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Abstract 

The paper establishes a theorem of data perturbation analysis for the support 
vector classifier dual problem, from which the data perturbation analysis of 
the corresponding primary problem may be performed through standard re-
sults. This theorem derives the partial derivatives of the optimal solution and 
its corresponding optimal decision function with respect to data parameters, 
and provides the basis of quantitative analysis of the influence of data errors 
on the optimal solution and its corresponding optimal decision function. The 
theorem provides the foundation for analyzing the stability and sensitivity of 
the support vector classifier. 
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1. Introduction 

Many methods of data mining exist, including machine learning which is a ma-
jor research direction of artificial intelligence. The theory of statistics plays a 
fundamental role in machine learning. However the classic theory of statistics is 
often based on large sample properties, while in reality we often face small sam-
ples, sometimes with a very limited number of observations due to resource or 
other constraints. Consequently the performance of some large sample methods 
may be unsatisfactory in certain real applications. Vapnik and collaborators 
pioneered in the 1960s machine learning for finite samples and developed the 
statistical learning theory [1] [2]. To deal with the inconsistency between mini-
mizing the empirical risk and minimizing the expected risk in statistical learning, 
they proposed the principle of structural risk minimization to investigate the 
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consistency in the machine learning process. Later on, Vapnik and his colleagues 
at AT & T Bell Laboratory proposed the method of support vector machine [3]. 
This has then been further developed into the method of support vector classifi-
er (SVC) within statistical learning theory, which has shown satisfactory per-
formance and is becoming a general method of machine learning. We focus our 
paper on SVC. 

Let the training data set be ( ) ( ) ( ){ } ( )1 1 2 2, , , , , , m
m mT x y x y x y X Y= ∈ × , 

where n
ix X R∈ =  is the training input and { }1, 1iy Y∈ = − +  is the training 

output, 1,2, ,i m=  . The essence of the SVC problem for data mining is to seek 
a real-valued function ( )f x  on the training input set nR  such that the deci-
sion function ( )sgn f x  infers the corresponding category in the set { }1, 1− +  
of an arbitrary data input nx X R∈ = , where ( ) 1sgn f x = −  if ( ) 0f x <  and 

( ) 1sgn f x =  if ( ) 0f x >  [4] [5]. Because it is not guaranteed that a linear 
space over the original input space nR  can be found to separate the training 
input set, a transformation ( ): x xφ φ→ =x  is often introduced from the in-
put space nR  to a high-dimensional Hilbert space   such that the training 
input set corresponds to a training set in  . Then a super-plane is sought after 
in   to separate the input space to solve the data mining classification prob-
lems. 

The primary problem of the standard support vector classifier (SVC) is to  
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where T stands for transpose, 0, 1, ,iC i m> =   and ( )T
1, , mψ ψ ψ=   are pe-

nalty parameters, w consists of the slopes of the super-plane, b R∈  is the in-
tercept of the super-plane, and ( )i ixφ=x . 

The quadratic Wolfe dual problem of the above primary problem (1) is to  
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where ( )T
1, , mα α α=  , ( )T

1, , my y y=  , ( )T1, ,1e =  ,  

( ) ( )( ) ( )T
,i j i jK x x x xφ φ=  is the kernel function, and ( ),ij i j i jH y y K x x= . 

The relationships between the optimal solution *, 1, ,i i mα =   of the dual 
problem (2) and the optimal solution ( )* *,w b  of the primary problem (1) is 
given by  
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The corresponding optimal decision function is given by ( )sgn f x , where 
( ) ( )* *

1 ,m
i i iif x y K x x bα

=
= +∑ . Furthermore, each component *

iα  of the optim-
al solution *α  corresponds to a training input, and we call a training input ix  
a support vector if its corresponding * 0iα > . 

In data mining, the training input data , 1, 2, ,ix i m=   of the support vector 
classifier (SVC) model are approximation of the true values. When using the 
approximate values to establish the SVC model, errors in data will inevitably 
impact on the optimal solution and the corresponding optimal decision function 
of the SVC model. When the upper bound of data errors is known, the method 
of data perturbation analysis is used to derive the upper bounds of the optimal 
solution and its corresponding optimal decision function. 

We are interested in the stability and sensitivity analysis of the optimal solu-
tion and its corresponding optimal decision function. Our analysis is based on 
the Fiacco’s Theorem on the sensitivity analysis of a general class of nonlinear 
programming problem [6] [7] [8]. The second order sufficiency condition re-
quired for the Fiacco Theorem was further studied in [9]. On the other hand, 
kernel functions have been used in machine learning [10] [11] [12]. In this 
paper, we establish a Theorem on data perturbation analysis for a general class 
of SVC problems with kernel functions. The paper is organized as follows. The 
main Theorem and its Lemmas are introduced in the next section. Section 3 
concludes the paper. 

