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Abstract 
In the present work, the theoretical solution of a problem extracted from a 
historical context is addressed, in which Galileo supposedly conducted an 
experiment to measure the percussion force of a water jet. The experimental 
apparatus consists of a balance, in which a counterweight hangs on to one of 
its extremities, and two buckets hang on to the other extremity. The water jet 
from the bottom of the upper bucket strikes the lower bucket. The objective is 
to find the jet percussion force on the lower bucket. The result of the analysis 
revealed that the method proposed by Galileo for the calculation of the jet 
percussion force is incorrect. The analysis also revealed that the resultant 
force during the process is practically null, which would make Galileo’s ac-
count of the major movements of the balance credible, despite his having not 
identified all the forces acting on the system. 
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1. Introduction 

Galileo’s Discourses is originally divided into four days—as published in the 
Leiden edition of 1638—, to which were posthumously added another two days, 
all written in dialogic form in Two New Sciences. The Sixth Day was translated 
by Stillman Drake as the Added Day: On the Force of Percussion (Drake, 1989), 
where the specific goal of the interlocutors Salviati, Sagredo and Aproíno is to 
understand and find a means of measuring the percussion force. 

The first experiment about this force discussed by the trio begins when 
Aproíno narrates to Sagredo an experiment with two buckets conducted by the 
Academic (Galileo) to investigate the effect of the percussion force. In this expe-
riment (see Figure 1), the upper bucket is filled with water and has a hole in the  
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Figure 1. A physical reproduction of Galileo’s two-bucket setup. This model is found at 
the University of Pavia, Italy (Caffarelli, 2009: p. 9). 

 
bottom. At the beginning of the experiment, the orifice is closed, and the balance 
is in equilibrium. Once the orifice is opened, the water flows to the lower bucket. 
Initially, the balance tilts to the counterweight side, and after the jet hits the 
lower bucket, the equilibrium is reestablished. 

The present study has the objective of finding the forces acting on the balance 
in unsteady state, since the opening of the orifice in the bottom of the upper 
bucket until the end of the process, when all the water contained in this bucket 
has drained to the lower bucket. In the development of the theoretical model, we 
shall use the conservation equations of fluid mechanics in unsteady state, in the 
so-called integral form: continuity, in the form of conservation of the volume 
flux; energy, in the form provided by Torricelli’s law; and Newton’s 2nd law, best 
known in fluid mechanics as the linear momentum equation. 

2. The Flow through the Orifice and the Formation  
of the Water Jet 

The volume flux ( )o oQ Q t=  through the orifice is given by (Ássy, 2004) 

2 ,o d o sQ C S gh=                        (1) 

in which dC  is the discharge coefficient, oS  is the area of the orifice, 
( )s sh h t=  is the water height from the orifice up to the free surface of the water 

in the upper bucket at instant t, and g is the gravity. Since Torricelli’s law says 
2o sV gh= , then we can write Equation (1) as o d o oQ C S V= . 

The discharge coefficient dC  consists of the product of two other coefficients, 
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namely: the contraction coefficient cC , and the velocity coefficient vC , such 
that d c vC C C= . 

The origin of the contraction coefficient cC  is due to the fact that, as expe-
rience shows, the liquid jet cross section at the plane of the orifice oS  continues 
to contract, until reaching a minimum section, which occurs at a small distance 
from oS , called vena contracta, which is crossed by trajectories that are sensible  
straight and parallel, in which the velocity is uniform, and the pressure is atmos-

pheric, with the contraction coefficient theoretically given by π 0.611
π 2cC = ≈
+

.  

Torricelli’s law refers to the velocity at the vena contracta: in the plane of the ori-
fice, neither the pressure, nor the velocity is uniform, and the velocity is lower 
than the velocity at the vena contracta. 

