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Abstract

In this paper we develop a theory of localization for bounded commutative BCK-algebras. We try to extend
some results from the case of commutative Hilbert algebras (see [1]) to the case of commutative BCK-alge-

bras.
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1. Introduction

In 1966, Y. Imai and K. Iséki introduced a new notion
called a BCK-algebra (see [2]). This notion is originated
from two different ways. One of the motivations is based
on the set theory (where the set difference operation play
the main role) and another motivation is from classical
and non-classical propositional calculi (see [2]). There
are some systems which contain the only implication
functor among the logical functors. These examples are
the systems of positive implicational calculus, weak
positive implicational calculus by A. Church, and BCI,
BCK-systems by C. A. Meredith (see [3]).

In this paper we develop a theory of localization for
commutative (bounded) BCK-algebras, and then we deal
with generalizations of results which are obtained in the
paper [1] for case of Hilbert algebras. For some informal
explanations of the theory of localization for others
categories of algebras see [4,5].

The paper is organized as follows: in Section 2 we re-
call the basic definitions and put in evidence many rules
of calculus in (commutative) BCK-algebras which we
need in the rest of paper. In Section 3 we introduce the
commutative BCK-algebra of fractions relative to a
v-closed system. In Section 4 we develop a theory for
multipliers on a commutative (bounded) BCK-algebra. In
Section 5 we define the notions of BCK-algebras of frac-
tions and maximal BCK-algebra of quotients for a com-
mutative (bounded) BCK-algebra. In the last part of this
section is proved the existence of the maximal BCK-
algebra of quotients (Theorem 29). In Section 6 we de-
velop a theory of localization for commutative (bounded)
BCK-algebras. So, for commutative (bounded) BCK-
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algebra A we define the notion of localization BCK-al-
gebra relative to a topology F on A. In Section 7 we
describe the localization BCK-algebra A in some spe-
cial instances.

2. Preliminaries

In this paper the symbols = and <> are used for logical
implication, respectively logical equivalence.

Definition 1 ([6]) A BCK-algebra is an algebra
(A,—,1) of type (2,0) such that the following axioms
are fulfilled for every X,y,z e A:

(a)) x—>x=1;

(ap)If Xx>y=y—>x=1,then x=y;

(B) (x— y)—>g(y—>z)—>(x—>z)):1;

©) x>(y>z7)=y->(x—>12);

(K) x> (y—>x)=1.

In [7] it is proved that the system of axioms {a;, a,, B,
C, K} is equivalent with the system {a,, a;, a4, B},
where:

(33) X—=>1=1;

(ag) 1>x=x.

For examples of BCK-algebras see [6-8]. If A is a
BCK-algebra, then the relation < defined by x<vy iff
X— y=1 1is a partial order on A (which will be called
the natural order on A; with respect to this order 1 is the
largest element of A. A will be called bounded if A has a
smallest element 0; in this case for X A we denote
X =x—>0.1If (x>y)>y=(y—>x)—>x for every
X,y € A, then A is called commutative (see [5,9,10]).

We have the following rules of calculus in a BCK-al-
gebra A (see [6,7]):

(c) X<y—>X;
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() x<(x—>y)—>y;

@) (x>y)>y)>y=x>y;

(c)) x> y<(zoX)>(z2oY)<z>(x>Y);

(cs) If x<y, then for every ze A, z—>X<Z—>Yy
and y>z<x—>z.

Proposition 1 ([9], p. 5) If A is a commutative BCK-
algebra, then relative to the natural ordering, A is a join-
semilattice, where for X,y e A:

Xvy=(x—->y)o>y=(y—>x)->x.

Lemma 2 Let A be a commutative BCK-algebra. For
every X,y,zeA thereexists (X —>z)A(y—>z) and

(c) (xvy)>z=(x>2)A(y—>2).

Proof. Since X,y<xvy by (cs5) we deduce that
(xvy)>z<x—>z,y—>z. Let now te A such that
t<x—>z,y—>z. Then X, y<tH>zZz=>xvy<t->z
=t<(xvy)—>z, thatis,
(xvy)»>z=(x>2z)A(y—>1z). O

In [9] (Theorem 8) and [8] (Remark 2.1.32) it is
proved the following result:

Theorem 3 If A is a BCK-algebra, then the following
assertions are equivalent:

1) Forevery X,y,zeA,

x> (yoz)=(x>y)>(x>12);

2)Forevery X,yeA, x> (X>y)=x—->Y;
3) Forevery x,yeA,

(x> y)> (Y= x)>x)=(y—>x)
> ((x>y)>y).

A BCK-algebra which verify one of the above equiva-
lent conditions is called Hilbert algebra (or positive im-
plicative BCK-algebra).

If A is a bounded BCK-algebra, we have the following
rules of calculus in A (see [6]):

(c)If x<y,then y <x';

(cg) X =x"",x<x7; .

() XY =y-ox,(xo>y") =x->y".

Remark 1 If A is a bounded commutative BCK-alge-
bra, then for every xe A,

(x>0)>0=(0->%)>x= X =X,

that is, A is an involutive BCK-algebra (see [6], p. 115
and [9], p. 10).
For X,,--+,X,,X€ A (nx1)we will define

(X %03 X) = % = (X = o(X, = X)),

For two elements X,y A and a natural number
n>1 we denote X—, y=(XX---,X;y) where n
indicates the number of occurrences of X . Clearly, if A
is a Hilbert algebra, then X —, y=X—>Yy, for every
nx1.
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Let A be a BCK-algebra. A deductive system (or i-filter)
of A is a nonempty subset D of A such that 1e D and
for every X,ye A, if X,x—>yeD, then yeD. Itis
clear that if D is a deductive system, X<y and xeD,
then yeD. We denote by Ds(A) the set of all de-
ductive systems of A. For a nonempty subset X < A,
we denote by (X)=n{DeDs(A):X =D} ((X) is
called the deductive system generated by X). It is known
that
<X>:{X e A:(X,+, %,;X) =1,for some X+, X, € X}.
In particular for ae A, we denote by (a) the deduc-
tive system generated by {a} ((a) is called principal
and (a)={xeA:a— x=1forsomen=>1}).

