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Abstract 

In leading petroleum-producing countries like Kuwait, Brazil, Iran, Iraq and 
Mexico oil spills frequently occur on land, causing serious damage to crop 
fields. Soil remediation requires constant monitoring of the polluted area. 
One common monitoring method involves two-dimensional systematic sam-
pling, which can be used to estimate the proportion of the contaminated soil 
and study the oil spills’ geographic distribution. A well-known issue using 
this sampling design involves the analytical derivation of variance of the sam-
ple mean (proportion), which requires at least two independent samples. To 
address the problem, this research proposed a variance estimator based on 
regression and a corrected estimator using the autocorrelation Geary Index 
under the model-assisted approach. The construction of the estimators was 
assisted by geo-statistical models by simulating an auxiliary variable. Similar 
populations to those in real oil spills were recreated, and the accuracy of pro-
posed estimators was evaluated by comparing their performance with other 
well-known estimators. The factors considered in this simulation study were: 
a) the model for simulating the populations (exponential and wave), b) the 
mean and the variance of the process, c) the level of autocorrelation among 
units. Given the statistical and computing burdens (bias, ratio between esti-
mated and real variance, convergence and computer time), under the expo-
nential model, the regression estimator showed the best performance; and for 
the wave model, the corrected version performed even better. 
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1. Introduction 

Frequently, sampling in two dimensions is applied in small areas, resulting in 
small population in the situation when petroleum spills are studied. In places 
where these spills are common, oil contamination causes serious damage to soils 
and water bodies. Remediating the soil is expensive and requires careful moni-
toring. During this process, a soil sample is taken to estimate the proportion of 
contaminated area; however this method can be problematic if it does not yield 
accurate results. Historically, three different approaches have been used to per-
form and analyze sampling (design-based, model-based and model-assisted). 
One potentially superior monitoring strategy is the systematic sampling design, 
which offers a uniform coverage of the study area. Using this strategy, not only 
punctual estimations of the proportion and the variance are obtained, but also 
the collected information can be used to perform geo-statistical studies about the 
distribution of the pollutant area. 

Nevertheless, this sampling design has an unresolved difficulty. To obtain an 
unbiased estimate of the variance of the proportion, at least two independent 
samples are required; otherwise, by using just one sample, only an approxima-
tion of the variance can be computed [1] [2]. This issue is more difficult to re-
solve in two dimensions than in a linear case because the units are arranged in 
a plane instead of a line. For example in a bilinear case, under the design-based 
approach, Marcello [3] proposed estimators that consider the existence of 
autocorrelation among the units in the sample. He showed that the estimation 
procedure can be significantly improved by taking the similarity among units in 
the sample into account. Li [4] in his dissertation and Opsomer [5] proposed a 
nonparametric version of the variance estimator using a model-based approach. 
These estimators are robust, but under this approach, a great number of repli-
cates are required for accurate estimations [6], which results in an increased 
computing time. Recently, a model-assisted approach [7] has been employed to 
introduce a covariate explaining relatedness, and to improve the accuracy of the 
estimation. Most recently, Strand [8] compared three estimators for variance in 
systematic spatial samples. The first of these estimators was based on 
post-stratification of the data, the second one used a correction factor calculated 
from the spatial autocorrelation, and the third one was a model-based prediction 
calculated using values from semivariograms. 

This paper introduces two new variance estimators constructed under the 
model-assisted approach based on geo-statistical models. The estimators are the 
regression estimator of the variance, ( )ˆ ˆREGV p  and its corrected version, 

( )_
ˆ ˆREG GV p , which takes the existing autocorrelation among the units in the 

sample into account through the Geary Index [9]. This index measures the spa-
tial autocorrelation among the units by determining whether the adjacent ob-
servations of the same phenomena are correlated. The spatial autocorrelation is 
more complex than the linear autocorrelation because the correlation is mul-
ti-dimensional and bi-directional. By conducting a simulation study, the accu-
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racy was assessed and the performance of the proposed variance estimators was 
compared to other well-known estimators that exist in different approaches. 

The article is organized as follows. Section 2 provides a brief explanation of 
the two-dimensional systematic sampling. In Section 3, the estimators used to 
overcome the variance estimator issues are introduced. Section 4 gives a descrip-
tion of the design and the simulation study. The results and discussion are pre-
sented in Section 5. Finally, Section 6 formulates the conclusions and offers 
some recommendations. 

