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Abstract 
Repetitive Control (RC) designed with state feedback that includes past error 
feedforward and current error feedback schemes for linear time-invariant 
systems is reintroduced. Periodic disturbances are common within repetitive 
systems and can be represented with a time-delay model. The proposed de-
sign focuses on isolating the disturbance model and finding the overall trans-
fer function around the delay model. The use of the small gain theorem 
around the delay model assures disturbance accommodation if stability con-
ditions are achieved. This paper reintroduces the designed RC controller 
within the state feedback in the presence of both past error and current error 
structures. Robustness conditions are investigated and set to enhance system 
performance in the presence of modelling mismatch, which represents the 
novel contribution in this paper. Simulations demonstrate the advantages of 
the robust conditions obtained while improving system performance for dy-
namic perturbations. 
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1. Introduction 
Systems of a repetitive [1] nature are those where the reference trajectory 
required to follow to a high precision, ( )r t , is of a repetitive structure, 
( ) ( )r t r t T= + . Repetitive control (RC) [2] is a control technique that learns 

from previous experiences to enhance ad infinitum periodic reference tracking 
and rejects periodic disturbances. 

RC was first mentioned with the reported work of [3] where the main 
objective was to reject periodic disturbances in a power supply control application 
or as in [4] to track periodic reference in a motion control application. 

RC has a direct impact on industry, which utilizes RC applications, such as 
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systems with rotary movement such as disc drives [5], electrical motors [6] that 
need to overcome torque ripples, robotics [7], and other systems performing 
repetitive tasks. 

The idea behind RC is to use previous periods/trials to modify the control 
signal such that the overall system learns to follow a periodic reference trajectory 
with period T to a high precision. Most previously designed frameworks report 
their work in a continuous time-domain due to the nature of the repetitive 
system and use time instants t to form the forcing function in the update law for 
a certain upcoming time instant denoted by t T+ . In literature, [8] [9] several 
structures for RC updating laws. The internal model principle (IMP) [10] is the 
main principle for all RC designs, where the principle suggests tracking/rejecting 
a periodic signal without steady-state errors to model the periodic signal as an 
autonomous system inside a feedback loop. Then, the small gain theorem is used 
to design the control system, such that the overall system is sufficiently stable to 
achieve the required task. 

Repetitive control and iterative learning control (ILC), which is another 
technique used to accommodate periodic disturbances and to enhance the 
performance of repetitive systems, are not similar even though they use the same 
updating technique. The main difference is that in RC there is no resetting 
between trials; the reference that is followed is continuous with ( ) ( )r t r t N= + , 
where N is the number of samples. That is, the system initial states for trial k are 
those of the final states of trial 1k − . In comparison, for ILC, the system resets 
to the home position after each trial to start the next trial. A comparison 
between RC and ILC that clarifies similarities and differences can be found in [9]. 
The similarities in the general structure of the two methods can divert the design 
to lift the batch process description to be formed in a matrix representation [11], 
“the general repetitive control laws discussed above can correspond to general 
learning control gain matrices L, with the stipulation that the gains in the matrix 
within each diagonal are all the same.” 

Based on the above statements, a lifted form that maps the problem structure 
from the property of being expressed in time and trial indexes to a uniform 
structure that depends on the trial index alone can be generally considered. Thus 
the design starts with first defining the periodic signal and then setting the 
required steps to design the RC controller in the lifted model with the presence 
of the delay model in the feedback loop. Any periodic signal can be generated by 
an autonomous system containing a delay model along the forward path with a 
positive feedback loop [3]. An accommodation of this type of signal can be 
achieved with the internal model principle by duplicating the delay system inside 
a feedback loop. A framework that addresses the similarities between RC and 
ILC and clarifies the best controller depending on the location of the internal 
model is found in [12] [13]. It had been shown that both RC and ILC are not 
similar, but they are related by duality. In turn, a modified framework design [14] 
incorporates both current error feedback as well as past error feedforward. 