2. Data Perturbation Analysis of the SVC Dual Problem 

Suppose that ( )* * *, ,w b ψ  is the optimal solution of the primary problem 
(1). Corresponding to the solution ( )* * *, ,w b ψ , we divide, for convenience, 
the training data ( ) ( ) ( )1 1 2 2, , , , , ,m mx y x y x y  into categories , ,A B C  as fol-
lows:  

1) A category: points satisfying ( )T * * 1i w b+ =x  and 1iy = + , or  
( )T * * 1i w b+ = −x  and 1iy = − . These points are denoted as  
( ) ( ) ( )1 1 2 2, , , , , ,t tx y x y x y  for convenience. Denote { }1, ,A t=  .  

2) B category: points satisfying ( )T * * 1i w b+ >x  and 1iy = + , or  
( )T * * 1i w b+ < −x  and 1iy = − . These points are denoted as  
( ) ( ) ( )1 1 2 2, , , , , ,t t t t s sx y x y x y+ + + +   for convenience. Denote { }1, ,B t s= +  .  

3) C category: points satisfying ( )T * * 1i w b+ <x  and 1iy = + , or  
( )T * * 1i w b+ > −x  and 1iy = − . These points are denoted as  
( ) ( ) ( )1 1 2 2, , , , , ,s s s s m mx y x y x y+ + + +   for convenience. Denote { }1, ,C s m= +  .  

We call those indices i such that either ( ), , 0ig w b ψ =  or ( ), , 0m ig w b ψ+ =  
as working constraint indices. Let’s start with a lemma.  

Lemma 1. Suppose that ( )* * *, ,w b ψ  is the optimal solution of the primary 
problem (1). Then the set of all working constraint indices is give by  

( ) { }
{ } { }

* * *, , 1, , , 1, , , 1, , , 1, ,

: : .

I w b t m m t m t m s s m

A m i i A m j j B C

ψ = + + + + + +

= + ∈ + ∈
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Proof. The proof is straightforward from the definitions of working constraint 
index and the observation that points in A and B categories imply that 0iψ =  
and points in the C category imply that 0iψ > .  

Then we offer a sufficient condition for the linear independence of the gra-
dients indexed by the set ( )* * *, ,I w b ψ . 

Lemma 2. Let ( )T* * *
1 , , mα α α=   be the optimal solution of the dual prob-

lem (2). If there exists any component *
jα  of *α  such that *0 j jCα< <  where  

1,2, ,j m∈  , then the set of gradients ( )
TT

* * *, , , ,ihh i I w b ψ
α α

 ∂∂     ∈    ∂ ∂     
 is 

linearly independent.  
Proof. For i A∈ , suppose there exists 11 t t≤ ≤  such that * 0iα >  for 
1,2, , ii t=   but * 0iα =  for 1 1, ,i t t= +  . For i B∈ , we always have * 0iα = . 

For i C∈ , we always have *
i iCα = . The set of gradients  

( )
TT
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Since it is assumed that there is a support vector multiplier *
iα  such that  

*0 i iCα< < , the number of gradients in ( )
T

* * *, , ,ih i I w b ψ
α

 ∂  ∈  ∂   
 must be 

smaller than the dimension m, which is the dimension of the vector 
Thy

α
∂ =  ∂ 

. 

Therefore the vector 
Th y

α
∂  = ∂ 

 whose m components are either −1 or +1 

cannot be expressed as a linear combination of the set of gradients 

( )
T

* * *, , ,ih i I w b ψ
α

 ∂  ∈  ∂   
. Hence the set of constrained gradients is linearly 

independent.  

We use the lower case letter p to denote the training input variable and 0p  to 
denote the training input data. When the form of the kernel function ( )xφ  is 
known, the following main Theorem investigates how the errors in the training 
input data impact on the optimal solution and the corresponding optimal deci-
sion function of the SVC model. 

Theorem 3. Suppose that ( )T* * *
1 , , mα α α=   is the optimal solution of the 

dual problem (2) when 0p p= , and the corresponding Lagrange multiplier is 
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*b . Furthermore, ( )T* * *
1 , , mg g g=   and ( ) ( )T T* * * * *

1 1 2, , , ,m m mg gψ ψ ψ += =  . 
Suppose that A category input vectors 1 2, , , tx x x  are all support vectors with 

*0 , 1, 2, ,i iC i tα< < =  , and the set of vectors  

( ) ( ) ( )1 1 2 2

1 2

, , , t t

t

y x y x y x
y y y
φ φ φ    

    
     

  

corresponding to points in category A is linearly independent. Then the follow-
ing results hold. 

1) The optimal solution ( )T* * *
1 , , mα α α=   is unique, and the corresponding 

multiplier *b  as well as ( )T* * *
1 , , mg g g=   and  

( ) ( )T T* * * * *
1 1 2, , , ,m m mg gψ ψ ψ += =   are all unique. 