2. Systematic Sampling in Two Dimensions 

Systematic sampling designs are commonly used in real-life applications due to 
their straightforward implementation. Moreover, when proportions are esti-
mated in finite populations, their results are frequently more efficient than other 
sampling design alternatives (i.e. simple random sampling, stratified sampling, 
etc.). These properties made it attractive to consider this over an area where the 
population units are in a regular spaced array. Thus, this sampling design pro-
vides a uniform coverage of the area; which can take advantage of the informa-
tion of the location of the sample units for accounting for the spatial correlation. 
For example, when geographically close sampling units show a high positive 
correlation (geographically closer units tend to be more similar than units more 
distant from each other, as in the case of an oil spill, it is possible to obtain more 
accurate estimations. 

Two-dimensional systematic sampling consists of the random selection of an 
initial point, and the remaining points are selected by following a regular pattern 
(e.g. a rectangular or a square arrangement). In these arrangements, a sample is 
obtained by randomly selecting a square in the first domain (Figure 1), and then 
the squares that occupy the same position in the remaining domains are selected 
automatically. More formally, let’s consider D as a continuous region that con-
tains a finite number of units N, where these units are represented by some 
non-overlapping squares in the study area. To obtain these square units, it is ne-
cessary to divide the grid of regular squares over D; where this grid is formed by 
R rows and C columns, such that N = R × C. 

Thus, when a two-dimensional systematic sample of size n is needed, the N 
squares are grouped into n = nC × nR non-overlapping rectangular sub-regions 
or domains, and each domain contains k = kC × kR squares, where k = N/n is 
the number of all possible systematic samples. 

2.1. Estimation 

Suppose there is a binary random variable ( )Z f t=  that may take values 0 or 1 
for a fixed value of t. Then, an unbiased estimator of the population proportion 
p (mean) of Z in D by using the jth two-dimensional systematic sample is given by 

1
.ˆ ,

n
iji

SYS j

z
p

n
== ∑                              (1) 
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Figure 1. An example of a two-dimensional systematic sample taken 
from 16 domains and N = 256 with n = 16, k = 16, kC = 4 and kR = 4. 

 

where 
1 if
0 ifij

T t
z

T t
≥

=  <
 

with T as a continuous random variable and t as a fixed predetermined thre-
shold. 

The sampling error provides information about the variance of the estimator. 
An unbiased variance estimator for the population proportion (mean) can be 
obtained through 

( )2
.1

ˆ
.

k
j SYSj

SYS

p p
V

k
=

−
=
∑

                    (2) 

Under this sampling design, computing an unbiased estimator for the va-
riance requires at least two independent systematic samples, and by using a sin-
gle sample, only approximations can be derived [3] [10]. 

2.2. Variance Estimation under Different Approaches 

The estimation of the sampling error through a single systematic sample is more 
difficult in two dimensions than for the linear case, because the units are ar-
ranged in a plane instead of a line [3]. 

For selecting samples and performing correspondent analysis, three different 
approaches have been considered: design-based, model-based and mod-
el-assisted. In the design-based approach [1], the primary source of randomness 
comes from the sampling design. The model-based approach considers the val-
ues in a sample as the realized outcomes of random variables [11] [12]. Finally, 
the model-assisted approach uses an auxiliary variable, which is related to the 
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variable of interest [10]. 
The results (estimations) of these approaches are not directly comparable, be-

cause they arise under different assumptions. Nevertheless, a few authors have 
tried to give explanations to why and how to perform comparisons. For example, 
Särndal [11] showed that several of the classic results can be obtained and rein-
terpreted through the model-based theory. 

Next, the variance estimators that were considered in this study for compari-
son purposes are described. Then, the proposed models are introduced. 

A) Design-based approaches 
1) Simple random sampling estimator 
The variance estimator of the proportion (mean) under the simple random 

sampling estimation scheme can be written as 

( ) ( ) ( )ˆ ˆ1ˆ ˆ 1 ,
1SRS

p p
V p f

n
−

= −
−

                    (3) 

where p̂  is as defined in (1) and f is the proportion of the population selected 
for a sample. (1 − f) is called the finite population correction or adjustment. In 
sampling without replacement, the sample variance is reduced by this factor. 