Lemma 4 Let A be a bounded BCK-algebra and
X,y € A such that there exists Xvy in A. Then there
exists X Ay and X Ay =(xvy).

Proof. Clearly, (Xxvy) <x,y". Let teA such
that t<x',y". Then .

Xy<t =>xvy<t :t*: <(xvy) . From (cs) we de-
duce that t < t7<(xvy) =>t<(xvy), thatis,
(xvy) =x"ay.0O

Definition 2 ([7], p. 944) Let A be a bounded BCK-
algebra. An element Xe A is called boolean if
<x>n<x >={l} (clearly, <X>U§X* =A).

We denote by B(A) the set of all boolean elements
of A; clearly, 0,1€B(A).

Lemma 5 ([7]) Let A be a BCK-algebra. Then for
every X,ye A, xvy=lo<x>n<y>={l}.

Corollary 6 For a bounded BCK-algebra x € B(A)
iff xvx =1

Remark 2 If xeB(A), that is, xvX =1, then
from Lemma 4 we deduce that
X AX" =(xv x*) =1"=0, hence
XAX SXTAX =0 xAX =0, that is, X
complement of X in A.

Boolean elements also satisfy several interesting
properties which can be proved using above corollary
and some arithmetical calculus:

Proposition 7 ([7]) Let A be a bounded BCK-algebra.
Then for every aeB(A) and x,ye A we have:

is the

(ci0) @ eB(A);

(c) a—»(a—>x)=a—x

(cp) a—>(x—>y)=(a—>x)>(a—>y);
(c3) a—»a =a,a >a=a;

(cy) a" =a

(c15) (a—>x)—>a=a;

(cie) (a>X)>x<(x>a)—>a;

(ci) ((a—>x)—>a)>a =a—>x";

(c1s)If beB(A),then (a—>b)—>b=(b—>a)—>a;

(c9) @ > x=avx=(a—>X)>X

(c20) (a—> x') =arx”.

Corollary 8 ([7]) Let A be a bounded BCK-algebra.
Then
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1)If aeB(A),then (a)=[a)={xeA:a<x};

2)For a,beB(A), a—>beB(A);

3) (B(A),—),O,l) is a Boolean algebra (where for
a,beB(A), avb=a"—>b and arb=(a—>b’

Corollary 9 Let A be a commutative BCK-algebra.
Forevery aeB(A) and y,ze A we have:

(c21) av(y—>z)=(avy)—>(avz).

Proof. By (c¢) we have

(avy)—>(avz)=(a—>(avz))a(y—>(avz))

=Ia(y—>(avz))=y—>(avz)=y—>((a>z)>2)
50 (¢yy) is equivalent with (*)av (y - z) =
Clearly, a<avz<y-—(avz) andfrom
z<avzi=>y—>z<y—(avz). So to prove (*) let

te A such that a<t and y—>z<t. We have the
intention to prove that

y—>(avz).

y—o(avz)stey-s((asz)»z)st

o (**)(a>z)>(y—> 7)<t

Indeed, from
yo>z<t=(a—>z)—>

s(a—>z)—>t(2)(t—>a)—>[(a—>z)—>a] O
(

(y—1)

¢s)
Z (toa)oa=(aot)ot=1>t=t

Proposition 10 Let A be a commutative BCK-algebra.
Then for every a,beB(A) and xe A we have:

(c) (avx)—>(bvx)=(a—>b)vx

Proof. By (c¢) we have

(avx)—>(bvx)
=[a—>(bvX)]a[x—>(bvX)]
=[a—>(bvx)]al=a—((x—>b)—>b).
Also
(a—>b)vX:

C

(x—>(a—>b))—>(a—>b)

(a—>(x—>b))—>(a—>b) O
(Clzz)a—>((x—>b)—>b).

Definition 3 If A,A, are BCK-algebras, then
f:A > A is called morphism of BCK-algebras if
f(x>y)=f(x)> f(y), for every x,yeA (if
A, A, are bounded BCK-algebras, then we add the con-
dition f(0)=0).

3. Commutative BCK-Algebra of Fractions
Relative to a \V-Closed System

In this section by A we denote a commutative bounded

Copyright © 2011 SciRes.

BCK-algebra.

Definition 4 A nonempty subset S of A will be
called Vv-closed system of A if 0€S and XxvyeS
for every X,y €S.

For a V-closed system S c A we define the binary
relation &5 onAby (X,y)e 6, iffthereis
seSNB(A) suchthat svXx=svy.

Proposition 11 The relation 6 is a congruence on
A.

Proof. Clearly & is an equivalence relation on A. To
prove the compatibility of 6 with the operation —, let
X,y,ze A such that (X,y)e6; (hence there is
seSNB(A) such that svx=svy). By (c;) we
deduce

sv(z—>x)=(svz)—>(svx)
=(svz)>(svy)=sv(z—>y),

and similarly, sv(x—z)=sv(y—>z), thatis,
(z>xz2>y)eby and (x>2z,y—>2)eby. O

We denote A[S]= A/6; ; the commutative BCK- al-
gebra A[S] will be called BCK-algebra of fractions of
A relative to S. For xe A we denote by [x], the
equivalence class of X relative to 6. Clearly, in
AlS]. 1= [1], ={xeA:(x1)eb}={xcA: there is

seSNB(A such that svx=1},
0= [0], ={xeA: (XO)EQ} = {xe A: there is
SeSr\E( such that svXx=s} = {xe A: there is

seSNB(A) suchthat x<s} and forevery X,yeA,
[x], =[], =[x>V],-

Proposition 12 A[S] is a bounded commutative BCK-
algebra, when 0= [s], with seSNB(A)

Proof. Clearly, if s,teSB(A), since
r=svteSNB(A) and rvs=rvt=]s], _[t]t95

To prove that, for se€ SN B(A), [s] =0, &t xen
We have
[s],, <[x],, =[], vIX], =[x, = [sv], =[],

which is true since Sv(svx)=svx. O

We denote by ps:A—> A[S] the canonical surjec-
tive morphism of BCK-algebras (defined by
ps( ) [X]a , forevery xeA).

