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Abstract 
This investigation researches how industry institutional regimes can affect the 
pattern and volatility of stock prices and returns. This paper searches for in-
formation signals of regulatory policy in US electric public utility company 
stock returns and also tests for volatility changes from the buffering effect 
from deregulation. Utility stock returns asymmetry in up and down markets 
is modeled for evidence of investor information signals of regulatory beha-
vior. Lax regulation should lead to utility stock returns that react strongly to 
up markets due to weakly-constrained expected upside profits. Utility stock 
returns should have a small response to down markets. Stringent regulation 
should generate the opposite result. Since stock returns distributions typically 
have skewness and kurtosis, this study applies flexible probability density 
function (pdf) regressions methods that accommodate skewness and kurtosis. 
This paper concludes that since utility stock returns have a strong response to 
down markets relative to up markets, there is down market asymmetry in 
price and returns volatility. This evidence suggests that investors perceive that 
utility profit regulation is stringent. It also suggests, surprisingly, that the 
buffering effect has been increased with deregulation. Lastly, robust estima-
tion of financial models performed herein shows that regression estimation 
should not assume a normally distributed error term. 
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1. Introduction 

The electric utility industry, once an industry that supplied a steady stream of 
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dividends and slow earnings growth, was the subject of investor and government 
attention due to continuing crises that commenced soon after deregulation in 
the late 1990’s. During the years after deregulation, California’s electricity in-
dustry collapsed, and ENRON, the largest bulk electric power marketer, col-
lapsed, and two of the three investor-owned public utilities in California de-
clared bankruptcy. Additionally, $238 billion market capitalization was de-
stroyed (Seeholzer [1]), and bond rating down-grades occurred, and a gaping 
liquidity shortage began to emerge. Roseman and De Martini [2] found that 
there were 182 utility company bond-rating downgrades and only 15 upgrades. 
Also, on August 14, 2003, the industry suffered the largest blackout ever that 
occurred in the Northeastern US, due, in part, to a lack of investment by the in-
dustry. The “failure”1 of regulation leads to reforms toward deregulation that are 
associated with these events. The industry is partially deregulated as the genera-
tion component of the business is unregulated. Additionally, utilities’ bulk pow-
er lines or transmission lines had been opened to alternative purveyors of elec-
tric power. The electric utility industry remains substantially regulated as the 
rates of return on all but generation assets are regulated throughout the US. 

Utility regulatory policy from a shareholder’s perspective can be viewed as 
stringent (unfavorable) or lax (favorable). There is no consensus on the charac-
terization of utility regulatory policy in the literature and among practitioners. 

This paper searches for information signals of investors on their perspectives 
toward regulatory policy in electric utility company stock price volatility soon 
after the deregulation of the US electric public utility industry. Additionally, 
utility stock returns responses to up and down markets are modeled for evidence 
of investor information signals of regulatory behavior. Lax regulation should 
lead to utility stock returns that react strongly to up markets due to weak-
ly-constrained expected upside profits. Utility stock returns should have a small 
response to down markets with lax regulation. Lax regulation results in earnings 
levels that have a strong floor that is independent of systematic risk associated 
with business and earnings cycles. Stringent regulation should generate a large 
response of utility stock returns to down markets and a small or no response to 
up markets for the opposite reasons. 

Stock returns data and their error distributions usually have skewness and 
leptokurtosis, or, thick tails, which is well established in the literature. These 
characteristics cause intercept bias and inefficiency in slope estimates which is 
discussed in this paper. Therefore, this study applies skewed generalized t (SGT) 

 

 

1Since the mid-1970’s rate-base rate-of-return (RB-ROR) regulation was viewed has having encour-
aged utility managers to over-invest in capital as a way to increase profits as suggested by Averch 
and Johnson [3]. They claimed that utilities would over-invest to maximize profits (invest beyond 
the optimal level for cost minimization) if the allowed rate of return is above the cost of capital. Al-
though a number of researchers in the economics of regulation such as Crew and Kleindorfer [4] be-
lieve that this article was given too much attention in the literature, it was influential in encouraging 
the view that utilities over-invest in capital under RB-ROR regulation and that regulation had failed. 
Today, there are discussions about returning to regulation as it seems to have functioned better than 
deregulation for the electric utility industry.  
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probability density function (pdf) regression methods that accommodate skew-
ness and kurtosis. Although there are many flexible pdfs that accommodate 
skewness and thick tails, the SGT has been found to be the pdf that has the best 
fitting regressions relative to the normal, other pdfs as well as the flexible pdfs 
for modeling stock returns. 