This paper reintroduces the RC design within the proposed framework in a 
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state feedback structure. As well it presents new robust conditions that set 
limitations towards the design that are different than those introduced in [15] 
where the authors discussed the uncertainty condition for the proposed design 
in the presence of current error feedback alone in the frequency domain. The 
novelty of this paper lies within setting new robust conditions for different cases 
in the RC design within the framework discussed using singular values. 
Simulation results showed that the new design performs reliably well in the 
presence of system uncertainty. 

The following section briefly discusses RC design in a general case under the 
proposed framework in [14]. Design robustness and the development of 
performance against unmodelled dynamics of the proposed RC designs are 
presented in Section 3.0. Simulation results from a Non-Minimum Phase (NMP) 
plant, which was the platform for several past RC designs verifications, can be 
found in Section 4.0. Conclusions and future work are discussed in Section 6. 

2. Problem Formulation Background and Solution 
Starting with a linear time-invariant system with m outputs, p inputs and n 
states having a discrete overall transfer function in the state space form given by 
( ) ( ) 1

nP z C zI A B D−= − + . The matrices A, B, C and D are of proper 
dimensions. Also let the system output be ( )y z  and the input ( )u z , then the 
process output equation is ( ) ( ) ( )y z P z u z= . 

The general platform to describe the RC controller or the ILC controller is the 
same due to the similarities they both hold, thus it is no harm to initially 
describe the system in the lifted form as a start. Consider a “single trial” with a 
finite time duration with N samples, where the model of the system dynamics at 
trial k can be expressed as 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

11 , 0 1k k k k k

k k k

x i Ax i Bu i x x N

y i Cx i Du i
−+ = + = −

= +
           (1) 

where 0 1i N≤ ≤ − . In the above equation, the RC controller does not reset to 
the initial state after each trial as done by ILC; ( ) 00kx x= . Now, introduce the 
input and output vectors as 

( ) ( ) ( ) T
0 , 1 , , 1k k k ku u u u N= −    

( ) ( ) ( ) T
0 , 1 , , 1k k k ky y y y N= −    

Then the dynamics for each trial can be written in the form of 

k ky Pu=                           (2) 

where 

2 3 4

0 0 0
0 0

0

N N N

D
CB D

P CAB CB D

CA B CA B CA B D− − −

 
 
 
 =
 
 
  







    



 

where its elements are the Markov parameters. Defining the reference; in 
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discrete form, to hold the vector elements of 

( ) ( ) ( ) T
0 , 1 , , 1r r r r N= −    

As discussed, the RC problem can be illustrated with the structure presented 
in Figure 1, where block ( )zΦ  is a diagonal transfer function matrix that has 
an internal model representation in its diagonals. As [13] pointed out, in an RC 
case there are m channels as the block operates in the output space with N state 
variables. 

A periodic signal that is considered as an autonomous system consisting of a 
positive feedback control loop with a pure time delay in the forward path with 
appropriate initial conditions can generate a periodic signal with appropriate 
boundary conditions by modelling with a signal of length N in discrete-time as 

( ) ( ) ( )1 0 0,w k w k w wx t A x t x t x+ = =  

( ) ( )k w kw t C x t=                         (3) 

where the N N×  matrix wA  is given by 

0 1 0 0

0 0 0 1
1 0 0 0

wA

 
 
 =
 
 
 



    





 

and the 1 N×  row vector wC  as 

[ ]1 0 0 0wC =   

A robust controller ( )K z  (where z denotes the discrete-time delay operator) 
is required for the robust periodic control problem, which is defined as: 

Given a m l×  transfer-function matrix ( )P z  with an input vector that 
consists of the plant input and a disturbance input; p wu u u= + , the output 
signal as defined in (2) and a reference signal ( ) ( ) , 0, , 2 ,k k N kr t r t t T T+= = ∆ ∆   
with N sampling time. The design of ( )K z  requires that the overall closed loop 
system is asymptotically stable, and the tracking error; k ke r y= − , tends to zero 
along the trial domain and the previous two conditions are robust. 

The solution considered in [12] [13] uses the internal model principle [10] as 
well as the small gain theorem to set stability conditions to design the feedback 
gain and the observer gain using a Linear Quadratic Regulator (LQR) where the 
periodic disturbances act on the system output. [14] considers a more general 
case than the work presented in [12] [13] as it incorporates both current error 
and past error in the designed framework instead of the current error 
feedback. 