The velocity given by Torricelli’s law 2o sV gh=  is, however, a theoretical 
velocity that does not consider the fluid internal viscous forces. Thus, the actual 
velocity oV ′  can be obtained by correcting the theoretical velocity oV  with the 
velocity coefficient vC , whose value is experimentally obtained. In this way, the 
actual velocity at the vena contracta is oV ′ , and given by 2o v o v sV C V C gh′ = = . 
From this, appears the expression for the volume flux through the orifice as 

2 2o c v o s d o sQ C C S gh C S gh= = , where d c vC C C= . 
Experience also shows that the cross section of the falling water jet continues 

to contract, assuming a tapered form as shown in Figure 2. The shape of the jet 
during descent may be obtained by applying Bernoulli’s equation between point 
A, at elevation Az , and point B, at elevation Bz , in the form 

 

 
Figure 2. A fluid jet extruded from an orifice accelerates under the influence of gravity. 
Its shape is influenced both by the gravitational acceleration and surface tension. 

https://doi.org/10.4236/ahs.2018.73009


S. R. Bistafa 
 

 

DOI: 10.4236/ahs.2018.73009 138 Advances in Historical Studies 
 

( )221 1
2 2A Ao B BV gz p V z gz pρ ρ ρ ρ′ + + = + + ,            (2) 

where oV ′  is the velocity at the vena contracta, whose cross section has a radius 
a, ( )V z  is the velocity at the section whose radius is r(z), ρ is the density, and 

Ap  and Bp  are the absolute pressures at A and B, respectively. 
The average local curvature k of slender threads may be approximately ex-

pressed as 
( )
1k

r z
≈ . Therefore, the pressures at points A and B may be simply 

related to the ambient pressure atmp  by: A atmp p
a
σ

≈ + , 
( )B atmp p

r z
σ

≈ + , 

where σ  is the surface tension. Substituting these results into Equation (2), we 
have 

( ) ( )
2 21 1

2 2o A atm B atmV gz p V z gz p
a r z
σ σ

ρ ρ ρ ρ′ + + + = + + + ,      (3) 

Disregarding the surface tension effects on the shape of the jet, then Equation 
(3) may be rewritten as 

( ) ( )
2

1 2
2

1 A

o o

BV z g z z
V V

− 
= + ′ ′ 

.                   (4) 

When applying the continuity equation in terms of conservation of the vo-
lume flux, for which ( )2 2π πoa V r V z′ = , it is possible to rewrite Equation (4) in 
the form 

( )
2

1 22

2

2
1 A B

o

g z zr
a V

−
− 

= + ′ 
.                   (5) 

Since 2πc oC S a= , then the area S of any flow cross section is readily obtained 
from Equation (5) as 

( )
2 2

1 2 1 2
2

1 1A B

o v
c o c o

s

g z z HS C S C S
V C h

− −
−   

= + = +  ′   
,         (6) 

where ( ) A BH H t z z= = −  is the jet height at instant t. 
The jet volume ( )jV t , at instant t, will be given by 

( )

( ) ( )
( )

2

2

1 2

0

2

0

1 2

d 1 d

2 1 1 .

H H
j c o

s

o

v

sv c
sv

hV t S h C S h
C h

H t
S C C h t

C h t

−
 

= = + 
 

  
 = + −     

∫ ∫
            (7) 

3. Theoretical Model for the Two-Bucket Experiment  
in Unsteady State 

We present next the linear momentum equation, in the form applicable to the 
unsteady flow in a control volume Ω, limited by the water contained in the 
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bucket at each instant, as (Ássy, 2004) 

d m e e m s sQ V Q V
t

ρ
Ω

∂
+ = +Ω +

∂ ∫G nvR n ,               (8) 

where G  is the resultant of the applied body forces (e.g. fluid weight), R  is 
the resultant of the forces of contact that act at the walls of control volume; 

d
t

ρ
Ω

∂
∂

Ω∫ v  is the momentum variation inside the control volume Ω; v  is the  

fluid velocity, m e eQ V n  and m s sQ V n  are the momentum fluxes at the inlet and at 
the outlet of the control volume, respectively. mQ  is the mass flux, eV  and sV  
are the velocities at the inlet and outlet cross sections of the control volume, re-
spectively, and en  and sn  are the unit normal vectors at these flow cross sec-
tions. The mass flux mQ  can be written as mQ Qρ= , where Q is the volume 
flux and ρ  is the density of the water (mass per unit of volume). 