2. Literature Review 

Some of the literature suggests, albeit not strongly, that regulatory policy had 
been lax, as suggested by Binder and Norton [5], Nwaeze [6], and Davidson, 
Rangan, and Rosenstein [7], Joskow [8] [9]. 

Some industry observers and utility management have concluded that regula-
tion has been stringent. They point to unattractive financial performance and 
the resulting lack of investment due to uncertainty regarding regulatory treat-
ment of such assets. 

Nwaeze [6] [10] suggest that regulators generally do not reduce electricity 
prices when an electric utility’s actual rate of return on common equity is above 
the allowed. Joskow [8] [9] also find that utilities do retain profits above the al-
lowed rate of return if electricity rates are not raised. Joskow [8] finds that regu-
lation is relatively lax when factor prices are steady or declining since regulators 
are not being pressured by customers and utilities. Therefore, the Joskow [8] ef-
fect suggests that regulation is stringent when regulators are pressured by cus-
tomers and utilities, i.e., when the economy is in a recession and stock market 
prices are depressed. 

When general corporate earnings levels are expected to rise, due to an upsw-
ing in the business cycle, stock returns rise in such anticipation and an up mar-
ket occurs. The opposite occurs for down markets. Utility earnings and returns 
behave in a generally similar manner except that profits may have a strong up-
side constraint and an associated weak downside constraint, if regulation is 
stringent. The converse is true with lax regulation. Therefore, one should expect 
utility stock returns to be relatively more responsive to either down or up mar-
kets, depending upon regulatory policy. 

Fifty states and the District of Columbia have regulatory jurisdiction of utili-
ties’ retail electric business within their boundaries. Therefore, regulatory policy 
varies across jurisdictions. Additionally, the US Federal Energy Regulatory 
Commission regulates the returns on utilities’ wholesale (transmission) assets. In 
a study sponsored by the US industry trade association, the Edison Electric In-
stitute, Hirst and Kirby [11] found that transmission investment (long-lines used 
to transmit bulk, wholesale levels of electric power) fell by $115 million annually 
for 25 years, or $5 billion in 1975 to $2 billion in 2000 in 1997 dollars. 

During down markets, corporate profits are expected to fall. Falling expecta-
tions for utility profits may obtain but would be dampened under a lax regula-
tory or moderate (neither lax nor stringent) regulatory regime as utility profita-
bility has a legally defined guideline found in early 20th century case laws of the 
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Hope and Bluefield decisions.2 These cases are the standards referred in utility 
rate cases used for setting allowed rates of returns on common equity. This con-
trasts with expectations for unconstrained downturns in profits and consequent 
stock returns for un-regulated firms and markets in general. 

This study tests for asymmetry in up and down market utility stock returns as 
evidence of regulatory policy as perceived by investors soon after deregulation 
occurred. The change in capital asset market beta (CAPM) associated with the 
advent of wholesale electric deregulation is estimated and controlled for in the 
regressions to ascertain how deregulation affected the buffering effect discussed 
below. 

Bawa, Brown, and Klein [12] initially developed the asymmetric response 
model that was adopted by Pedersen and Satchell [13] for reviewing and testing 
stock performance measures. That model essentially produces betas for up and 
down markets, respectively. Asymmetry is captured by differences in up and 
down market betas. Nwaeze [6] performs a series of regressions of electric utility 
returns on spreads between actual and allowed rates of return on equity with 
slope dummies for utility size and regulatory environment. Nwaeze [6] found 
that stock returns have an asymmetric response to positive and negative abnor-
mal earnings (earnings above or below the allowed rate of return). The empirical 
results show that positive abnormal earnings have a significant and large positive 
effect on stock returns and negative abnormal earnings have a significant small 
negative effect on returns. The notion behind this result is that lax regulation al-
lows for recovery of negative abnormal earnings and utilities retain abnormal 
positive earnings. 

Turning attention to regulation and systematic risk, Peltzman [14] developed 
the buffering hypothesis that regulation reduces the firm’s systematic risk be-
cause utility earnings are protected from demand shocks. It also suggests that the 
cost of capital may be endogenous as the strength of regulation in a particular 
state jurisdiction affects the systematic risk of the utility. 