 

 
Figure 1. RC as a feedback problem [14]. 
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This paper considers the RC design scheme in the state feedback reported in 
[14] and the different stability conditions within depending on the error case 
considered; either current error feedback or past error feed forward. The 
following subsection explains in brief the design steps in [14] and the stability 
conditions for each case. 

RC Controller Design via State Feedback 

For a single channel, consider the system in (3), and also introduce the following 
1N ×  vector 

[ ]T0 0 0 1wB =   

and 
0 if past error feedforward case
1 if current error feedback casewD 

= 


 

for a multi-input multi-output (MIMO) case define rA  to be a diagonal matrix 
consisting of wA  along its diagonal. 

{ }diagr wA A=  

and the same is true for ,r rB C  and rD  where each diagonal block is repeated 
m times (acting on the system output). Thus, if considering the periodic 
problem proposed in Figure 1, the transfer function of the delay model, ( )zΦ , 
is given as 

( ) ( )
( )

1
1

1

if 0

if 1
m

N
m m w

r N r r r
N

m m w

z I I D
C zI A B D

I z I D

−

−

−−

 − =− + = 
 − =

 

Now, the design considers whether the state feedback can be found with more 
details in [14] [15]. The overall idea of this method is to combine both the plant 
and the internal model in one structure as 

( )
( )

( )
( ) ( ) ( )

1
1 0 0

r rr r r r
k

x i x iA B C B D B
u i r i

x i x iA B
 +   − −     

= + +        +         
      (4) 

where stabilising this system guarantees periodic disturbance accommodation 
since the output of the combined system is the plant output and its input is the 
control input signal, where rx  is the internal model system state. Manipulate 
the combined system by choosing the control input of the combined system as 

( ) ( )
( )

ˆ
ˆ
r

r

x i
u i K

x i
 

= −  
 

 

with an observer to estimate the states. This in turn will end up with the overall 
system of the form [14] 

( )
( )

( )
( )

( )
( )

( ) [ ]( ) ( )
( )

ˆ ˆ ˆ1
ˆ ˆ ˆ1 0

ˆ
ˆ

r r rr r r
r

r
r r r r r

x i x i x iA B C B D
K

x i x i x iA B

x i
L v i C D C D DK

x i

 +     − −   
= −        +         

  
+ − − +     

      (5) 
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The overall structure description can be found in [14]. The design at this stage 
concentrates on isolating the delay N

mz I−  and finding the overall transfer 
function that links its output by its input and is termed ( )H z . A stability 
condition following the small gain theorem suggests 

( ) 1H z <                         (6) 

where the overall transfer function around the delay operator, ( )H z , differs 
depending on the error case considered, either past error feedforward or current 
error feedback, for a Past error feedforward case 

( ) ( ) ( )( ) ( ) 1H z G z P z G z −= +                    (7) 

and for a Current error feedback case 

( ) ( ) ( ) ( )( ) 1
H z G z G z P z

−
= +                    (8) 

where ( )G z  in both cases is governed by the following 

( ) [ ]
1

0
r r r r

r r r r

A B C B D B D
G z C D C zI K D D

A B B

−
 −  −     

= − − + −      −      
 

The solution required depends on solving the linear quadratic regulator to 
find K via the Riccati equation, such that the model considers the difference 
between the combined system around the plant and the delay model and the 
estimator structure to minimize the required cost function [14]. 