Remark 3 Since for every SeSn B( ) }
svs=sv0 wededuce that p; (SﬁB( ))z

Proposition 13 If xe A, then [x], €B(A
there exists seSNB(A) such that X VX Vs
if xeB(A), then [x], eB(A[S]).

Proof. For xe A, we have

[, <B(AlS]) =[x, v (1, )

=l<:>[X\/X*:|g =le
S

{([)}s 1) iff
s=1. So,

there exists se€SNB(A) such that
xvX vs=lvs=1. If xeB(A), since
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XxvX v0=1 and 0eSNB(A),we deduce that
[x],, eB(A[S]). O

A[S] verify the following property of universality:

Theorem 14 For every bounded commutative BCK-
algebra B and every morphism of bounded BCK-alge-
bras f:A—B such that f (S N B(A)) = {0}, there
exists a unique morphism of bounded BCK-algebras
f':A[S]—> B suchthat f'opg=f.

Proof. Let x,ye A such that [X] =[y]03.

4 Then
thereis se€SMB(A) such that

SvX=Svy= f(va)z f(Svy)
= f(s)vi(x)="f(s)v f(y)
=0vf(x)=0vf(y)=f(x)="f(y).

So, f':A[S]—> B defined for xe A by

f’([x]gS ) = f(x) is correct defined. Clearly, f' is
morphism of bounded BCK-algebras and f'opg =f .
The unicity of f’ follows from the fact that pg is
onto. [

Example 1 If A is a bounded commutative BCK-al-
gebra and S={0} or S is such that 0eS and
SN(B(A)\{0})=@ , then for x,yeA, (xYy)eb
& xv0=yv0e x=y, hence A[S]=A

Example 2 If A is a bounded commutative BCK-al-
gebra and S is an V-closed system system such that
leS (for example S=A or S=B(A)), then for
every X,yeA, (x,y)eb, (since xvl=yvl and
1e SNB(A), hence in this case A[S]={1}.

Definition 5 A[S] is called the BCK-algebra of
fractions of A relative to S.

4. Multipliers on a Commutative Bounded
BCK-Algebra

The concept of maximal lattice of quotients for a dis-
tributive lattice was defined by J. Schmid in [11,12]
(taking as a guide-line the construction of complete ring of
quotients by partial morphisms introduced by G. Findlay
and J. Lambek (see [13], p. 36). The central role in the
construction of the maximal lattice of quotients for a
distributive lattice due to J. Schmidt in [11] and [12] is
played by the concept of multiplier for a distributive lat-
tice defined by W. H. Cornish in [14].

In this section we develop a theory for multipliers on a
commutative bounded BCK-algebra A.

Definition 6 A subset T — A is called V-subset of A
ifforevery a€ A and XeT wehave avXeT.

We denote by T(A) the set of all V-subsets of A.
Clearly Ds(A)cT(A) (and more generally, if denote
by I(A) the set of all increasing subsets of A, then
1(A) T (A)).

Remark 4 Clearly, if D,,D, €T (A), then
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D,ND, eT(A).

Lemma151If DeT(A), then

1) 1eD;

2)If x<y and XeD,then yeD.

Proof. (i). If xe D,since 1€ A, then 1=1vXxeD.

3) Wehave y=yvx. U

Definition 7 By partial strong multiplier on A we mean
amap f:D— A where DeT(A), such that:

(sm;) Forevery xeD and ee B(A),

f(evx)=E\/f(X);

(smp) Forevery xeD, x< f(x);
(sms) If ee DNB(A), then f(e)eB(A);
(smy) Forevery xe D and ee DNB(A),

f(e)vx=ev f(x).

By dom(f)eT(A) we denote the domain of f ; if
dom(f)=A,wecalled f total

To simplify the language, we will use strong multiplier
instead partial strong multiplier using total to indicate
that the domain of a certain multiplier is A.

Examples

1) The maps 0,1: A— A defined by 0(x)=x and
respectively 1(x)=1, for every xe A are total strong
multipliers on A.

2)For aeB(A) and DeT(A), the map

f,:D— A defined by f,(x)=avx,forevery xeD
is a strong multiplier on A (called principal).

If dom(f,)=A, wedenote f, by f, .

Remark 5 If f:D — A is a strong multiplier on A
(with DeT(A)), then f(1)=1. Indeed, if in (sm;) we
put e =1, we obtain that for every xe D,

f(lvx)=1v f(x)e f(1)=1.
For DeT(A), we denote

M (D,A)={f:D— A: fis a strong multiplier on A}
and M(A)= o M(D.A).
For D,,D,eT(A) and f,eM(D,A), i=12, we
define f, > f,:D,ND, > A by
(f,—> f,)(x)=f,(x)> f,(x), forevery xe D, ND,.
Lemma16 f — f,eM(D,ND,,A).
Proof. If xe D, "D, and e B(A), then

(f—>f)(evx)="f(evx)> f,(evx)

~(ev £, (x)) = (ev £, (X)) = e (£,(0) > £,(x)
:ev(fl - fz)(x)’

(> 1)) = £, () > £, ()2 £, (x) = x

(fl - fz)(e): f (e)_> fz(e)e
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ee D, ND,NnB(A),

v(f - fz)(x):ev(fl(x)—> fz(x))
C21
(:)(ev f,(x)) > (ev f,(x))
(24)(XV fi(e)) > (xv f,(e))
(c22
- XV( () (e )) v(f—1,)(e),
thatis, f, > f,eM(D,nD,,A). O

Corollary 17 (M (A),—),O,l) is a bounded commu-
tative BCK-algebra.