The buffering hypothesis has been subject to a number of empirical tests. Da-
vidson, Rangan, and Rosenstein [2] estimate the association between systematic 
risk of electric utilities and regulatory strength. Categorizing the number of elec-
tric utilities by regulatory environment, their results show that roughly 75% of 
utilities are in jurisdictions that are less binding. They found that regulation af-
fects beta when factor prices, namely, fuel prices, are increasing. 

 

 

2The commonly cited landmark US Supreme Court decisions in utility rate cases, Hope Natural Gas 
and Bluefield Water cases, determined the criteria for a utility’s fair rate of return. The Hope deci-
sion reaffirmed the standards of reasonableness initially determined in Bluefield. The Hope decision 
stated “The return to the equity owner should be commensurate with returns on investments in 
other enterprises having corresponding risks. That return, moreover, should be sufficient to assure 
confidence in the financial integrity of the enterprise, so as to maintain its credit and attract capital.” 
Utility rates should be set so that the utility has a reasonable opportunity to earn a rate of return 
equal to its cost of capital, attract capital, maintain its creditworthiness, and that the rate of return 
should be similar for other investments with similar risk. These cases are the Bluefield Water Works 
and Improvement Company v. Public Service Commission of West Virginia (1923) and the Federal 
Power Commission v. Hope Natural Gas Company (1944).  
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The buffering hypothesis was also tested by Binder and Norton [5]. They con-
cluded that other studies of the buffering hypothesis did not control for other 
variables that affect risk other than deregulation. They derive an asset beta that is 
a non-linear function of regulation severity, the Sharp-Lintner core beta (slope 
in the regression for a demand shock and the returns on the market) and the 
Ross [15] arbitrage pricing model (APT) core betas (slope coefficients in a re-
gression of demand shocks for a firm on the risk factors common to all security 
returns). Their empirical results for the electric utility industry support the buf-
fering hypothesis, but their analysis period does not include the mid 1990’s - 
early 2000’s, the period that involves the fastest movement of the industry to-
ward deregulation. 

Binder and Norton [5] find that the decrease in the Sharpe-Lintner core beta 
indicates that regulators are granting utilities rates of return that are higher than 
their cost of capital and that the cost of capital or “fair rate of return is a refer-
ence to what the lower bound is for the industry. 

Nwaeze [10] estimated the impact of the significant electric utility industry 
reforms adopted over the past 24 years on systematic risk and returns. Using 
monthly returns for 1976 to 1997, that paper found that deregulation reforms 
generally reduced the buffering impact and increased systematic risk. 

Besanko, Dsouza, and Thiagarajan [16] analyzed electric utility stock price 
reactions prior to the passing the of the National Energy Policy Act, the legisla-
tion that led to the passing of the FERC (Federal Energy Regulatory Commis-
sion) Order 888 in April 1996 that commenced wholesale competition and de-
regulation in the industry. They found that investors had neutral reactions to 
positive reactions to its passage, yet stock price reactions differed systematically 
with differences in the utilities’ marginal costs. 

Turning to robust estimation of models involving stock returns, this study 
empirically addresses non-normality of stock returns and associated capital asset 
pricing model (CAPM) regression error distributions. The distributions of stock 
returns and their regression errors have both leptokurtosis (thick tails relative to 
the normal pdf) and skewness. The importance of regression methods that ac-
commodate kurtosis and skewness lies in the bias of the intercept and the ineffi-
ciency of the estimates and their resulting statistical tests. Chan and Lakonishok 
[17] test robust estimation methods compared to OLS for estimating beta. Using 
both simulations (where true values of the parameters of the distribution are 
known) of returns and actual returns data, they estimate betas with seven robust 
methods and OLS. They find that substantial efficiency gains are obtained when 
returns contain extreme outliers such as returns resulting from good or bad 
news. 