The variance estimator (3) of the proportion (mean) under the simple random 
sampling scheme is unique in a way that it can be used without taking the spatial 
array of the units into account. Good estimations are expected if the distance 
between the sampled squares is large enough to have a small spatial correlation, 
or zero in the best case. In the presence of high homogeneity between sampled 
units the variance will be underestimated [2]. 

2) Geary’s spatial autocorrelation index 
Marcello [3] proposed two estimators that consider the autocorrelation in the 

sample, and they are obtained by correcting (3). 
The first estimator that formally takes the presence of the correlation into ac-

count is constructed with the autocorrelation Geary Index, and can be written as 

( ) ( ) ,ˆ ˆˆ ˆGI SRS jV p V p c=                        (4) 

where 
( )

( )( )

2

1
2

1 1

1

ˆ2

n n
l i ili i l

j n n n
il ii i l i

n z z
c

z p

δ

δ
= ≠

= ≠ =

− −
=

−

∑ ∑
∑ ∑ ∑

 

is the Geary index computed for the jth sample, 1ilδ =  if the ith and the lth units 
are in adjacent domains or 0 otherwise, and z is defined as before (i.e., binary 
outcome). Here, cj measures the grade of similarity among sampling units. 

3) Moran’s spatial autocorrelation statistic 
This estimator is constructed with the Moran’s spatial autocorrelation statis-

tic. 

( ) ( ) ,ˆ ˆˆ ˆMS SRS jV p V p w=                       (5) 

where 
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( )
2 21
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and ilδ  is defined as in (4). 
Here, lj is the Moran autocorrelation statistic computed for the jth sample, and 

it measures the dissimilarity grade between sampling units. 
B) Model-based approach 
Briefly, this approach considers the N values of a population { }1 2, , , Ny y y  

as realized outcomes of N random variables { }1 2, , , NY Y Y  resulting in a 
N-dimensional joint distribution also known as superpopulation. 

In the model-based approach under geo-statistical modeling, Aubry & De-
bouzie [13] proposed 

( ) ( )2

1

1ˆ ˆ ,
1

S
MB ssV p E E

S =
= −

− ∑                    (6) 

where 1

S
ss

E
E

S
== ∑  and ˆ .s s sE p P= −  

In this case, ˆ sp  is the estimated proportion of sP  obtained by using the jth 
sample for simulating the population { }1 2, , , Nz z z  in the sth realization (itera-
tion). 

3. Proposed Estimators 

C) Model-assisted approaches 
This research proposes a regression estimator and its’ correction by using the 

Geary Index. These estimators arise from the model-assisted approach, and their 
construction is assisted by simulating the auxiliary variable concentration of the 
Total Petroleum Hydrocarbons (TPH). 

1) Single regression estimator 
The variance estimator of the proportion can be written as 

( )_ ˆ
21ˆ ˆ 1 ,REG s e eingl

nV p S
N n

  = −  
  

                 (7) 
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and ( )2ˆ ˆi s i sy p x xβ= + −  is the predicted y-value for the ith unit using the jth 

sample, with 
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Here ˆiy  and 2β  are constructed by simulating the auxiliary covariate ix  
(TPH concentration), and iz  denotes the corresponding discrete value (i.e., 

1iz =  if 1000ix ≥  and 0iz =  otherwise; a unit will be considered contami-
nated if the TPH concentration is greater or equal to 1000). Then, the auxiliary 
variable is simulated for the entire population, and the units that occupy the 
same position in the original sample across domains are selected for analysis. 

2) Correction of the regression estimator using the Geary Index 
The variance estimator of the proportion using the Geary Index can be written 

as 

( ) ( )_ _ _
ˆ ,ˆˆ ˆ

jREG single c REG single jV p V p c=                    (8) 

where the terms are as defined previously. 
D) Model-assisted approach (averaged) 
The estimators (7) and (8) are obtained by using only one realization of the 

TPH population. Under the model-based approach, the estimator (6) needs a 
great number of iterations. To compare the accuracy under the same number of 
iterations, estimators (9) and (10) are introduced to be able to compare with es-
timator (6). 

( )
( )1

.