Proof. The fact that M (A) is a commutative BCK-
algebra follows from Lemma 16.If D eT (A),

feM(D,A) and xeD, then

0(x)<x< f(x)<1<1(x) and since the relation of
order on M (A) is given by f <f, iff f (x)<f,(x)
for every x edom(f,)ndom(f,), we deduce that

0< f <1, thatis, M(A) is bounded. ]

Lemma 18 The mapV, :B(A)— M (A) defined by
vi(a)=f, for every aeB(A) is a morphism of
bounded BCK-algebras.

Proof. If a,beB(A) and xe A, then

(f.=f)(x)=T ()~ % (x)

(c22)

:(avx)—)(bvx) = (avb)—>X: faﬁb(x),

50, V,(a) > Vv, (b)=v,(a—>b)
and VA(O)=f_0:0. O

Definition 8 D < A is called regular if for every
X,y € A suchthat evx=evy forevery
eeDNB(A), then x=y.

For example, a bounded BCK-algebra A is regular
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since if X,ye€ A such that evx=evy for every
ee AnB(A)=B(A), then in particular, for e=0 we
obtain Xv0=yv0=x=Y.

If A is bounded, DeT(A) and 0eD, then D is
regular. We denote

R(A)={D c A:Dis a regular subset of A}.

Lemma 19 If D,.D, T (A)~R(A), then
D, "D, eT(A)AR(A).
Proof. By Remark 4, D, D, eT(A). Let x,yeA
such that evx=evy forevery ee D,nD, "B(A).
Forevery e € D,\B(A),i=1,2, since
e, ve,eD ND,nB(A) we have
(e ve)vx=(eve)vy=e v(e,VvXx)

=ev(e,vy)=evx=evy=>x=y,

so D,ND,eR(A). O

We denote

M, (A)={f eM(A):dom(f)eT(A)NR(A)}.

Corollary 20 M (A) is a BCK-subalgebra of
M (A).

Proposition 21 M, (A) is a Boolean subalgebra of
M (A).

Proof. Let f:D — A be a strong multiplier on A with
DeT(A)NR(A).Then f" :D > A,
f'(x)=(f > 0)(x)=f(x)>x, for xeD.

We have

(fv )= f(x)v(f(x)>x)
[(f( )= x) > f(x )J—>f(x)

Then for ee DNB(A) and xe D we have

v v ] =ev[[(f(x)>x) > f ()] f(x)]
(2)[[((6v f(x))—>(ev x))—>(ev f (x))]—>(ev f (x))]

(smy)

(c22)

= |:|:((XV f(e))—>(ev X))—)(XV f (e)):|—>(XV f (e))}
= xv[[(f(e)>e)> f(e)]> f(e)|=xv[(f(e) >e)v f(e)]

=X\/|:(f (e))*vevf(e)J=XV1:1:ev1:ev1(x).

Since D e R(A) we deduce that
(f v f*)(x):l(x), hence fv f" =1, thatis, M, (A)
is a Boolean algebra (by Corollary 6). []

Remark 6 The axioms sms, smy were necessary in the
proof of Proposition 21.

Definition 9 Given two strong multipliers f,, f, on A,
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we say that f, extends f, if dom(f,)<dom(f,) and
f (x)=f,(x), for all xedom(f,); we write f, <f,
if f, extends f,. A strong multiplier f is called
maximal if f can not be extended to a strictly larger
domain.

Lemma 22 1) If f,f,eM(A), feM (A) and
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f<f, f<f,, then f and f, coincide on the
dom( f,)~dom( f,);

2) Every strong multiplier f e M, (A) can be ex-
tended to a maximal strong multiplier. More precisely,
each principal strong multiplier f, with aeB(A) and
dom(f,)eT(A)NR(A) can be uniquely extended to
the total strong multiplier f, and each non-principal
strong multiplier can be extended to a maximal non-
principal one.

Proof. 1) If by contrary, there exists
tedom(f )~dom(f,) such that f (t)=f,(t), since
dom( f)e R(A), then there exists t edom(f)nB(A)
such that t'v fi(t)=t'v f,(t) < f(t'vi)= £, (V)
which is contradlctory, since t'vte dom( f )

2) We first prove that f, with aeB(A) can not be
extended to a non-principal strong multiplier. Let
D=dom(f,)eT(A)nR(A), f,:D— A and suppose
by contrary that there exists D' eT (A),D < D', (hence
D'eT(A)NR(A)) and a non-principal strong multiplier
f eM(D’,A) which extends f,. Since f is non-
principal, there exists X, € D', X, € D such that
f(x)=avx,. Since DeR(A), then there exists
te DNB(A) such that

tv f(x)=ztv(avx)e f(tvx)zav(tvx),

Hence f, is

which is contradictory since f, < f. a

uniquely extended by f, .
Now, let f € M (A) be non-principal and

M, ={(D.g):DeT(A),geM(D,A),dom(f)c D

and Yyom(t) = f} (clearly, if (D, g) e My, then

DeT(A)NR(A)).

The set M, is ordered by (D,,9,)<(D,,9,) iff
D, cD, and g,5 =g, Let {(D,.g,):keK} be a
chamm M, Then D'= o D, eT(A) and
dom(f)c D’ , g':Df —>A defined by
9'(x)=9,(x) 1f xe D, is correctly defined (since if
xe D, ND, with k,te K, thenby 1), g, (X)=9,(x)).