The regression methods used to estimate the models herein use flexible prob-
ability density functions that accommodate skewness and leptokurtosis to search 
for the best fit of the data. Robust estimation of CAPM beta is discussed in But-
ler, McDonald, Nelson, and White [18] and McDonald and Nelson [19]. Theo-
dossiou [20] and Hansen, McDonald, and Theodossiou [21] discuss a number of 
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flexible pdf’s that can accommodate skewness and kurtosis in the data. These 
pdf’s include the exponential generalized beta of the second kind (EGB2), the 
skewed generalized error (SGED), skewed generalized T (SGT), and the inverse 
hyperbolic sine (IHS) distributions. McDonald, Michelfelder, and Theodossiou 
[22] use these pdf’s to estimate and test electric utility betas and find that the 
SGT provides the best fit. McDonald, Michelfelder, and Theodossiou [23], 
McDonald and Michelfelder [24] also use these pdf’s on stock returns analysis 
and financial model regressions such as the CAPM. McDonald, Michelfelder, 
and Theodossiou [23] also performed robust empirical tests of the CAPM para-
meters of stocks in general and found that Jensen’s alpha estimation in the single 
index model was biased when skewness was present in the regression residuals. 

Although this investigation has performed the estimations with all of the 
above mentioned pdf’s along with the symmetric distributions such as the nor-
mal, Laplace and the centralized t, the SGT is the pdf chosen for the final esti-
mates, which is highly consistent with much of the aforementioned literature. 
The SGT estimates are the only set of presented estimates for the sake of brevity. 
The results of the other pdf’s are available upon request. 

The estimation method herein applies robust estimation methods that nests 
the family of symmetric distributions yet are more general and flexible as they 
accommodate skewness and kurtosis in the pdf returns data and regression re-
siduals. 

The remainder of this paper is organized as follows. Section 3 discusses the 
returns response models. Section 4 reviews the robust probability density func-
tions for estimation. Section 5 presents the data and estimation results. Section 6 
is the conclusion.  

3. Returns Response Models 

The model for estimating asymmetric response of utility stock returns to the 
market is the asymmetric response model initially developed by Bawa, Brown, 
and Klein [12]. This model nests the one-factor, mean-variance Sharpe-Lintner 
CAPM. The Pedersen and Satchell [13] asymmetric response model for examin-
ing portfolio performance measures is: 

, 1 , 2 , ,i t i m t m t i t i tR R Rα β β π δ µ− += + + + +               (1) 

where , , ,i t i t f tR r r= −  is excess return for the stock of utility i at period t, ri,t is 
the total return on the stock of utility i as defined in more detail below, rf,t is the 
risk free rate for period t, , , ,m t m t f tR r r= −  is the excess market return, rm,t is the 
total market return for period t; , , , m t m t f tR r r− = −  When , ,  0m t f tr r− <  and zero 
otherwise, and , , , m t m t f tR r r+ = −  when , ,  0m t f tr r− > . And zero otherwise, and δt = 
1 when , , 0m t f tr r− >  and zero otherwise,  

( )1 2iπ ϕ β β= − , { }, , , ,| 0m t f t m t f tE r r r rϕ = − − >  

and ,i tµ  is an error term. 
The asymmetric responses of stock returns to down and up markets are esti-

https://doi.org/10.4236/jmf.2018.83037


R. A. Michelfelder 
 

 

DOI: 10.4236/jmf.2018.83037 582 Journal of Mathematical Finance 
 

mated by tests for difference between β1 and β2. 
The model for estimating the returns response to the market and deregulation 

is: 

( ). , , , , , , , , , ,i t i n i n t r i r t i i n n t i r r t m t i tR D D D D Rα α α β β β µ= + + + + + +        (2) 

, ,m t m tR R− =  for all negative Rm,t’s and zero otherwise; , ,m t m tR R+ =  for all 
non-negative Rm,t’s and zero otherwise; Dn,t = 1 for all negative Rm,t’s and zero 
otherwise, and Dr,t = 1 for the post-deregulation period (after April 1996) and 
zero otherwise. ìi,t is the error term. This model is the same as Equation (1) dis-
cussed above except for the augmentation of the model to include the slope and 
intercept post-deregulation dummy variables to estimate the buffering effect (see 
Appendix 2). 

Although reform toward introducing competition to the electric utility indus-
try is a process that started in 1978, this paper identifies the issuance of Order 
888 on April 24, 1996 by the Federal Energy Regulatory Commission to be the 
key event in moving the industry toward competition. The main trend toward 
deregulation occurred between 1990 and 2002 and therefore is the time frame 
used for data observation. Next the development of the stock total returns for 
the utilities is discussed. 