3. Robust RC Design in State Feedback 

In this section the robustness property of the two designed RC controllers in [14] 
in past error feedforward and current error feedback is investigated through the 
stability condition assigned in (6). Previous reported work did not discuss this 
subject, which forms the main novelty of the work presented in this paper. 
Starting with the stability condition in (6) and considering the following cases: 

For past error feedforward in state feedback design the starting point is the 
stability condition given in (6) where the induced norm has to be less than 1 to 
guarantee system stability. A more conservative restriction is to consider 
singular values instead, thus the condition will be 

( )( ) 1H zσ <  

which clearly indicates that all the eigenvalues of ( )H z  are inside the unit 
circle once the maximum singular value is considered. Verifying this condition 
in the maximum case assures reference tracking and periodic disturbance 
accommodation. Now, consider the case where unmodelled system dynamics or 
system uncertainty defined as ( ∆ ) act on the system in operation. To examine 
this case define [ o oP P P W= + ∆ ] where , ,oP W∆  are the nominal plant, the 
uncertainty, and the uncertainty weight, respectively. Each of the defined 
variables is stable, causal and linear time invariant for simplicity. Now, in 
combination with the definition of ( )H z  given in (7), we can write the 
following derivation: 
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( ) ( ) 1o oG P P W Gσ σ+ + ∆ < ≤  

( ) ( ) ( ) 1o oG P P W Gσ σ σ+ + ∆ < ≤  

taking the uncertainty part on one side and the other parts from the right side 
yields 

( ) ( ) ( ) ( )o oP W G G Pσ σ σ σ∆ < − −                 (9) 

maximizing the left-hand side will give the possible variation in system 
dynamics; meanwhile, the right-hand side, sets the upper bound for the system 
so as to not have unwanted performance through the operation. This can be 
found if the right-hand side was of the form ( ) ( ) ( )G G Pσ σ σ− − . To extend 
the previous property and set a weight for the uncertainty that gives a better 
upper bound and permits the system to deal with unmodelled dynamics through 
the operation can be found if we manipulate Equation (9) to be of the form 

( ) ( ) ( ) ( )
( ) ( )

o

o

G G P
W P

σ σ σ
σ

σ σ
− −

∆ <                  (10) 

maximizing the left-hand side of Equation (10), such that the right-hand side is 
kept at a minimum, can be seen as solving the following 

( ) ( ) ( ) ( )
( ) ( )

min
max

o

o

G G P
W P

σ σ σ
σ

σ σ
− −

∆ < =               (11) 

Now, ( ) ( )G Gσ σ≠  unless G is a scalar multiplied by the identity, which is 
not true in our design. Thus, returning back to Equation (11), to suppress the 
uncertainty effect to a higher level, further investigation toward weight (W) is 
taken into account and can be expressed by ( ) 1σ ∆ < , in the following 

( ) ( ) ( )
( ) ( )

1 o

o

G G P
W P

σ σ σ
σ σ
− −

<  

( ) ( ) ( ) ( )
( )

1o

o

G G P
W

P
σ σ σ

σ
σ

− −
< <                 (12) 

The condition given in Equation (12) will set the upper limit to the weighting 
factor such that uncertainty is extended and avoids a high level of unmodelled 
dynamics compared to a case where there is no consideration of a weighting 
factor. 

For current error feedback in the state feedback design the starting point again 
is the stability condition given in (6) where the induced norm has to be less than 
1 to guarantee system stability. Again consider system uncertainty as ( ∆ ) acting 
on the system in operation. To examine this case again, define [ o oP P P W= + ∆ ] 
with the definitions given and properties considered in the past-error case. 
Following the same steps, in combination with the definition of ( )H z  given in 
(8), we can write the following derivation in term of the singular values as 

1
o o

G
G P P W

σ
 

< 
− − ∆ 
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which leads to writing the above after manipulation as 

( ) ( ) ( ) ( )
( ) ( )

o

o

G G P
W P

σ σ σ
σ

σ σ
− −

∆ >                  (13) 

Since the uncertainty is assumed to be stable ( ( ) 1σ ∆ < ), then equation (13) 
can be written as 

( ) ( ) ( )
( ) ( )

1o

o

G G P
W P

σ σ σ
σ σ
− −

<                      (14) 

Equation (14) will give the proper condition for the weighting factor (W) such 
that the left-hand side is minimized, which will be 

( ) ( ) ( ) ( )
( )

1 o

o

G G P
W

P
σ σ σ

σ
σ

− −
> >                 (15) 

Condition (15) is the same as that in (12) to a limit where in (15) it sets the 
lower limit to the weight selection while (12) sets the upper limit to the 
uncertainty weight, which has a wider and better range than that of (15). This 
result supports the experimental results obtained for the past error feedforward 
case in ILC, instead of the current error feedback in [14], where the past error 
feedforward case has a more reliable design against system perturbation. 