ˆ ˆˆ ˆ ,
S

REG ss
REG AV

V p
V p

S
== ∑                   (9) 

where ( )ˆ ˆREG sV p  is obtained for the sth iteration. 
Correction to (7) using the Geary Index can be written as 

( ) ( ). _ .
ˆ .ˆˆ ˆ

jREG AV c REG AV jV p V p c=                   (10) 

4. Simulation Study 

The estimation process in the model-based approach requires a great number of 
iterations; at least 10,000 are recommended by Aubry and Debouzie [6]. In con-
trast to the other approaches, only a single iteration is necessary. Due to this 
constraint, the simulation study was divided into two parts. 

The first part, called one-step simulation, considered 34 cases that were de-
rived from combinations of the following factors. 

Geo-statistical model. Two models were selected for generating data: 
The wave model and the exponential model [14] [15]. 
The mean and the variance of the process. Three values that are common in 

this type of populations were used for the mean (980, 1000, 1020) and two for 
the variance (300, 600).  

Autocorrelation index. Three different levels of autocorrelation indices were 
employed: low, medium and high (1.5, 2.8 and 4.8), respectively. 

Under the exponential model, estimators (3), (4), (5) and (7) were evaluated, 
while for the wave model, estimator (8) was also considered. Estimator (8) was 
employed because it provides better results. 
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In the second part of the study, called the averaging simulation, 6 cases were 
evaluated. Three cases corresponded to the exponential model, and the remain-
ing ones to the wave model. In the first group, the mean (980) and the variance 
(300) were kept constant for all autocorrelation levels (1.5, 2.8 and 4.8); while in 
the second group, they were held at 1020 and 600, respectively. 

The averaging simulation was carried out to observe the performance of the 
model-based estimator (6) and the model-assisted estimators (9) and (10) by 
using the same number of iterations (1000). These results were compared against 
the estimators (7) and (8), which were constructed with a single iteration. 

4.1. One-Step Simulation 

1) For each one of the 34 cases, the TPH ( )1 2, , , Nw w w  values were gener-
ated, and this population was considered as the real population. Next, the cor-
respondent discrete values were assigned: units with TPH contents higher than 
1000 ppm had a value 1 and 0 otherwise ( )1 2, , , Ny y y . The simulation proce-
dure was as described below. 

2) Divide the real population into 9 systematic samples. 
a) With a single sample, estimate the parameters (mean, variance and scale) 

for the geo-statistical model. 
b) Several candidate models for semi-variogram were tested; the comparison 

criteria for selecting the best model were the mean square error and the Akaike 
Information Criteria [16]. 

c) Using the estimated model, the population of TPH was simulated once, and 
the estimators (3)-(5), (7) and (8) were computed. 

3) Repeat steps (a)-(c) for the 9 systematic samples. 
4) Compute the ratio R between averaged estimate variance of the proportion, 

using the current estimator, and the average variance of the proportion using all 
the systematic samples of the real population as 

( )( )
( )

( )
( )

9

1
29

1

ˆ ˆˆ ˆ
,

ˆ ˆ ˆ

jj

jj

E V p V p
R

V p p p

=

=

= =
−

∑
∑

                  (11) 

where ( )ˆ ˆ jV p  is the estimated variance for the jth simulated sample using the 
current estimator; 

9

1
ˆ

ˆ
9

jj
p

p ==
∑

 

corresponds to the mean of the estimated proportion by using all samples of the 
real population. The best estimators are those for which R = 1. The higher values 
of R overestimate, and those that are less than 1 underestimate the parameter of 
the variance of the proportion, respectively. 

5) Steps (1)-(5) were repeated 1000 times, then 1000 initial populations of 
TPH were considered, and the results of these replications were averaged. 

4.2. Average Simulation 

1) Equal to step (1) of one-step simulation. 
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2) Equal to steps (1)-(a, b) of one step simulation, but in (1)-(c) instead of si-
mulating one population of TPH 1000 were generated. For each simulated pop-
ulation estimators (3)-(6), (9) and (10) are obtained, and at the end these values 
were averaged. By using only one of these populations (7) and (8) were calcu-
lated, too. 