Clearly, g'eM (D A) and g‘dom =f (since if
xedom(f)c D', then xeD’ and so there exists
k € K, such that Xe Dy, hence g'(x)=g,(x)= f(x)).

So, (D’,g’) is an upper bound for the family
{(D.9y):k €K}, hence by Zorn’s lemma, M, con-
tains at least one maximal strong multiplier h which
extends f. Since f. is non-principal and h extends
f, h is also non-principal. [

On the Boolean algebra M, (A) we consider the re-
lation p, defined by (f,,f,)e p, iff f and f, co-
incide on the intersection of their domains.

Lemma 23 p, isacongruence on M, (A).

Proof. The reflexivity and the symmetry of p, are
immediately; to prove the transitivity of p, let

Copyright © 2011 SciRes.

(f..f,).(f,, f;) € p,. Therefore f, f,, and respectively
f,, f; coincide on the intersection of their domains. If by
contrary, there exists X, € dom( f,)~dom( f,) such that
fi (%)= f;(X,), since dom(f,)eR(A), there exists
tedom(f,)nB(A) such that

tv (%) =tv (%) e fi(tvx)= f(tvx)

which is contradictory, since
tvx, edom(f )ndom(f,)~dom(f;). The compati-
bility of p, with —>on M, (A) is immediately. []

For feM,(A) we denote by [f] the congruence
classof f modulo p, and A"=M_ (A)/p,.

Remark 7 From Proposition 21 we deduce that A" is
a Boolean algebra.

LLemma 24 The map V, : B(A) — A" defined by

v,(a)= [f_a] is an injective morphism of Boolean al-

gebras and V, (B(A))e R(A").

Proof. The fact that V, is a morphism of Boolean al-
gebras follows from Lemma 18. To prove the injectivity
of V, let a,beB(A) such that V,(a)=V,(b). Then
[fa]z[be @(fa, fb)epA < f,(x)=f,(x), orevery
xe A xva=xvh, for every Xxe A, hence for
x=0 we obtain that Ova=0vb=a=b. To prove
v (B( A)) e R(A"), if by contrary there exist
fi, f, €M, (A) suchthat [f]=[f,] (thatis there exists
X, edom(f,)ndom(f,) such that f (x,)= f,(X))

and
AR

[fl]\/[f_aJ:[fz]v[f_a]c>

for every ae B(A)< f(x)vavx=f,(x)vavx, for

every aeB(A) and every xedom(f)ndom(f,).

For a=0 and X=X, we obtain that

fL(%)vX =f(%)vx < f(%)="f(x) which is

contradictory. [] .
Remark 8 Since for every aeB(A), f

a

is the

unique maximal strong multiplier on [f_a] (by Lemma

a

22) we can identify [f_] with f_a So, since V, is in-

jective morphism of Boolean algebras, the elements of
B(A) can be identified with the elements of the set

{T.:aeB(A)}.

Lemma 25 In view of the identifications made above,
if [f]e A" (with feM, (A) and
D=dom(f)eT(A)AR(A)), then

DNB(A)c{aeB(A): f,v[f]eB(A).

_ Proof. Let ae DNB(A). If by contrary,

\/[f]e B( ) then f,v f is a non-principal strong
multlpher Then by Lemma 22, (2), f,v f can be ex-
tended to a non-principal maximal strong multiplier
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f:D—>A with DeT(A). Thus, DcD and for

every xeD,

x)=(T,v £)(x)

Since ae DN B(A), then
4

=avxv f(x)=av f(x).

— (smy) —
f(x)=f(avx) = xv f(a), thatis, f|p is principal

which is contradictory with the assumption that f is
non-principal. []

5. Maximal Commutative BCK-Algebra of
Quotients

The goal of this section is to define (taking as a guide-

line the case of distributive lattices) the notions of BCK-

algebra of fractions and maximal BCK-algebra of quo-

tients for a commutative bounded BCK-algebra. For

some informal explanations of notions of fraction see [13]

and [5].

Definition 10 A bounded commutative BCK-algebra
is called BCK-algebra of fractions of A if:

(f)) B(A) is a BCK-subalgebra of A’;

(f;) For every a',b’,c'e A',a'#b’" , there exists

aeB(A) suchthat ava'#avbh’ and avc eB(A).

As a notational convenience, we write A< A’ to in-
dicate that A" is a BCK-algebra of fractions of A. So,
B(A)<B(A) (since for a’,b’,c’e B(A) with a'=b’,
if consider 0eB(A), then a'=a'v0#b'v0=b" and
c'=c'v0e B(A) ).

Definition 11 Q(A) is the maximal (commutative)
BCK-algebra of quotients of A if A<Q(A) and for
every commutative and bounded BCK-algebra A’ with
A< A’ there exists a monomorphism of BCK-algebras
i: A Q(A).

Proposition 26 Let A be a commutative and bounded
BCK-algebra such that A< A’. Then A’ is a Boolean
algebra.

Proof. If by contrary, A’ is not a Boolean algebra,
then by Corollary 6, there exists Xe A" such that
xvX #1. Since A< A", then there exists ee B(A) ,
such that evxeB(A) and ev(xv X*);tevlzl.
Then, by Lemma 4,

r

(evx)v(ev x)* =1:>(evx)v(e*/\x*)=1
:>1S(evxve*)/\(6vxvx*)
:>1£1/\(€VX\/X*)36\/X\/X*=I,

a contradiction! [

Remark 9 If A is a Boolean algebra, then B(A)= A
By Proposition 26, Q(A) is a Boolean algebra and the
axioms sm,;-smy are equivalent with smy, hence Q ( A) is
in this case just the classical Dedekind-MacNeille com-

Copyright © 2011 SciRes.

pletion of A (see [12], p. 687). In contrast to the general
situation, the Dedekind-MacNeille completion of a Boo-
lean algebra is again distributive and, in fact, is a Boolean
algebra (see [15], p. 239).