The utility total stock return, ri, for period t − 1 to t is 

1

1 1 1

1t t t t t t t
t

t t t

P D P D P P Dr
P P P

−

− − −

   ∆ + + − +
= = = −   

   
 

where 1t t tP P P−∆ = −  is the price change of the share from time t − 1 to t, and Dt 
is the dividend for the period paid at time t.3 The return can be decomposed into 
its two components, the capital gain and the dividend yields as follows: 

( )( )
1 1

1 1 1 1 1t t t t t t t
t t t

t t t t t

P D P P D P Dr k d
P P P P P− −

     + + ∆
+ = = = + + = + +     

     
 

where 1t t tk P P−= ∆  is the capital gain yield or the percent of growth of the 
stock price from time t − 1 to t and t t td D P=  is the percent of dividend with 
respect to the price at the time of payment. 

The log-return or continuously compounded return for the period is defined 
as 

( )

( ) ( )
1 1

ln ln ln ln 1

ln 1 ln 1

t t t t t
t t

t t t

t t t t

P D P P Dlr r
P P P

k d lk ld
− −

     + +
= = + = +     

     
= + + + = +

 

where ( ) ( )1ln ln 1t t t tlk P P k−= = +  is the log-capital gain yield and  
( ) ( )ln 1 ln 1t t t tld D P d= + = +  is log-dividend yield for the stock. Note that the 

 

 

3The dividend yield reflects the ex-dividend effect on the share price by lagging the share price by 34 
days from the dividend payment date since the ex-dividend period for electric utilities is generally 30 
days from the payable date to be a shareholder of record at the utility and the maximum number of 
days to record a shareholder is 4 days. The ex-dividend period was determined by inspection of 
footnote B for the company reviews in the electric utility industry analyzed by Value Line Invest-
ment Survey [25] in Issues 1, 5, and 11 dated March 8, 2002, April 5, 2002 and May 17, 2002. 
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following relationships exist between the return and log-return measures 

e 1, e 1 and e 1.t t tlr lk ld
t t tr k d= − = − = −  

The return and log-return for the multi period 0 to s, denoted by r0,s and lr0,s, 
can be computed from the single period returns using the formulas 

( )( ) ( ) ( )0, 1 2
1

1 1 1 1 1
s

s s t
t

r r r r r
=

+ = + + + = +∏  

and 

( ) ( ) ( )

( ) ( )

0, 0,
11

0, 0,
1 1 1 1

ln 1 ln 1 ln 1

ln 1 ln 1

s s

t s t t
tt

s s s s

t t t t s s
t t t t

lr r r r

k d lk ld lk ld

==

= = = =

= + = + = +

= + + + = + = +

∑∏

∑ ∑ ∑ ∑
 

The above formulas assume that the dividend is reinvested each time in the 
stock of the company immediately after its payment. In such a case, the value of 
an investment in the stock s periods from now will be 

( ) ( )( )0 0, 0 0,1 exp ln 1s s sV P r P r= + = +  

0 0
1 1 1

exp exp
s s s

t t t
t t t

P lk ld P lr
= = =

   + =   
   
∑ ∑ ∑  

Given a sequence, 0 0 1 2, , , , ,sV P V V V=   , the return and log-return for each 
period can be computed easily from them using the equations 

1 1

1 and lnt t
t t

t t

V Vr lr
V V− −

 
= − =  

 
 

4. Flexible Probability Density Functions for Estimation and  
Robustness Checks 

The flexible pdf’s used for the estimations accommodate skewness and kurtosis. 
Although not presented in this paper, the normal, centralized t, Laplace, and the 
flexible pdf’s, exponential beta of the second kind, (EGB2), skewed generalized 
error distribution (SGED), skewed generalized t (SGT) and the inverse hyper-
bolic sine (IHS) were used for the regression estimations for comparison and 
robustness checks. The normal pdf is not appropriate when the error term exhi-
bits a distribution with skewness or thick tails and no symmetric pdf is appro-
priate when skewness is present in the data or error term. The shape of the nor-
mal pdf is completely described by the first and second moments, namely mean 
and variance. Pdf’s that accommodate flexible values for the third and fourth 
moments, skewness and kurtosis offer efficient estimates for financial models 
relative to OLS where skewness or kurtosis is present. Harvey and Siddique [26], 
[27] estimate skewness in different industry stock portfolios and market portfo-
lio indices and find substantial evidence of skewness in returns. Theodossiou [20] 
rejected the assumption of normality, based on tests of skewness and kurtosis for 
multiple stock exchanges indexes, the Canadian- and Japanese-Dollar exchange 
rates and the price of gold. Since skewness and kurtosis is found frequently in 

https://doi.org/10.4236/jmf.2018.83037


R. A. Michelfelder 
 

 

DOI: 10.4236/jmf.2018.83037 584 Journal of Mathematical Finance 
 

financial returns, the approach used herein was to consider pdf’s that would ap-
propriately model the asymmetries and thick tails characteristics found in re-
turns data. 