3.1. Resultant Force on the Upper Bucket in Unsteady State 

The integral d
t

ρ
Ω

∂
∂

Ω∫ v  in Equation (8) is the time variation of momentum  

inside the control volume, which corresponds to a vertical force that decelerates 
the water mass contained in the upper bucket in its descending motion. During 
the drainage of the upper bucket, this force acts upward, according to ze  (the 
upward unit vector), decelerating the mass of water in its descending motion. 
Since, by hypothesis, all the water particles inside Ω move downward with the  

same velocity of the free surface eV , then, the integral 
0

d d
sh

e
eS h

tt
ρ ρ

Ω

∂
∂

∂
=

∂
Ω∫ ∫

Vv , 

in which eS  is the area of the flow cross sections in the upper bucket. 

The integral 
0

d
s

e

h
e

se
eS hh

t
S

t
ρ ρ

∂
=

∂
∂
∂∫
VV , in which ( )s sh h t=  is the height of 

the free surface of the water in upper bucket at instant t. In this expression, 

e

t
∂
∂
V  is the acceleration to which the water in the upper bucket is subjected to 

during its descending motion. Then, ( )e e
z

V
t t

∂ ∂
= −

∂ ∂
V e , and, since  

2o
e d s

e

SV C gh
S

= , results in ( )
2

e o s
d z

e s

S hgC
t S tgh

∂ ∂
= −

∂ ∂
V e . 

But, from continuity 2s o
d s

e

h SC gh
t S

∂
= −

∂
, and then,  

( )
2

2e o
d e s z

e

SgC S h
t S

 ∂
=  

∂  

V e . Then, finally, d
t

ρ
Ω

∂
∂

Ω∫ v  can be written as 

 
( )

2
2d ,o
d e s z

e

SgC S h
t S

ρρ
Ω

 ∂
=  

∂ 
Ω


∫ v e                 (9) 

for the upper bucket. 
Substituting Equation (9) into Equation (8), and considering that in Equation  
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(8) the momentum flux ( )
2

2 02m e e d s z
e

SQ V gC h
S

ρ=n e  and the momentum flux 

( )2m s s d v o s zQ V gC C S hρ= −n e , results in 

( ) ( )

( ) ( )

2
2

2
2 0        2 2 ,

o
bs lbs z d e s z

e

d s z d v o s z
e

S
G gC S h

S
S

gC h gC C S h
S

ρ

ρ ρ

 
= +  

 

+ + −

R e e

e e           
(10) 

in which lbsG  is the weight of the water contained in the upper bucket. bsR , as 
given by Equation (10), is the resultant force acting on the water body contained 
in the upper bucket in unsteady state. 

3.2. Resultant Force on the Lower Bucket in Unsteady State 

As far as the lower bucket is concerned, the velocity of the jet as it strikes the bot-
tom of this bucket changes its direction from axial to the radial direction; then,  

( ) 0e e zV= − =V e . Therefore, for the lower bucket d d 0e

tt
ρ ρ

Ω Ω

∂
Ω = Ω

∂
∂
∂

=∫ ∫
Vv . 

The momentum flux of the jet falling on the free surface of the lower bucket is 
given by ( )m e e e zQ V QVρ=n e , where ( )Q Q t=  is the volume flux that enters 
the lower bucket, and that varies with the time in the unsteady state. 

For a fixed control volume that incorporates the volume of the water jet, the 
continuity equation, in unsteady state, for an incompressible fluid may be writ-
ten as 

d
j

j
V

j
o o

V
Q Q

t
V Q

t
∂∂

= − = −
∂ ∂∫ ,                 (11) 

in which 2o d o sQ C S gh=  is the volume flux through the orifice and jV  is the 
volume of the jet at each instant, as given by Equation (7). 