Lemma 27 Let A< A'; then for every a’,b'e A,
a'#b', and any finite sequence c/,---,c, € A, there
exists aeB(A) suchthat ava'#avb' and
avc eB(A) for i=12,--,n (n>2).

Proof. Assume lemma holds true for n—1. So we may
find be B(A) suchthat bva'#bvb’' and
bvc/ eB(A) for i=12,--,n-1. Since A<A", we
find ceB(A) such that cv(bva')=cv(bvb') and
cve, eB(A). The element a=bvceB(A) has the
required properties. [

Lemma28Let A<A" and a'e€ A’. Then

D, ={aeB(A):ava’eB(A)}eT(B(A))nR(A).

Proof. If aeB(A) and xe D, , then xva’'eB(A)
and since (avx)va'=av(xva')eB(A) it follows
avxeD,, hence D, eT(B(A)). To prove
D, € R(A) consider x,ye A such that evx=evy,
for every ee D, nB(A). If by contrary, x# Yy, since
A< A', there exists a, € B(A) such that
a,va' eB(A) (that is, a,eD, ) and a,vx=a, VY,
which is contradictory. []

Theorem 29 A" (defined in Section 4) is the maximal
(commutative) BCK-algebra of quotients Q(A) of A.

Proof. The fact that B(A) is a BCK-subalgebra
(Boolean subalgebra) of Q(A) follows from Lemma 24
and Remark 8. To prove A<Q(A), let
f].[9].[n]€Q(A) with f,g,heM (A) such that
g]=[h] (that is, there exists X, e dom(g)ndom(h)
such that g(x,)=h(x,)).

Put D=dom(f)eT(A)nR(A) an

D, ={aeB(A): T, v[f]eB(A)}.
Then by Lemma 25, DNB(A)c |- If suppose
that for every ae DNB(A), f_ [g]: f v[h], then

[ vg} [ vh} hence for every

x e dom(g)ndom(h) we have

(f_av g)(x) = (f_av h)(x) <> (analogously than as in the
proof of Lemma 24)
<avxvg(x)=avxvh(x)eavg(x)=avh(x).
Since DeR(A) we deduce that g(x)=h(x) for
every xedom(g)ndom(h) so [g]:&h] which is
contradictory. Hence, if [g]=[h], then there exists
aeDNB(A), such that f,v[g]# f,v[h]. But for
this ac DNB(A) wehave f, v[f]eB(A) (since
DNB(A)c D;;) hence A<Q(A).

To prove the maximality of Q(A), let A’ be a
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bounded commutative BCK-algebra such that A< A’
thus B(A)c= B(A'); Then A’ is embedded in Q(A)
by i:A’—>Q(A) defined by i(a')=[f,], for every
a'e A, where dom(f,)eD, (see Lemma 28).
Clearly, f, e M (A) (by Lemma 28) and i is a mor-
phism of BCK-algebras (see Lemma 18). To prove the
injectivity of i,let a’,b’e A, such that

[f.]=[fy] < f.(x)=fy,(x) for every xeD, ND,.
If a'#b’, by Lemma 27 (since A< A"), there exists
aeB(A) suchthat ava’,avbh’ eB(A) and

ava' #avb' which is contradictory (since

ava',avb’ e B(A) implies ae D, nD, ). O

Remark 10 1. If A is a BCK-algebra with
B(A)={0,1}=L, and A< A’ then A'={0,1}, hence
Q(A)~L,. Indeed, if a,b,ce A, with a=b , then
there exists e B(A) such that eva=evb, (hence
e#1)and evceB(A). Clearly, e=0, hence
ceB(A), that is A'=B(A). As examples of BCK-
algebras with this property we have local BCK-algebras
and BCK-chains.

2. More general, if A is a BCK-algebra such that B ( A)
is finite, if A< A" then A'=B(A), hence
Q(#)- B(A)

Indeed, B(A)c A’ and consider ae A B(A) be-
ing finite, there exists a smallest element e, € B(A)
such e,vaeB(A). Suppose e,va=a, then there
would exists eeB(A) such that ev(e,va)=eva
and evaeB(A). But evaeB(A) implies e, <e,
and thus we obtain ev(e,va)zevasevazeva,
a contradiction. Hence a=e, vaeB(A), thatis,

A'c B(A). Then A'=B(A), hence Q(A)=B(A).

6. Localization of Commutative Bounded
BCK-ALgebras

In [4], G. Georgescu exhibited the localization lattice L
of a distributive lattice L with respect to a topology F on
L in a similar way as for rings (see [16]) or monoids (see
[17]). The aim of this section is to define the notion of
localization BCK-algebra A: of a commutative bound-
ed BCK-algebra A with respect to a topology F on A. In
the last part of this section is proved that the maximal
commutative BCK-algebra of quotients (defined in Sec-
tion 5) and the commutative BCK-algebra of fractions
relative to a V-closed system (defined in Section 3) are
BCK-algebras of localization.

In this section A will be a bounded commutative
BCK-algebra and F a topological system on A.

Definition 12 A non-empty family F of elements on
T(A) will be called a topological system on A if the
following properties hold:

(t) If D,eF,D,eT(A)
D, eF (hence AcF);

and D, cD,, then
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(t) If D,,D, eF ,then D,ND, eF.

Example 31If D eT(A), then the set
F = {D' eT(A):Dc D’f is a topological system on A.

Example 4 We recall that by R(A) we denote the set
of all regular subsets of A (see Definition 8). Then
F=T(A)nR(A) is a topological system on A (see
Lemma 19).

