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Abstract 
In this paper, evolutions of ruled surfaces generated by the quasi normal and 
quasi binormal vector fields of space curve are presented. These evolutions of 
the ruled surfaces depend on the evolutions of their directrix using quasi 
frame along a space curve. 
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1. Introduction 

Recently, the study of the motion of inelastic plane curves has arisen in a num-
ber of diverse engineering applications. Chirikjian and Burdick [1] describe the 
motion of a planar hyper redundant (or snake-like) robot as the flow of a plane 
curve, while Brockett [2] explicitly proposes the idea of an inelastic string ma-
chine as a robotic device. Jagadeesan Jayender and Kirby G. Vosburgh [3] 
showed that the colonoscope can be modeled as a set of infinitesimal rigid links 
along a backbone curve defined in terms of the Frenet-Serret frame. They used 
evolution of space curve theory in their model. Kalantar, et al. [4] they consi-
dered a collection of robots which can act as markers on an imaginary curve 
moving according to the local curvature and the external environmental force 
projected unto the normal to the curve. 

The geometric link between integrable equation and the motion of curves may 
be said to have its origin in an analysis by Da Rios [5] in 1906. He obtained par-
tial differential equation that governing the moving curves. Takao [6], showed 
that the Da Rios equations may be mapped to produce the celebrated nonlinear 
Schrodinger equation. Lamb [7], later in 1977, linked the motion of curves with 
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modified Korteweg-de Vries, the sine-Gordon and nonlinear Schrödinger equa-
tions. Lakshmanan et al. [8], derived the Heisenberg spin chain equation via the 
spatial motion of a space curve. 

In recent times, Santini and Doliwa [9] linked the motion of inextensible 
curves with solitonic systems. [10] studied evolution of the translation surfaces 
and their generating curves in E3 and obtained the evolution equations of the 
fundamental quantities and the Christoffel symbols for the translation surfaces. 
[11] studied generated surfaces via inextensible flows of curves in R3. They con-
structed and plotted the surfaces generated from the motion inextensible curves 
in R3. D. Y. Kwona and F. C. Park [12] [13] studied evolution of inelastic plane 
curves and inextensible flows of curves and developable ruled surfaces. They get 
partial differential equation that governing the flow of curves and the flow of 
ruled surfaces. Dariush Latifi and Asadollah Razavi [14] obtained necessary and 
sufficient conditions for an inextensible curve flow are expressed as a partial dif-
ferential equation involving the curvature and torsion. T. Körpinar and E. Tur-
han [15] investigated inextensible flows of tangent developable surfaces in Euc-
lidean 3-space E3 and obtained results for minimal tangent developable surfaces 
in Euclidean 3-space. R. Mukherjee and R. Balakrishnan [16] linked moving 
curves with sine-Gordon equation and displayed the evolving curve via the nu-
merical integration of the Serret-Frenet equations. 

In this paper, we introduce a different approach to this problem. The evolu-
tion of curves is represented by two sets of quasi Serret-Frenet equations for 
tangent, quasi normal and quasi binormal vectors to the curve. By applying 
compatibility condition on these vectors, three partial differential equations 
for the curvatures 1 2 3, ,κ κ κ  are derived. We derive system of partial differen-
tial equations governing the time evolution of the curvatures of the evolving 
curve. Ruled surface is constructed on the evolving curve where the generator 
is quasi normal and quasi binormal vectors to the curve. The coefficients of the 
first, second fundamental forms, Gaussian curvatures, mean curvatures are 
obtained. 

The article is organized as follows. In Section 2, we introduce differential 
geometry of curves focusing on Serret-Frenet frame and quasi frame along a 
space curve. In Section 3, the evolution of curves is represented by two sets of 
quasi Serret-Frenet equations for tangent, quasi normal and quasi binormal 
vectors to the curve. By applying compatibility condition on these vectors, three 
partial differential equations for the curvatures 1 2 3, ,κ κ κ  are derived. In Sec-
tion 4, Ruled surface is constructed on the evolving curve where the generator 
is quasi normal and quasi binormal vectors to the curve. The coefficients of the 
first, second fundamental forms, Gaussian curvatures, mean curvatures are 
obtained. 

2. Frenet Frame and Quasi Frame along a Space Curve 

There is a more moving frame that can be associated to a space curve in space 
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such as Frenet frame [17], Bishop frame [18] [19] [20], Kepler frame [21]. In this 
section we define a new frame along a space curve as an alternant to Frenet 
frame which called quasi Frame [22]. Also geometric proprieties for the Frenet 
frame and quasi frame along a space curve are presented. 

Let ( )s=r r  be a vector valued function of a regular space curve represented 
with its arc-length s , the vectors associated to the curve are  

( )
( )
( )
( )

,

,

,

s
s

s
s

′
=
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′
=
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= ×
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where T  is the tangent vector, N  is the normal vector, B  is the binomial 
vector. 

The curvature 1κ  and the torsion 2κ  are given by  
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The Frenet frame ( ), ,T N B  vary along r  according to the well-known 
Serret-Frenet relations [17]  
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The quasi frame of a regular space curve ( )s=r r  is given by 

,

,

,
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where k is the projection vector can be chosen as ( )1,0,0=k  or ( )0,1,0=k  
or ( )0,0,1=k . 