Applying Equation (7) in the assessment of j

t
V∂
∂

 we have that 

1 2
2

22 1 1j
o v c s

v s

V HS C C h
t t C h

  ∂  ∂   = + −  
∂ ∂      

.             (12) 

Once the derivative indicated in Equation (12) has been evaluated, and subs-
tituting the resulting expression into Equation (11), gives 

1 2 1 2
2

2 2 2

11 2 1 1 1 1
2

o
o v c

e sv v s v s

S H H HQ Q C C
S hC C h C h

−        = − − + − + +     
        

.   (13) 

Then, the momentum flux of the jet that falls on the free surface of the lower 

bucket ( )m e e e zQ V QVρ=n e , with e
QV
S

= , in which S is the area of the jet cross 

section when falling on the free surface. This area is given by Equation (6), re-

peated here as 
1 2

21c o
v s

HS C S
C h

−
 

= + 
 

; and, therefore, 

https://doi.org/10.4236/ahs.2018.73009


S. R. Bistafa 
 

 

DOI: 10.4236/ahs.2018.73009 141 Advances in Historical Studies 
 

( ) ( ) ( )
1 22

12
21m e e z c o z
v s

Q HQ V Q C S
S C h

ρ ρ −  
= = + 

 
n e e . 

On the other hand, the momentum flux at the lower bucket free surface will 

be given by ( )21
m s s z

e

Q V Q
S

ρ=n e , where eS  is the free surface area of the 

lower bucket. 
Then, from these results, we may write Equation (8) for the lower bucket as 

( ) ( ) ( ) ( )
1

1
2

2
2 211bi lbi z c o z z

ev s

HG Q C S Q
SC h

ρ ρ−  
= + + + 

 
R e e e ,    (14) 

in which lbiG  is the weight of the water contained in the lower bucket, with Q 
given by Equation (13). biR , as given by Equation (14), is the resultant force 
acting on the water body contained in the lower bucket in unsteady state. 

3.3. Resultant Force on the Balance in Unsteady State 

The resultant force on the balance bR  will be given by the sum of bs−R  (Equ-
ation 10) and bi−R  (Equation 14). By considering that the weight of the water 
in the system lG  may be written as ( ) ( ) ( )l j lbs lbiG G t G t G t= + + , or  

( ) ( ) ( )l j lbs lbiG G t G t G t− = + , where ( )( )j jG t g tVρ=  is the weight of the water 
jet suspended in the air between the two buckets at instant t, the resultant force 
on the balance will be given by 

( )

( ) ( )

2 2
2 2 0

1 2
12 2

2

2 2

11 .

o
b l j d e s d s d v o s

e e

c o z
ev s

S S
G G t gC S h gC h gC C S h

S S

HQ C S Q
SC h

ρ ρ ρ

ρ ρ−

  = − + + −  
 

  + + + −  
  

R

e

  

(15) 

The division of Equation (15) by the weight of the water contained in the sys-
tem lG , and given by l eG gLSρ= , where L is the height of the water in the up-
per bucket at the beginning of its drainage, gives the dimensionless form of this 
equation as 

( ) ( )

1 2
1 2 2 2 2

2

1 22 2
11

2 2

2 1 1 2

2 1 .

b l
d v s d s d s

l e

e

v s

d v s c o z
e v s

G
C C RC H C RC H C RC H

G gLS C H

Q QC C RC H C S
gLS C H gLS

ρ
− − −

−−

     = − + − + + 
    

  − + + + −  
  

R H

H e

(16) 

Calling sh
L

 by sH , H
L

 by H , and e

o

S
S

 by RC, where RC is the contrac-

tion ratio, then Equation (16) may be rewritten in the most general form as 

( ) ( )

1 2
1 2 2 2 2

2

1 22 2
11

2 2

2 1 1 2

2 1 .

b l
d v s d s d s

l e

e

v s

d v s c o z
e v s

G
C C RC H C RC H C RC H

G gLS C H

Q QC C RC H C S
gLS C H gLS

ρ
− − −

−−

     = − + − + + 
    

  − + + + −  
  

R H

H e

(17) 
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Let us rename the terms that appear in Equation (17), by calling: 1l

e

G
gLSρ

= =A , 

the relative weight of the water contained in the system;  
1 2

1
22 1 1d v s
v s

C C RC H
C H

−
  
 = + − 
   

HB , the relative weight of the water sus-

pended in the air between the orifice and the free surface of the lower bucket; 
22

sdC RC H−=C , the relative variation of momentum in the upper bucket; 
222 sdC RC H−=D , the relative momentum flux at the upper bucket free surface; 

2 1 12 sd cC C RC H− −=E , the relative momentum flux at the orifice;  