Example 5 Let S< A a V-closed subset of A (see
Definition 4). If we denote by
F,={DeT(A):DNSNB(A)=@}, then F, is a
topological system on A.

If F is a topological system on A, let us consider the
relation . of A defined by: (X,y) €6 < there exists
DeF such that tvx=tvy for any te DNB(A).
As in the case of 5 (see Proposition 11), we deduce that
6 is a congruence on A.

We shall denote by X/6 the congruence class of an
element xe A and by pg:A— A/6. the canonical
morphism of BCK-algebras.

Remark 11 Clearly, if ae B(A)= a/6; € B(A/6;).

Definition 13 A F -multiplier on A is a mapping

f:D— A/G. where DeF such that for every
aeB(A) and xeD,

(m)) f(avx)=a/6 v f(x);

(my) X/6 < f(x).

If F={A},thena F -multiplier is a function

f : A—> A which verify only the conditions sm; and sm,
from Definition 7. The maps 0,1: A — A/6; , defined by
0 (x)=x/6 and 1(x)=1/6. for every xe A are
F-multipliers. Also, for ae B(A), f,:D— A/6; de-
fined by f,(x)=a/0. vx/6. for every xeD, is a
F-multiplier (where D e F).

For DeF, we shall denote by M (D,A/6;) the set
of all the F-multipliers having the domain D . If

D,,D,eF, D,cD, we have a canonical mapping
$o 0, ‘M (D,,A/6-) > M (D,,A/6;) defined by
#o.0, ()= for f €M (D,,A/f;). Let us consider
the directed system of sets < {M (D, A/6; )}

DeF ’

{¢DI’D2}DI’D2€F,DIQDZ > and denote by A. the inductive

limit (in the category of sets): Ac = lim M (D, A/ HF) .
ToeF

For any F-multiplier f:D — A/6; we shall denote by
(D, f) the equivalence class of f in A .
Remark 12 We recall that if f,:D, > A/6., i=1,2

are F-multipliers, then (D, f,)=(D,,f,) (in Ac) iff

there exists De F,D < D, "D, suchthat f = fz\D'
Let f,:D, > A/6- , (with D, eF,i=12 B, F-multi-

pliers. Let us consider the mapping

f, > f,:D,ND, > A/6; , defined by

(f,—> f,)(x)=f (x)> f,(x), for any xeD ND,,

and let
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(D, f)=>(D,, f,)=(D,ND,, f, > f,).

This definition is correct. Indeed, let f,: D/ - A/6. ,

with D/ eF,i=12 suchthat (D, f,)=(D/, ),
i =1,2. Then there exist D/,D, € F such that
D'c D nD/,DcD,nD, and f., = fl"D,,l,
fyom2 = Fipr- I we set

D"=D'nD,cb nND,nD/nD,, then D"eF and
clearly (f, > f,)_. =(f/> f,)

1|p"1

o’ o

hence (D, ND,, f, — f,)=(D/nD;, f/— f'2).
Lemma30 f — f,eM(D,nD,,A/6;).
Proof. If xe D, "D, and aeB(A), then
(f,—>f)(avx)="f(avx)> f,(avx)
=(a/6 /v 1, (x)) > (a/6 v ,(x))

(©1)

= a/6. v(f - f,)(x)

(m2)
and (f, > f,)(x)=f, XZ? f,(x)> f,(x) > x/6; .0
S ,1) 1s a bounded commutative

Corollary 31 (AF —,0
BCK-algebra (where 0=(A,0) and 1=(A,1)) (see Co-

rollary 17).

Definition 14 A. will be called the localization BCK-
algebra of A with respect to the topology F .

Lemma 32 The mapping V. : B(A)— A. defined by

Ve () :(A,f_a) for every aeB(A) is a morphism of

BCK-algebras and v, (B(A)) is a regular subset of A .
Proof. If a,beB(A) then

Ve (a) > v, (b)=(A,f_a)—>W

:(A,f_a—>f_b):(A, be):vF(a—>b).

To prove that Vi (A) is a regular subset of A, let
D., f)e A, D, e F,i=12, such that

—_~

—

A,f_a)v(Dl, fl)z(A,f_a)v(Dz, f,) forevery
ae B(A).
Then (D, f,v f,)=(D,,f, v f,) < there exists
DeF,Dc D, nD, such that
(f.v f])‘D =(f.v fz)\o
< (av X)/HF v f(x)=(av X)/HF v i, (%),

for every xe D and ae B(A). If in this last equiva-
lence we choose a=0¢eB ( A), then we obtain that

X6 v £, (X)=%/6: v f,(X)
e f(x)="1(x)= (D, f)=(D, f,),
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hence Vi (B(A)) is a regular subset of A . [J
7. Applications

In that follows we describe the localization BCK-algebra
Ac in some special instances.

) If DeT (A) and F is the topological system
F, ={D'eT(A):Dc D'} (see Example 3), then
Ac =M (D,A/6:) and Vg :B(A)— A is defined by

Ve (@) :(D, fa‘D) for any aeB(A). For x,yeB(A)
we have (X,y)e 6. < forevery

teDtvx=tvye f, =1 < v (X)=ve(y) then
there exists an injective morphism of BCK-algebras
A6 > A, 9(x/0 )=V (x) such that

@oVe = Pe.

2) To obtain the maximal BCK-algebra of quotients
Q(A) as a localization relative to a topological system
F we will develop another theory of F-multipliers
(meaning we add new axioms for F-multipliers).

Definition 15 Let F be a topological system on A. A
strong-F-multiplier is a mapping f :D — A/6; (where
D € F ) which verifies the axioms m; and m, and

(m3) If ee DN B(A), then f(e)eB(A/6);

(my) (x/6:)v f(a)=(a/6-)v f(x), forevery
aeDNB(A) and xeD.

