdependent ER networks. The 
number of SF network and ER network are 1000, the <k> of SF network and ER 
network are 4. The simulation environment is MATLAB R2015a [9]. 

Firstly, compare UNOs with DNOs whose results are presented in Figure 3 
(When attack number is zero, the initial node number of all networks is 5000, 
this doesn’t display on the diagram). No matter for which interdependent net-
work (SF and SF, SF and ER, SF and SF), attack number of destroying directed 
interdependent networks is in the range [30, 100] and attack number of de-
stroying undirected interdependent networks is more than 2000. The attack 
number of destroying undirected interdependent networks is much larger than 
that of destroying directed interdependent networks. Meanwhile, the final attack 
number can be taken as a sign of the invulnerability of network system and we 
will use this indicator to show network system invulnerability below. 

Then, compare DNOs with DNMs. Firstly, there is a consideration of 
one-to-one dependency relations as shown in Figure 4. As the two cases shown 
in Figure 4, the dependency relation from node a to node b is supportive or de-
pendent. Let’s review dependent failure and supportive failure: anyone of the 
nodes which it depends on fails; all of the nodes which support it fail. If node b 
fails, no matter the dependency relation from node a to node b is supportive or 
dependent, node a will fail. Therefore, it can be understood that, in terms of the 
one-to-one dependency relations, the effects of supportive or dependent rela-
tions are same. The second consideration is about two-to-one dependency rela-
tions. The DNMs can be regarded as the improvement of DNOs, which means  

 

 
Figure 3. The invulnerability of UNOs and DNOs (There is a big distance be-
tween attack number of undirected and directed interdependent networks. The 
logarithmic form is used to indicate attack number. Results are from simulations 
averaged about 100 realizations). 
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Figure 4. One-to-one dependency relations. 

 
that DNMs is generated by adding dependent and supportive relations in the 
DNOs. The specific adding dependency relations rule is shown in Figure 5. 
Figure 5(a) can be understood like this: at the initial state, node b supports node 
a; now node c also supports node a, so that a supportive relation can be added 
from node c to node a. The realistic meaning of Figure 5(a) is to add reserve, 
which means that if node b fails, we can use node c to substitute. It is same as 
Figure 5(b): at the initial state, node a depends on node b; now node a depends 
on node c, so that a dependent relation can be added from node c to node a. The 
realistic meaning of Figure 5(b) is to add constraint, which means that not only 
node b but also node c is necessary to ensure node a to be functional. In addi-
tion, there may be more than one supportive and (or) dependent relation(s) 
added to one node in the simulation process. Due to the limitation of paper, 
there is no need to repeat in Figure 5(c) and Figure 5(d). By expanding on the 
basis of two-to-one situation, more-to-one situation can be got. 

In order to get DNMs, N1 number of dependent relations and N2 number of 
supportive relations are added to DNOs. We assume that the original network 
has a total of N edges, then two variables are defined: when p = N1/N, it means 
the increasing degree of supportive relations; when q = N2/N, it means the in-
creasing degree of dependent relations. In addition, DNOs and DNMs are di-
rected, and N11 can be used to indicate the increasing number of supportive rela-
tions from network A to network B and use N12 to that from network B to net-
work A. Besides, p1 and p2 are used to show the increasing degree, therefore, p = 
p1 + p2. Similarly, N21 and N22 are used to indicate the increasing number of de-
pendent relations from network A to network B and then from network B to A. 
As well, the use of q1 and q2 can show the increasing degree, therefore, q = q1 + 
q2. 

There are two factors mainly considered in this study of DNMs: the deviation 
to add dependency relations and the increasing number of dependency relations. 
The p* is used to indicate the deviation to add supportive relations and p* = p1 − 
p2. If the same number of supportive relations is added from network A to  

aa

bb

aa

bb
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(a)                                      (b) 

 
(c)                                     (d) 

Figure 5. The adding dependency relations rules (solid line and dashed line represent 
different types of dependency relations: solid lines represent supportive relation and 
dashed lines represent dependent ones. (a) is about adding supportive relation on the ba-
sis of itself. (b) is about adding dependent relation on the basis of itself. (c) is about add-
ing dependent relation on the basis of supportive relation; (d) is about adding supportive 
relation on the basis of dependent relation). 

 
network B and then from network B to network A, which is to add supportive 
relations completely symmetrically, then p* = 0. The q* is used to indicate the 
deviation to add dependent relations and q* = q1 − q2. If the same number of 
dependent relations is added from network A to network B and then from net-
work B to network A, which is to add dependent relations completely symmetri-
cally, then q* = 0. In Figure 6(a), we keep p = 1, q = 0, and let p* changed within a 
certain range to study the impacts on the invulnerability of network systems by 
adding supportive relations with different deviations. As shown in Figure 6(a), in 
terms of the interdependent SF networks, the network invulnerability  
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aa aa
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(a)                                                           (b) 

Figure 6. The invulnerability of directed interdependent networks by adding dependency relations with different deviations. (a) is 
about adding supportive relations. (b) is about adding dependent relations. Results are from simulations averaged about 100 reali-
zations. 

 
becomes the lowest one in the situation of adding supportive relations com-
pletely asymmetrically and the final attack number to destroy network system is 
about 200. With the tendency of adding supportive relations symmetrically, the 
network invulnerability increases gradually, and the network invulnerability be-
comes the highest one in the situation of adding supportive relations completely 
symmetrically with the final attack number being about 305. The tendency is the 
same as SF connected with ER networks and interdependent ER networks, 
therefore, it can be concluded that to the supportive relations, adding supportive 
relations symmetrically is useful to improve the invulnerability of network sys-
tems. Moreover, in terms of SF connected with ER networks, the final attack 
number to add supportive relations completely asymmetrically is about 215 and 
what to add supportive relations completely symmetrically is about 290. These 
two data for the interdependent ER networks are about 200 and 280 respectively. 
As a result, the conclusion is that, in terms of random attack, interdependent SF 
networks are more robust than interdependent ER networks, whose result meets 
well with [10]. 