Hein and Westfall [28] found that performing event studies with multivariate 
regressions using traditional dummy variable tests, assuming that the distribu-
tion of the error term is normal, can be biased and inefficient and lead to wrong 
inferences as stock returns are found to be typically non-normally distributed. 
This paper uses multivariate regressions with event dummies but considered the 
multitude of pdf’s that accommodate skewness and kurtosis. The chosen flexible 
pdf is the SGT. 

A description of the SGT pdf as well as the other flexible pdf’s considered for 
the final estimations are found in Hansen, McDonald, and Theodossiou [21] and 
McDonald, Michelfelder, and Theodossiou [23]. The SGT is presented below as 
the pdf of choice.4 

Skewed Generalized T Probability Density Function 

The SGT pdf is specified as: 

( )
( )( ) ( )( )

( )1

1; , , , , 1
2 1

n k

k
k k k

CSGT y n k
n k sign

µ σ λ ε
σ ε λ θ σ

− +
 
 = +
 − + 

  (3) 

where 

( )( ) ( )( )1
2 2 1 ,

k
C k n k B k n kθ= − ,  

( )( ) ( ) ( )( ) ( )1 0.50.5 12 1 , 3 , 2
k

k n B k n k B k n k Sθ λ −= − − , 

( ) ( )2 2 21 3 4S Aλ λ λ= + − , 

( )( )( ) ( ) ( )( )0.50.52 , 1 1 , 3 , 2A B k n k B k n k B k n k−= − − , 

( ) 12 ASδ λ λ −= , 

B( ) is the beta function, μ and σ are the mean and standard deviation of y, n 
and k are kurtosis parameters, λ is a skewness parameter obeying the constraint 

 

 

4The exponential generalized beta of the second kind, the skewed generalized error, inverse hyper-
bolic sine pdf’s that also accommodate skewness and kurtosis were also estimated as well as the cen-
tralized T, Laplace and normal pdf’s were also used for the regressions estimations. Since 
log-likelihood ratio tests cannot be performed for pdf’s with non-nested pdf’s. The choice of final 
pdf for estimation results is based on the highest log-likelihood function. The likelihood ratio test 
among flexible pdf’s and the normal are all statistically significant at the 99% level. The LR-Normal 
is a log-likelihood ratio statistic for testing the normal pdf against the other pdf’s for best fit as long 
as the alternative pdf nests the normal. It is computed as LR-Normal = 2 (la − ln) where la and ln are 
the log-likelihood functions for the alternative and normal pdf’s respectfully. The LR-Normal is 
asymptotically distributed as χ2 with k degrees of freedom where k is the number of additional pa-
rameters for each pdf. For the centralized t, k = 1 and for the SGED, EGB2, and IHS, k = 2 and for 
the SGT, k = 3. The SGT pdf had the highest log-likelihood for all of the* pdf’s and is chosen as the 
pdf of choice for the estimations in this paper. Table 3 includes the LR-Normal test for the SGT and 
the normal pdf’s. The LR-Normal for the SGT is statistically significant at the 99% level for every 
utility estimation.  
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1λ < , sign is the sign function, and μ = y − μ + δσ is the deviation of y from its 
mode μ − δσ. Positive values of λ result a positively skewed pdf and vice versa. 
Note that the parameter δ is the skewness measure SK = (μ − mode(y))/σ. For λ 
= 0 the SGT yields the GT of McDonald and Newey [29]. Letting n grow indefi-
nitely large gives the SGED and the GED for λ = 0. Standardized values for 
skewness and kurtosis in the ranges (−∞, ∞) and (1.8, ∞) can be modeled with 
the SGT. 

The asymmetric response models were estimated using maximum likelihood 
estimation. 

5. Estimation 
5.1. The Data 

The sample includes all electric and electric and gas combination companies 
listed in Compust at database as of September 26, 1996 that were publicly traded 
between January 1, 1990 and July 31, 2002. These include all publicly-traded 
companies with SIC codes 4911 and 4931.  