3) Repeat (a)-(c) for the 9 systematic samples. 
4) Compute the ratio as (3) of one-step simulation. 
5) Steps (1)-(5) were repeated 200 times, then 200 populations of TPH were 

considered; results of these iterations were averaged. 
For performing the simulations an R (2.3.1) [17] script was developed, which 

uses the Random Fields (1.3.2.8) package. 

5. Results and Discussion 

In order to determine the best performance, the following criteria were consi-
dered: ratio average closer to 1; minimum risk of sub estimating the parameter; 
minimum mean square error; stability and accuracy through different levels of 
autocorrelation for each model. Using these criteria, the systematic selection 
strategy that provided the best estimator was set up as follows. First, those esti-
mators that incurred in serious sub-estimations through the different factors 
were discarded. Then the accuracy and the minimum mean square error were 
calculated, respectively, as an essential criterion for deciding on the best estima-
tor. 

5.1. One-Step Simulation Analysis 

Under the exponential model, the estimators (3), (4) and (7) showed a similar 
trend (Figure 2); they were biased upward, and the bias increased as the auto-
correlation increased. The estimator (5) showed the opposite pattern, because it 
was biased downward. In this context, estimator (7) was the most accurate; also, 
it was affected by high and low levels of autocorrelation. For example, when the 
mean of the population was equal to 1000 ppm (the point for determining a unit 
as polluted or not), this estimator resulted in a slight sub-estimation of the va-
riance, especially in the absence of autocorrelation. The worst accuracy was giv-
en by the estimator (3), which overestimated the real variance by 2 to 3.5 folds. 
The estimator (4) was more precise than (3); it showed moderate overestima-
tions that varied from 1.2 to 2.1 folds. 

For the wave model, by reviewing the behavior through the levels of autocor-
relation, two groups of estimators were found. In the first one, the trend of esti-
mates made with (3) and (4) increased as the autocorrelation level increased 
(Figure 3). However, the opposite pattern was shown in estimators (5), (7) and 
(8). Among all of these estimators, the better behavior was produced through es-
timates of (8); which never under-estimated the true value and was the most ac-
curate estimator. The best results were reached when the mean of the population 
was equal to 1000 (threshold to determine if a unit is contaminated or not  
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Figure 2. Average ratio (y axis) between estimates performed with estimators 
(3), (4), (5) and (7) through several factors (x axis) as mean, variance and au-
tocorrelation levels (1.5, 2.8 and 4.8) for the exponential model. 

 

 
Figure 3. Average ratio (y axis) between estimates for estimators (3), (4), (5), 
(7) and (8) through several factors (x axis) as mean, variance and autocorrela-
tion levels (1.5, 2.8 and 4.8) for the wave model. 
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according to [18]). As in the last model, the estimator (3) showed the lowest lev-
el of efficiency; its results overestimated the real values by 6.17 to 11.43 folds. 
The estimates of (5) were the most accurate, but in the presence of highest level 
of the autocorrelation (4.8) serious sub-estimations were produced. The estima-
tors (4) and (7) presented intermediate results that overestimated the variance 
by 3.08 to 5.16 folds. 

In this simulation study, the estimator (7) showed a periodic and opposite 
behavior in the accuracy when comparing the exponential and wave models. 
This behavior is linked to the amount of autocorrelation among sampled units. 
In the exponential model, the accuracy improved, and the mean square error 
decreased as the level of autocorrelation increased (Table 1). 

Under the wave model, different effects occurred: the accuracy decreased and 
the mean square error remained practically unchanged as the autocorrelation 
increased (Table 2). The inclusion of the estimator (8), which is corrected by the 
Geary Index, showed an opposite pattern to (7), and a slight reduction of the 
mean square error in the presence of highly correlated units. 

The selection of an estimator must be performed carefully by considering 
possible implications and risks of each option. For example, in both models the  

 
Table 1. Mean square error of estimates for the exponential model. 