2) There is a neighbourhood ( )0N p  of 0p  on which there is a unique 
continuously differentiable function ( ) ( ) ( ) ( ) ( )( ), , ,y p p b p g p pα ψ=  such 
that  

a) ( ) ( )* * * *
0 , , ,y p b gα ψ= ,  

b) ( )pα  is a feasible solution to the dual problem (2) for any ( )0p N p∈ ,  
c) the partial derivatives of ( ) ( ) ( ) ( ) ( )( ), , ,y p p b p g p pα ψ=  with respect 

to data parameters satisfy  
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 , Lα∇  is the  

gradient of L with respect to α , , 1, ,p i i mα∇ =   is the gradient of iα  with 
respect to p, ( )T

p y α∇  is the gradient of Ty α  with respect to p, and L is the  

Lagrange function of the primary problem (1), ( )
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Proof. 
Our results follow directly from the Fiacco Theorem after checking the fol-

lowing three conditions required in the Fiacco Theorem: 
The Second Order Sufficiency Condition for *α , 
Linear Independence of Gradients over the Working Constraint Set, 
The Strict Complementarity Property. 
Proof of the Second Order Sufficiency Condition. Suppose that  

( )T* * *
1 , , mα α α=   is the optimal solution to the dual problem. Then there exist 

multipliers ( )T* * * *
1, , , m

mb R g g g R∈ = ∈  and  
( ) ( )T T* * * * *

1 1 2, , , , m
m m mg g Rψ ψ ψ += = ∈   satisfying the Kurash-Kuhn-Tucker 

Condition:  
* * * * 0,H e b y gα ψ− + − + =  

* 0 for any ,ig i≥  
* 0 for any ,i iψ ≥  

( )T* * 0,g α =  

( ) ( )T* * 0,Cψ α − =  

where ( )ijH H=  and ( )T
1, , mC C C=  . 

The Hessian matrix corresponding to the Lagrangian function  

( )
( ) ( )( ) ( ) ( ) ( )
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becomes the matrix H. 
For i A∈ , we have assumed that * 0iα > . For i B∈ , we have * *0, 0i ig α> =  

and * 0iψ = . For i C∈ , we have * *0,i i ig Cα= =  and * 0iψ > . 
Define the set { }T: 0; 0, 1, , ; 0, 1, ,i iZ z z y z i t z i t m= = ≤ = = = +  . Then for 

any ( )1, , ,0, ,0 , 0tz z z Z z= ∈ ≠  , we have 

( ) ( ) ( )

( ) ( )

1

1
T 2 * * * * *

1 1

T

1 1

, , , , , ,0, ,0 , ,
0

0
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t
t t

t

t t
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z y x z y x
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φ φ
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      ∇ = =   
   

  
  
 

   =    
   
∑ ∑



   



 

where ( )2 * * * *, , ,L b g Hα ψ∇ =  is the Hessian matrix of ( )* * * *, , ,L b gα ψ  and 
*H  is the upper left t t×  sub-matrix of H. 
Suppose that ( ) ( )1 1 1 0t t tz y x z y xφ φ+ + = . Then because the set of vectors  

( ) ( ) ( )1 1 2 2

1 2

, , , t t

t

y x y x y x
y y y
φ φ φ    

    
     

  

corresponding to points in category A is linearly independent and that 

1 1 0t tz y z y+ + = , we must have 1 0tz z= = = . This contradicts with the as-
sumption that 0z ≠ . Hence we must have ( ) ( )1 1 1 0t t tz y x z y xφ φ+ + ≠ . This 
implied that ( )T 2 * * * *, , , 0z L b g zα ψ∇ >  and therefore the Second Order Suffi-
ciency Condition is satisfied by *α . 

Proof of the Linear Independence of Gradients over the Working Con-
straint Set. This is Lemma 2. 

Proof of the Strict Complementarity Property. We need to show that *g  
and *α  cannot be 0 simultaneously, and *ψ  and * Cα −  cannot be 0 simul-
taneously. For i A∈ , we have * 0iα >  and hence the intersection between A 
and the working constraint set is empty because of the assumption 

* ,i iC i Aα < ∈ . For i B∈ , we have * 0iα =  and multiplier * 0ig > . For i C∈ , 
we have *

i iCα =  and multiplier * 0iψ > . Therefore the Strict Complementarity 
Property holds.  

3. Conclusion 

Support vector classifier plays an important role in machine learning and data 
mining. Due to the standard results that connect the primary problem and its 
dual problem, analysis of the primary problem can be achieved by working on its 
dual problem. Our main result establishes the equation for solving the partial 
derivatives of the optimal solution and the corresponding optimal decision func-
tion with respect to data parameters. Because the derivative measures the rate of 
change and a large value of the derivative often implies a large rate of change 
and hence a sensitive and unstable solution, our main result provides the foun-
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dation of quantitative analysis based on the derivatives. 
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