Opening, high, low, and close daily stock prices were obtained for the period 
beginning the first trading day in January 1990 and ending on December July 31, 
2002 from www.msn.com. The time frame of data observation from 1990 to 
2002 was purposely used as that was the transition period from regulation to de-
regulation in the generation portion of the US electric utility industry. Utility 
company paid dividends were obtained from www.msn.com. There are 3026 
daily total return observations for each utility and the S & P 500 total returns in-
dex. Value Line Investment Survey [25] Issues 1, 5, and 11 dated March 8, April 
5, and May 17, 2002 lists 63 publicly traded electric/electric and gas combination 
companies. The sample frame includes 36 electric utilities that have been conti-
nuously traded during the defined period. Appendix 1 ncludes a list of all utili-
ties included in the sample. El Paso Electric was removed from the sample frame 
since that company had severe financial problems during the 1990’s including 
bankruptcy. Trading volume was extremely low during periods in the 1990’s and 
the stock traded at values less than $1 for a number of months. 

The sample frame period had been an era of mergers and acquisitions as elec-
tric utilities consolidated as a response to growing competition and deregulation 
in the generation portion of the electric utility industry. During the mid 1980’s 
there were roughly 110 publicly traded electric and electric and gas combination 
utilities and as of the 2nd quarter of 2002 there were 63, approaching 50 percent 
industry consolidation in the number of traded utilities. 

Market and utility returns are daily total stock returns. The market is defined 
by the S & P 500. The total returns index for the S & P 500 was obtained from 
http://www.globalfinancialdata.com/. Utility stock total returns were calculated 
as described above. Total returns (rather than price changes only) were used for 
all analysis since utilities’ dividend yields are relatively high and dividend pay-
ments consistent, therefore dividends are a substantial component of investor 
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returns. The inclusion of dividends is also important since dividend yields dam-
pen reductions in total returns when stock prices decline. As the stock price falls, 
the dividend yield rises. The risk-free rate is the daily 30-day yield on 90 day US 
Treasury Bills obtained from Global Financial Data, Inc.’s web site,  
www.globalfinancialdata.com. 

Table 1 has the mean, standard deviation, skewness, and kurtosis for the daily 
S & P 500 total returns and each utility for the study period January 1990-July 
2002. The mean total return for the S & P 500 for the period is similar to the 
mean return of all the utilities (0.042 and 0.041 respectively). The standard devi-
ation for both the S & P 500 and the utilities are roughly 25 to 40 fold higher 
than the mean returns. The skewness for the S & P 500 is negative (−0.038), it is 
positive for 34 of the 36 utilities’ total returns and the mean skewness for all of 
the utilities is positive (0.099). 

Consistently positive and large skewness for utilities compared to the S & P 
500 indicates that utilities’ total returns have a higher probability of being large 
and positive compared to the S & P 500. Kurtosis is similar for utilities with a 
utility mean of 11.21 (median is 7.74) compared to the S & P 500 kurtosis of 7.93. 
Kurtosis for the normal pdf is 3. The kurtosis of the utilities and the S & P 500 
provide evidence that the pdf’s of their returns are leptokurtic. 

As an initial test of the normality of the regression residuals, the standard 
econometric version of the CAPM was estimated (with excess returns) using the 
flexible pdf’s, the centralized T, and Laplace with maximum likelihood, and the 
normal pdf using OLS. Although it is beyond the scope of this paper to present 
and discuss many of the inter-pdf characteristics of the results, the SGT pdf was 
chosen as the main choice of estimation among the flexible pdf’s as discussed in 
footnote 5. The SGT nests the normal pdf as a special case therefore comparison 
and testing of the SGT against the normal can be done with a chi-squared dis-
tributed likelihood ratio test. The model estimations are discussed in the next 
subsection. 

5.2. Model Estimations 

Table 2, pages 1 - 3 displays SGT estimates of the econometric CAPM for the 
entire sample period. All of the beta estimates are significant except for two utili-
ties. The χ2 distributed likelihood ratio test (LR-Normal) for comparing the fit of 
the normal and the SGT pdf’s is statistically significant for every utility estimate, 
indicating that the SGT regressions provide a better fit of the data. The skewness 
(SK) and kurtosis (KU) parameters for the CAPM regression error terms indi-
cates that the distribution of the returns residuals is non-normal. Skewness is not 
defined for the SGT pdf for all pdf parameter ranges (at n < 3) therefore a few 
utilities do not have an estimate for skewness. Although most of the estimates of 
the skewness parameter are positive, they are generally quite small. The skew-
ness parameter estimates of the SGT, λ, are positive, only three of them are sta-
tistically significant. 
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Table 1. First through fourth moments summary statistics of utility and S & P 500 Returns: 
1990-2002. 