Then, the deviations have been studied to add dependent relations, whose re-
sult is shown in Figure 6(b). Keep p = 0, q = 1 and let q* changed within a cer-
tain range. As is shown is the result, in terms of interdependent SF networks, no 
matter completely adding dependent relations symmetrically or asymmetrically, 
the final attack number is about 19, with what to SF connected with ER networks 
and interdependent SF networks are about 9 and 6. Two conclusions can be 
made from these results: one is that, in terms of dependent relations, adding de-
pendent relations symmetrically or asymmetrically has little effects on the in-
vulnerability of network systems; the other is that, in terms of random attack, 
interdependent SF networks are more robust than interdependent ER networks. 
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Finally, by adding different number of supportive and dependent relations, 
the invulnerability of directed interdependent networks has been studied in this 
paper. This question involves four variables: p1 p2 q1 q2. The question belongs to 
NP-hard question [11]. Limited by article length, only this situation can be un-
der study, in which dependency relations can be completely added symmetri-
cally. Keep p1 = p2 and q1 = q2, and then let p and q changed within a certain 
range, with the result shown in Figure 7. In terms of the interdependent ER 
networks, the result from Figure 7(a) can be understood. With the decrease of p, 
the invulnerability of network systems declines and with the decrease of q, the 
invulnerability of network systems raises [12]. When p = 1 and q = 0, the invul-
nerability of network systems reaches its maximum with final attack number 
being about 305. When p = 0 and q = 1, the invulnerability of network systems 
reaches its minimum with final attack number being about 5. Meanwhile, the 
impacts on the invulnerability of network systems by increasing p or decreasing 
q are nearly equal. These results also meet well with Figure 7(b) and Figure 
7(c). Therefore, it can be concluded that adding supportive relations is useful to 
improve the invulnerability of network systems and adding dependent relations 
can decline the invulnerability of network systems. The effect of raising the in-
vulnerability of network systems by adding supportive relations almost offsets 
the effects on declining the invulnerability of network systems by adding the 
same number of dependent relations. 

4. Conclusion 

In this paper, with multiple dependency relations, the invulnerability of directed 
interdependent networks has been studied. There are two types of dependency 
relations: dependent relation and supportive relation, which can be found in 
many real-world network systems. In order to cope with the invulnerability of 
these networks, three models are established to extend interdependent networks 
from undirected to directed relations, and from single dependency relations to 
multiple dependency relations. These models are: undirected interdependent 
networks connected by one-to-one dependent relation-UNOs; directed interde-
pendent networks connected by one-to-one dependent relation-DNOs; directed 
interdependent networks connected by dependent and supportive relations-DNMs. 
In addition, there is a simulation in interdependent SF networks, interdependent 
ER networks and SF connected with ER network to test the reliability of the con-
clusion. Comparing the UNOs with the DNOs, it is shown that the invulner-
ability of undirected interdependent networks is much higher than that of di-
rected interdependent networks [13]. This reason may be that there is too 
much dependent relation transmission in directed interdependent networks. 
Therefore, in real-world, if we want to build a survivable interdependent net-
work, we’d better choose undirected network. Comparing the DNOs with the 
DNMs, two conclusions can be drawn: one is that adding supportive relations 
symmetrically is useful to improve the invulnerability of network systems [14]  
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(a) 

 
(b)                                                          (c) 

Figure 7. The invulnerability of directed interdependent networks by adding different number of supportive and dependent rela-
tions. (a) is about interdependent SF networks. (b) is about SF connected with ER networks. (c) is about interdependent ER net-
work. There is a big distance between final attack number of directed interdependent networks with different number of increas-
ing supportive and dependent relations. As a result, the logarithmic forms are used to indicate final attack number. Results are 
from simulations averaged about 100 realizations. 

 
and adding dependent relations symmetrically or asymmetrically has little effects 
on the invulnerability of network systems; the other is that adding supportive 
relations can improve the invulnerability of network systems [15] and adding 
dependent relations can decline the invulnerability of network systems. The ef-
fect of raising the invulnerability of network systems by adding supportive rela-
tions almost offsets the effect on declining the invulnerability of network systems 
by adding the same number of dependent relations. Therefore, to improve the 
invulnerability of given network, regarding to whether to add supportive rela-
tion or reduce dependent relation, other factors (such as cost) should be consi-
dered. And if we choose to add supportive relations, we’d better add supportive 
relations symmetrically. Last but not least, in this paper, we study the The In-
vulnerability of Directed Interdependent Networks with Multiple Dependency 
Relations from the perspective of simulation, future work can be made to study 
it from the analytic angle. 
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