( )
1 22

1
21c o

e v s

QF C S
gLS C H

−  
= + 

 

H , the relative momentum flux of the jet that falls 

into the free surface of the lower bucket; and 
2

2
e

QG
gLS

= , the relative momen-

tum flux at the free surface of the lower bucket. 
By substituting Q, given by Equation (13), into the expressions for F and G, 

the result is 
1 2

3 1 1 2 1
2 2

21 2 1 2

2 2

12 1 2 1 1
2

1 1 1 .

d c s v c
sv v s

v s v s

C C RC H C C RC
HC C H

C H C H

−

− − −   
= − − +  

  

   
− + + +   
 

  
 





 

H HF

H H

   

(18) 

1 2
2 2 2 1

2

21 2

2

2

12 1 2 1 1
2

1 1 .

d s v c
sv

v s

v s

C RC H C C RC
HC C H

C H

−

− −
   
= − − +  
   

 
− + + 
 









H HG

H

    

(19) 

Finally, we may write Equation (17) in a more compact form, as 

( )( ).b
z

egLSρ
= − + + − + + −

R A B C D E F G e            (20) 

Figure 3 highlights the forces that appear in Equation (20). 
To numerically evaluate Equation (20), we need, now, an expression that relates 

the time elapsed to the height of the water free surface in the upper bucket. For the 
determination of this elapsed time, we shall write the continuity equation for the  

upper bucket in the form ( ) d
d

s
e

hQ t S
t

= − , where ( ) 2d o sQ t C S gh= ; and hence 

d
2 .

d
s o

d s
e

h SC gh
t S
= −                      (21) 

Upon integration, Equation (21) yields 

( )2 ,e
o s

d o

St h h
C S g

= −                    (22) 

https://doi.org/10.4236/ahs.2018.73009


S. R. Bistafa 
 

 

DOI: 10.4236/ahs.2018.73009 143 Advances in Historical Studies 
 

 
Figure 3. Relative forces acting on the balance: weight of the water in the system—A, 
weight of the jet—B, variation of momentum in the upper bucket—C, momentum flux at 
free surface of the upper bucket—D, reaction force on the upper bucket—E, percussion 
force on the lower bucket—F, momentum flux at the free surface of the lower bucket—G. 

 
where ( )0oh h t L= = = . 

By writing e

o

S RC
S

= , 0 1
h
L
= , and s

s
h H
L
= , then Equation (22) is trans-

formed into 

( )2 1 ,s
d

RC Lt H
C g

= −                     (23) 

valid for 0 1sH≤ ≤ . This expression will give the time elapsed since the opening 
of the orifice, until the instant when the water height in the upper bucket reaches 
the value sH . 

Galileo, supposedly used in his experiment elements with the following di-
mensions (Drake, 1989): distance between the bottoms of the buckets iH  equal 
to 1.35 m (two braccia; one braccio ~ 67 cm), and orifice with diameter1 equal to 
0.03 m. The diameter of the buckets and the water height in the upper bucket L 
are not narrated, and, therefore, it was assumed that both are equal to 0.3 m. For 
these dimensions, the volume of water contained in the system is 21.2 liters, with 
a mass of 21.2 kg and a weight of 208 N, approximately. This is the weight of the 
water contained in the system, called here as lG . With these numerical values,  

 

 

1Galileo indicates that “[…] The bottom of the upper bucket had been pierced by a hole the size of 
an egg or a little smaller” (Drake, 1989). There is no doubt that nowadays, the eggs are greater than 
their homologues in Galileo’s time. A search over the Internet revealed that the average diameter of 
a chicken egg in its larger cross section is around 4.25 cm. A diameter of this magnitude would 
drain the bucket very quickly, not allowing an adequate observation of the movement of the bal-
ance. For these reasons, it was decided to adopt an orifice diameter of 3 cm. 
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we have 
2

0.3 m 100
0.03 m

e

o

SRC
S

 
= = = 

 
. 

The following values for the flow coefficients were adopted in the calculations as 
representative of the process: 0.63cC = , 0.97vC = , 0.61dC =  (Ássy, 2004). 