The next section presents simulation results obtained on a non-minimum 
phase plant where the results show a performance improvement against system 
uncertainty and modelling mismatch when considering the robust design to 
previously reported design frameworks for the RC case. 

4. Simulation Results 

This section presents simulation results obtained for a non-minimum phase 
plant (NMP) to verify that the proposed design suppresses the dynamic matrix 
changes of a plant with a difficult mathematical structure, such as with NMP. 

In this example, a NMP plant was tested against dynamic matrix changes with 
both the absence and the presence of a weighting factor. The physical system was 
constructed to implement both ILC and Repetitive controller (RC) schemes, 
which led to the verity of reported works, for example [16]. In this paper, the 
simulation results obtained support the idea of extending the level of system 
modelling mismatch through the weighting factor. The NMP plant has one zero 
in the right half plane which makes this system hard to test in a RC scheme due 
to the instability associated with plant inversion. As a result, any sudden change 
in system dynamics; modelling mismatch as an example, would result in an 
unstable output response. The mathematical equation that describes the system 
shown in Figure 2 is given as: 

( ) ( )
( )( )2

1.202 4
9 12 56.25

s
P s

s s s s
−

=
+ + +

             (16) 

This system has been tested in two different cases, the first is where the 
weighting factor is ignored, while the second case considers the presence of the  
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Figure 2. Non-minimum phase plant experimental test facility [17]. 

 

 
Figure 3. Output response and log of MSE with matrix A changed by 5%. 
 
weighting factor. A reference signal of 2 seconds was applied with a selected 
sampling frequency of 100 Hz generating 200 sample points that were recorded 
in each trial. The system can be operated for large number of trials, but only the 
first 10 cycles are presented since they include all the needed information to 
clarify the weighting factor effect. Figure 3 shows a comparison of the two cases 
when the matrix A is changed by 5%. Plot A and plot B are for the output signal 
and the Log of the mean squared error with the weighting factor presence, while 
plot C and plot D are for the case where the weighting factor is omitted. It is 
found that with a change of 5% in the dynamic matrix (A), the system in plot C 
and D tend to be unstable and the error increases opposite to the case with 
weighting factor presence; plot A and B, it can be seen that the system can 
overcome model mismatch and the response tends to follow the reference signal 
as the number of trial increases. 

https://doi.org/10.4236/ica.2018.94008


M. Alsubaie et al. 
 

 

DOI: 10.4236/ica.2018.94008 104 Intelligent Control and Automation 
 

 
Figure 4. Output responses for different variations in A matrix with the 
presence of the weighting parameter. 

 

 
Figure 5. Mean squared error for the NMP output with the weighting factor presence. 

 
Figure 4 shows different output responses for the system with varying the A 

matrix for the past error case where the weighting factor was found with 
equation 12 to be 0.8176 and the selected weight is half of the limit found, 0.4088. 
The figure shows an extension in system stability against uncertainty up to 14%. 
Figure 5 shows the mean squared error for the responses shown in 4 where it 
assures system stability against system perturbation. Omitting the weighting 
factor effect when system dynamic matrix changed limit the ability to cope with 
the system to less than 5% change in the A matrix; see Figure 6. 
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Figure 6. Mean squared error for the NMP output without the weighting factor. 

5. Conclusion 

In this paper conditions were set to extend the range of linear system uncertainty 
based on the singular value principle for the RC design presented in [14]. 
Different cases were discussed and conditions were found that extend system 
robustness against system unmodelled dynamics. Simulations verified successful 
use of a weighting factor to extend the range of uncertainty considered with the 
RC design via state feedback. A high level of reference tracking was achieved for 
up to 14% of system uncertainty in the NMP model. In the future, experimental 
results are expected to verify the developed conditions to overcome system 
perturbation. Future work will examine the effect of the newly obtained 
conditions to extend the range of uncertainty on system performance physically. 
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