Let θ  is the angel between the normal N  and quasi normal qN . Then, the 
relation between two frames is given by  

( ) ( )
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Thus,  
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A short calculation using Equations (3), (5) and (6) shows that the variation of 
quasi frame is given by  

1 2

1 3

2 3
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d 0
d

0

q q

q q

q q
s

κ κ
κ κ
κ κ

    
    = −    

    − −    

T T
N N
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,                  (7) 

where the quasi curvatures are  

1

2

3

cos ,
sin ,

.

κ κ θ
κ κ θ
κ θ τ

=
= −

′= +

                          (8) 

its well known that if we have the curvature and the torsion of a space curve as a 
functions of arc-length parameter, then by integrating Serret-Frenet we can re-
construct the curve up to its position in the space and this is an immediate con-
sequence of the of the fundamental existence theorem for space curves [23]. Si-
milarly, if we have the quasi curvatures 1κ , 2κ  and 3κ , then we can recon-
struct the curve in the space via the integration of quasi Serret-Frenet Equation 
(9). 

3. Evolution of a Space Curve with Time by Quasi Frame  

In this section we study the evolution of a regular space curve using quasi frame. 
We derive time evolution equation for quasi frame and quasi curvatures. The 
variations of quasi Serret-Frenet with respect to s and t are similar to [24] [25]  
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We can write the Serret-Frenet equations and the equation of the evolution in 
the matrix form as follows. Defining 

1 2
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The Serret-Frenet equations and the equation of the evolution can be written 
concisely as  

,

.

q Aq
s
q Bq
t

∂
=

∂
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=
∂

                            (12) 

Applying the compatibility condition  
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q q
t s s t
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,                       (13) 

a short calculation using Equations (9), (10) and (11) leads to  
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where [ ],A B AB BA= −  is called Lie bracket of A and B, using Equation (11) 
leads to  

1 2
2 3 1 3

31
2 3 1 2 3 3

32
1 3 1 2

0

0 0 .

0

t s t s

t s t s

t s t s

κ κλ µ
νκ µκ νκ λκ

κκ λ ν
νκ µκ µκ λκ

κκ µ ν
νκ λκ µκ λκ

×

 ∂ ∂∂ ∂   − + − + − +    ∂ ∂ ∂ ∂    
 ∂∂ ∂ ∂  − − + − − + − =    ∂ ∂ ∂ ∂    
 ∂∂ ∂ ∂   − + − + − − + −    ∂ ∂ ∂ ∂    

(15) 

Thus the compatibility conditions becomes 
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The set of Equation (16) is the main result of this paper they give a complete 
description of the motion of curves via quasi frame. These equations represent 
evolution equations for quasi curvatures of the evolving curve. For a given 

( ), ,λ µ ν  we can integrant 16 to get the ( )1 2 3, ,κ κ κ  and by integrating 9 we can 
get the evolving curve in space.  

4. Evolution of Ruled Surfaces Depends on Their Directrix  
by Quasi Frame of a Space Curve  

We provide a general scheme for studying evolution of ruled surfaces using an 
approach different from the one proposed by [13] [15]. We apply our method by 
using quasi frame along a space curve. Evolutions of ruled surfaces generated by 
the quasi normal and quasi binormal vector fields of space curve are presented. 
These evolutions of the ruled surfaces depend on the evolutions of their directrix 
using quasi frame along a space curve. 

4.1. Evolution of Quasi Normal Ruled Surface  

The equation of surfaces generated by quasi normal is [26]  

( ) ( ) ( ), , , , .qu v t u t v u t= +r Nψ                    (17) 

The tangent space to the surface ψ  is,  

( )1 31 ,
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the subscripts s and u stand for partial derivatives. 
The normal to ψ  is,  
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The second derivative is calculated and given by 
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If we compute components of the first fundamental form, we have  
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The fundamental metric is  
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The Gaussian curvature K and the mean curvature H are calculated and given by,  
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4.2. Evolution of Quasi Binormal Ruled Surface  

The equation of surfaces generated by quasi normal is  

( ) ( ) ( ), , , , .qu v t u t v u t= +r Bψ                   (25) 

The tangent space to the surface ψ  is,  

( )2 31 ,

.
u q

v q

v vκ κ= − −

=

T N

B

ψ

ψ
                   (26) 

the subscripts s and u stand for partial derivatives. 
The normal to ψ  is,  

https://doi.org/10.4236/jamp.2018.68149


M. A. Soliman et al. 
 

 

DOI: 10.4236/jamp.2018.68149 1754 Journal of Applied Mathematics and Physics 
 

( )3 2

2 2 2 2
2 2 3

1
.

1 2
qs t

t t

v v

v v v
ψ

κ κ

κ κ κ

− + − +∧
= =

∧ − + + +

T N
N ψ ψ

ψ ψ
             (27) 

The second derivative is calculated and given by 
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If we compute components of the first fundamental form, we have  
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If we compute components of the second fundamental form, we have 
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The Gaussian curvature K and the mean curvature H are calculated and given 
by,  
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5. Conclusion  

In this paper, evolutions of ruled surfaces generated by the quasi normal and 
quasi binormal vector fields of space curve are presented. These evolutions of the 
ruled surfaces depend on the evolutions of their directrix using quasi frame 
along a space curve.  
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