Figure 4 presents the forces acting on the balance, obtained using Equation 
(20) and (23), for 100RC = , since the opening of the orifice in the bottom of 
the upper bucket, until its complete drainage. In this figure, forces with positive 
values tend to move the balance toward the buckets’ side, whereas forces with 
negative values tend to move the balance toward the counterweight side. 

It is clearly seen in Figure 4 that the forces that dominate the process are: the 
weight of the jet—B, the reaction force on the upper bucket—E, and the percus-
sion force on the lower bucket—F. The force generated by the momentum varia-
tion in the upper bucket—C, the force generated by the momentum flux at the 
free surface of the upper bucket—D, and the force generated by the momentum 
flux at the free surface of the lower bucket—G are practically null during the en-
tire drainage process. Figure 4 also indicates that, after the first percussion of 

 

 
Figure 4. Forces acting on the balance, since the opening of the orifice in the upper bucket, until the lower 
bucket is completely filled, for RC = 100. Weight of the jet—B, variation of momentum in the upper buck-
et—C, momentum flux at free surface of the upper bucket—D, reaction force on the upper bucket—E, 
percussion force on the lower bucket—F, momentum flux at the free surface of the lower bucket—G, and 
the Resultant Force. 
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the jet in the lower bucket, the resultant force is practically null during the upper 
bucket drainage. Thus, accordingly, the balance, that was inclined toward the 
counterweight side after the opening of the orifice, will tend to return to the 
equilibrium position, remaining, however, still a little inclined toward the buck-
ets side during the process. 

4. Discussion 

For Galileo, the percussion force would be equal to the weight of the jet that is 
suspended in the air between the waters in the two buckets (Drake, 1989). How-
ever, Figure 5 shows that the percussion force has a different behavior from the 
weight of the jet, with a value always greater during the upper bucket drainage. 

Aproíno, in his talk (Drake, 1989), states that the weight of the jet would be 
“certainly” 10 to 12 pounds, although Salviati indicates in his replica that there 
would be some uncertainty due to the “difficulty in measuring the amount of the 
falling water”. Although Aproíno does not mention at which instant of time this 
value would have been obtained, it may be admitted that it could be at the in-
stant when the jet first strikes the lower bucket. At this instant, the percussion 
force corresponds to, approximately, 2.8% of the weight of water contained in 
the system, which gives 1.75 pounds.2 At this same instant of time, the weight of 

 

 
Figure 5. Moduli of the forces acting on the balance, for RC = 100. 

 

 

21 Tuscan pound = 0.3395 kg (Caffarelli, 2009). 
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the jet corresponds, approximately, to 1.7% of the weight of water contained in 
the system, that is, 1.06 pounds, which is a much lower value than that estimated 
by Galileo. 

Figure 5 also indicates that during the drainage of the upper bucket, the per-
cussion force is practically equal to the sum of the weight of the jet, plus the 
reaction force in the upper bucket. The small difference between the percussion 
force and this sum is practically constant during the entire process, around 0.03% 
of the weight of the water contained in the system, corresponding to a resultant 
of only 0.062 N (6.4 grams), approximately, in favor of the percussion force. This 
resultant will cause the balance to remain a little unbalanced toward the buckets 
side during the upper bucket drainage. 

5. Conclusion 

The analysis made demonstrates that the percussion force on the lower bucket 
does not correspond to the weight of the jet that is suspended in the air between 
the waters in the two buckets, upper and lower, as suggested by Galileo. In fact, 
the percussion force is proportional to the square of the jet velocity, assuming a 
value always greater than the weight of the jet during the upper bucket drainage. 

During the upper bucket drainage, the balance will remain a little unbalanced 
toward the side of the buckets, but due to the small magnitude of the resultant 
force, with a value practically constant, and around 6.4 grams only during the 
entire process—which would make the unbalance of the balance described by 
Galileo small enough to pass unnoticed—, indicates that the report of Galileo 
could be considered as being credible “[…] but the water had hardly begun to 
strike against the bottom of the lower bucket when the counterweight ceased to 
descend, and commenced to rise with very tranquil motion, restoring itself to 
equilibrium while water was still flowing, and upon reaching equilibrium it ba-
lanced and came to rest without passing a hairbreadth beyond” (Drake, 1989). 
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