   
Estimator 

Mean Variance Autocorrelation levels (3) (4) (5) (7) 

  
1.5 2.32E−08 2.06E−08 2.47E−08 1.56E−08 

980 300 2.8 3.25E−08 1.97E−08 1.90E−08 1.09E−08 

  
4.8 3.86E−08 1.40E−08 1.28E−08 8.48E−09 

  
1.5 5.83E−08 4.91E−08 5.11E−08 3.84E−08 

980 600 2.8 7.41E−08 4.14E−08 3.61E−08 2.08E−08 

  
4.8 9.31E−08 3.19E−08 2.74−E−8 1.50E−08 

  
1.5 1.38E−07 1.11E−07 1.16E−07 1.17E−07 

1000 300 2.8 1.74E−07 8.50E−08 7.46E−08 5.01E−08 

  
4.8 2.11E−07 6.28E−08 5.55E−08 2.67E−08 

  
1.5 1.39E−07 1.10E−07 1.03E−07 1.04E−07 

1000 600 2.8 1.80E−07 8.93E−08 7.17E−08 4.88E−08 

  
4.8 2.20E−07 6.81E−08 5.37E−08 2.77E−08 

  
1.5 2.45E−08 2.15E−08 2.59E−08 1.72E−08 

1020 300 2.8 3.10E−08 1.87E−08 1.81E−08 1.04E−08 

  
4.8 4.17E−08 1.59E−08 1.35E−08 9.63E−09 

  
1.5 5.60E−08 4.72E−08 5.17E−08 3.91E−08 

1020 600 2.8 7.07E−08 3.91E−08 3.93E−08 2.18E−08 

  
4.8 9.25E−08 3.28E−08 2.85E−08 1.57E−08 
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Table 2. Mean square error of estimates for the wave model. 

   
Estimator 

Mean Variance Autocorrelation levels (3) (4) (5) (7) (8) 

  
1.5 7.89E−08 4.02E−08 7.80E−10 2.11E−08 1.31E−08 

980 300 2.8 8.48E−08 1.40E−08 1.45E−09 2.31E−08 7.84E−09 

  
4.8 −− −− −− −− −− 

  
1.5 1.57E−07 7.59E−08 5.05E−09 2.26E−08 1.89E−08 

980 600 2.8 1.88E−07 2.72E−08 3.10E−09 3.07E−08 1.15E−08 

  
4.8 1.86E−07 8.76E−09 4.52E−09 2.79E−08 7.29E−09 

  
1.5 3.76E−07 1.58E−07 7.64E−09 2.12E−08 2.35E−08 

1000 300 2.8 4.17E−07 5.23E−08 8.13E−09 3.03E−08 1.70E−08 

  
4.8 4.00E−07 1.73E−08 1.08E−08 3.04E−08 1.33E−08 

  
1.5 3.70E−07 1.56E−07 9.27E−09 2.11E−08 2.43E−08 

1000 600 2.8 4.25E−07 5.20E−08 6.27E−09 3.09E−08 1.58E−08 

  
4.8 4.00E−07 1.70E−08 1.15E−08 2.90E−08 1.40E−08 

  
1.5 7.05E−07 3.80E−08 2.49E−09 1.75E−08 1.34E−08 

1020 300 2.8 8.46E−08 1.38E−08 1.46E−09 2.26E−08 7.86E−09 

  
4.8 −− −− −− −− −− 

  
1.5 1.66E−07 8.17E−08 4.66E−09 2.39E−08 1.90E−08 

1020 600 2.8 1.82E−07 2.66E−08 2.96E−09 3.02E−08 1.13E−08 

  
4.8 1.82E−07 8.23E−09 4.28E−09 2.57E−08 7.77E−09 

 
estimator (5) showed a particular behavior: its estimates were the most accurate 
but in many cases, incurred in serious sub-estimations. The trend of estimator (4) 
was the opposite. In both models, the bias increased as the autocorrelation in-
creased. The estimator (7) did not show any change in trends through the mod-
els. Finally, the estimator (3), which comes from simple random sampling, pro-
duced the worse estimations, always over-estimating the variance of the propor-
tion. 

5.2. Average Simulation Analysis 

In this simulation study, estimator (6) was introduced, which was constructed 
under the model-based approach. Using this approach, a great number of itera-
tions were necessary to produce reliable results. In this case, 1000 iterations were 
used. Estimators (9) and (10) were introduced for comparison purposes. First, to 
compare the estimators’ behavior against the model-based estimator under the 
same number of iterations; and second, to compare the behavior against estima-
tors (7) and (8), which perform the estimation procedure by using only one ite-
ration. Estimators (3), (4) and (5) were also included as references. 
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Applying the same selection criteria from the one-step simulation to the ex-
ponential model, the best performance was shown by estimators (6), (7) and (9). 
Their estimations, (accuracy and mean square error) were close to each other, 
respectively. The main difference lies in the fact that the second of them used 
only 200 iterations in the construction instead of 200 × 1000 = 200,000 iterations 
for the others (Table 3). 