If F={A}, then 6 is the identity congruence of A
so a strong F-multiplier is a strong total multiplier (in
sense of Definition 7).

Remark 13 If A is a BCK-algebra, the maps 0,1:
A— A/6. defined by 0(x)=x/6. and 1(x)=1/6;
for every x € A are strong F-multipliers. If
f.:D, > A/ , (with D, e F,i=1,2) are strong F-mul-
tipliers, the mapping f, — f,: D, "D, > A/ defined
by (f, = f,)(x)=f,(x)> f,(x), forany
xe D, D, isalso a strong-F-multiplier.

Remark 14 Analogous as in the case of F-multipliers if
we work with strong-F-multipliers we obtain a BCK-
subalgebra of A. denoted by s—A. which will be
called the strong localization BCK-algebra of A with
respect to the topological system F.

If F=T(A)nR(A), then ¢ is the identity con-
gruence of A and we obtain the definition for strong
multipliers on A, so Ac = lim M (D, A). In this situa-

TDeF
tion it is easy to see that v, is injective, so we have:

Proposition 33 In the case F =1(A)NR(A),
s—Ac is exactly the maximal commutative BCK-alge-
bra of quotients Q(A) of A (see Section 5, Theorem 29).

3. Let S be a V-closed system of A. We recall (see
Proposition 11) that on A we have the congruence 6
defined by: (x,y)e 6, iff there is seSNB(A) such
that svx=svy and A[S]=A/f is called the
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(commutative) BCK-algebra of fractions of A relative to
the Vv-closed system S (see Remark 5 from Section 3). In
this case we have the topological system F, associated
with S, Fy={DeT(A):DNSNB(A)=Q}.

Lemma 34 O, = 0.

Proof. For X, ye A, if (X,y)€ b then there exists
DeF suchthat svx=svy forevery seSNB(A).
Since De Fg, DNSNB(A)#J, so there exists
s, € DNS N B(A); in particular we obtain
S, VX=8, VY, hence (x,y)e b, thatis, 6 6.

If (x,y)e€b,then s;vx=s,vy, forsome
S, € SNB(A). If consider D=[s,)={aeA:s,<a}
(the principal deductive system generated by s,, see
Corollary 8, 1)), then D e F (since
s, e DNSNB(A) ).If seSNB(A) then
Sy <S=>S=svs, hence

SVX=(SvSs,)vX=5Vv(S,VX)
=sv(s,vy)=(svs,)vy=svy O
=>(xy)eb, =6, b =06 =06.
Proposition 35 If Fg is the topological system on A
associated with a V-closed subset S of A, then s— A
is isomorphic with B(A[S]).
Proof. Following Lemma 34, 6. =0, therefore a

F -multiplier can be considered in this case as a mapping
f:D— A[S] (D eF)having for xe D and
aeDNB(A) the properties

f(avx)=a/65 v f(x)
=x/0s v f(a),x/6; < f(x),

f(a)eB(A[S]).
£ (D, f).(D,,f,)es-A, = lim M(D,A[S]),

and (D,, f;)=(D,, f,) then there exists D e Fy such
that Dc D, ND, and f =1, . Since
D,D,,D, € Fy, then
DNSNB(A),D,nSNB(A),D,nSNB(A)

are nonempty, hence there exist se DNSNB(A),
s,eD, NSNB(A) and s,eD,"SNB(A).

We shall prove that f(s;)=f,(s,). Indeed, if con-
sider t=svs vs, e DNSNB(A), then
f(t)=5s/6;vs,/0s v f(s)=f(s) (since
s/0s =s,/6; =0) and analogously
f,(t)="f,(s,)= f,(s,)=f,(s,). In a similar way we
can show that f (t)=f,(t,) forany
t,,t, e DNSNB(A). In accordance with these consid-
erations we can define the mapping

1D 2p*

a:s—A, = lim M(D,A[S])—> B(A[S]) by putting
o
a(D, f)=f(s), where se DNSNB(A). It is easy

to prove that « is a morphism of BCK-algebras. We
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ET AL.

shall prove that « is injective and surjective. To prove
the injectivity of & let (D,, f,),(D,, f,)es— A such

that a((D;, f,))=a((D,. f,)). Then for any

s,eD, NSNB(A), s,eD,NnSNB(A) wehave
f(s,)=f,(s,). For two fixed elements s,s, with
s;eD,NSN B(A) i=1,2, we consider the element
s=s,vs, e(D mD)mSmB(A) We have
fl():sz/evf() ov f (s)="f(s) and

f, (s )—5/0 v f,(s,)=0v f,(s,)=f,(s,), hence
fl( )= f,(s). Nowlet

D, =[s )mD]r\Dzz{s'eD]szszs'}. Since
SGDs we deduce that D, #. If a€ A and s'eD,
then s<s'<avs'=avs'eD,= D,eS(A). Since
seD,NnD= D, eF. If s'"eD,, then

svs'=s'= f (s')=f (svs')

=516, v f,(s)=0v f (s)=f,(s)
and analogously,

f,(s")="f,(s)= f,(s")=1,(s")

= (D, f,)=(D,, f,),

= fl\Ds = fz\Ds

thatis, « isinjective. To prove the surjectivity of « , let
a/6; €B(A[S]) with acA.

For one fixed element S S, we consider
D=[s)={xeA:s<x}. Clearly DeF,. We define
f,:D— A[S] by putting f,(x)=(avx)/b;, for

every XeD. Clearly, f, is a strong F -multiplier
(clearly (ms) is verified since if ee DNB(A), then
f.(e)=(ave)/6; =a/6, ve/6s e B(A[S]). From

(avs)vs=avs=(avs)/d, =a/o;
= f,(s)=a/6; = a((D. f,)) =a/6; ,

thatis, « is surjective, hence bijective. [
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