Under the wave model, by adopting a conservative posture, the best estimates 
were provided through estimators (6), (8) and (10) (see Table 4). Equal to the 
latter case, the computation of the second of them requires a reduced number of 
iterations. In general, estimator (4) had the smallest mean squared error values, 
but as it was pointed out earlier in the case of the one-step simulation, it has se-
rious problems in the presence of high autocorrelation. We must remember that 
this example is a special case of those showed in Figure 2. 

In general, this simulation study shows that for the exponential model esti-
mators (6), (7) and (9) presented similar values for the ratio; however, estimator 
(7) is preferable because it uses a reduced number of iterations to obtain reliable 
results. For the wave model, estimator (8) is preferred because it offers the most 
accurate estimates at the lowest level of computer time. 

6. Conclusions 

Both simulation studies show promising results that can help improve the accu-
racy of estimates when performing two-dimensional systematic sampling. The 
accuracy depends on factors that consider the structure of the population, and 
takes the relationships among the units in the sample and the use of simulated 
auxiliary information into account. In general, in the one-step simulation the 
best results are obtained with estimators constructed under the model-assisted 
approach and/or taking the presence of autocorrelation into account. When the 
population presents a structure such as the one produced by the exponential 
model, estimator (7) is recommended, which shows a periodic behavior for the 
autocorrelation. In contrast, for the wave model, the best estimator is (8), as the 
estimates improve as the autocorrelation increases. In the average simulation, 
 
Table 3. Average ratio and mean square error of the estimates for the exponential model. 

Estimator Ratio MSE 

 
1.5 2.8 4.8 1.5 2.8 4.8 

(3) 1.73 2.37 2.64 1.68E−08 3.32E−08 3.88E−08 

(4) 1.64 2 1.97 1.72E−08 1.97E−08 1.37E−08 

(5) 0.98 0.79 0.64 1.24E−08 1.54E−08 1.50E−08 

(6) 1.29 1.38 1.28 1.26E−08 9.93E−09 6.75E−09 

(7) 1.06 1.43 1.55 1.53E−08 1.08E−08 8.95E−09 

(9) 1.06 1.42 1.56 1.93E−08 9.98E−09 7.50E−09 
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Table 4. Average ratio and mean square error of estimates for the wave model. 

Estimator Ratio MSE 

 
1.5 2.8 4.8 1.5 2.8 4.8 

(3) 5.84 9.55 10.94 1.58E−07 1.74E−07 1.78E−07 

(4) 4.31 4.43 3.39 7.25E−08 2.48E−08 9.76E−09 

(5) 1.3 1 0.69 3.62E−09 2.70E−08 6.08E−09 

(6) 3.45 1.85 1.6 6.58E−08 9.53E−09 4.08E−09 

(7) 2.9 4.68 5.26 2.20E−08 3.04E−08 2.75E−08 

(8) 2.14 2.17 1.72 8.61E−09 5.24E−09 8.86E−09 

(9) 2.9 4.67 5.37 2.17E−08 2.79E−08 2.43E−08 

(10) 2.14 2.17 1.68 2.38E−08 2.04E−08 1.73E−08 

 
estimators from two different approaches (model-based vs. model-assisted) were 
compared using the same number of iterations. For the exponential and wave 
models the best accuracy measures are obtained with estimators (9) and (10), 
respectively. The estimator (6), which has values close to the estimators men-
tioned above, seems more robust as a choice of model, but its computation re-
quires a great number of iterations. The estimates of (7) and (8) are as accurate 
as those obtained with estimators (9) and (10), using only one iteration. 

As a result, the regression estimator (7) and its corrected version (8) by the 
Geary Index are recommended. Within the model-assisted approach, these esti-
mators do not need a great number of iterations in order to achieve estimations 
as accurate as those obtained with the more complex approaches. Finally, since 
the systematic sampling method is broadly used in many research areas, this 
methodology is not limited to this particular problem (petroleum spills). It is 
easily adaptable to other cases where this sampling design is used, including li-
near cases. 
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