 μ σ Skewness Kurtosis 

S & P 500 0.04214 1.02090 −0.03802 7.93318 

AEP 0.03092 1.28463 0.08322 7.43292 

CIN 0.04791 1.28907 0.11355 6.55949 

CMS 0.00373 1.72070 0.06856  

D 0.05308 1.17777 0.06159 9.73302 

DPL 0.06195 1.37598 0.14146 6.66801 

DTE 0.05000 1.26403 0.10753 5.91875 

DUK 0.05085 1.44103 0.12134 7.29301 

ED 0.04741 1.30253 −0.04474 5.97970 

EDE 0.04039 1.24469 0.12190 7.97978 

EIX 0.01303 1.75458 0.04157 14.51847 

ETR 0.06013 1.45669 0.23370 17.75511 

FPL 0.05005 1.26054 0.01300  

GMP 0.00989 1.38778 0.03994 14.18595 

HE 0.03362 1.06177 0.10635 7.19879 

IDA 0.02748 1.27363 0.08635 8.98244 

NI 0.05315 1.31132 0.14622 7.72411 

NU 0.03773 1.48852 0.09106 7.61698 

OGE 0.06398 1.32225 0.18221 8.15353 

PCG 0.00727 1.69361 0.02540 15.45331 

PEG 0.04365 1.33727 −0.17516 34.07430 

PGN 0.03804 1.25055 0.15202 48.75561 

PNM 0.02811 1.76315 0.05144 6.73357 

PNW 0.05630 1.56488 0.14052 8.96838 

POM 0.02646 1.33289 0.07297 7.76233 

PPL 0.04909 1.44138 0.13619 8.84195 

PSD 0.03719 1.22748 0.10130 7.09781 

SCG 0.04488 1.12971 0.14018 7.51896 

SO 0.06908 1.37276 0.18143 18.41280 

SRP 0.06473 1.52926 0.25138 14.18762 

TE 0.04298 1.22600 0.11201 6.87562 

TXU 0.05537 1.30845 0.20068 18.78902 

UIL 0.04499 1.10982 0.11882 6.25387 

UTL 0.03428 1.46703 0.08213 7.35301 

WEC 0.03727 1.18433 0.08613 5.89381 

WPS 0.04212 1.05327 0.11306 6.02368 

WR 0.02219 1.34276 0.06690 8.66620 

Util. Mean 0.041092 1.354225 0.099228 11.21663 

Util. Median 0.043315 1.316785 0.106940 7.74322 
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Table 2. SGT estimates of the CAPM BETA for the period 1990-2002. 

Data AEP CIN CMS D DPL DTE DUK ED EDE EIX ETR FPL 

α 
0.01264 
(0.58) 

0.03244 
(1.46) 

−0.00834 
(−0.29) 

0.04115 
(2.03)* 

0.05275 
(2.22)* 

0.03828 
(1.77) 

0.03128 
(1.26) 

0.03012 
(1.35) 

0.03244 
(1.49) 

0.00473 
(0.15) 

0.04626 
(1.82) 

0.03469 
(1.62) 

β 
0.37872 

(22.89)** 
0.36077 

(21.43)** 
0.28526 

(13.94)** 
0.35567 
(23.7)** 

0.33977 
(18.13)** 

0.41714 
(24.75)** 

0.42805 
(23.91)** 

0.41623 
(22.8)** 

0.15795 
(9.83)** 

0.47156 
(22.42)** 

0.31852 
(15.98)** 

0.33321 
(20.78)** 

σ̂  
1.23089 

(36.98)** 
1.22791 

(44.86)** 
1.7489 

(16.4)** 
1.15796 

(25.33)** 
1.32319 

(39.91)** 
1.20056 

(39.89)** 
1.37718 

(40.83)** 
1.24393 

(43.33)** 
1.2053 

(43.98)** 
2.52876 
(5.28)** 

1.43755 
(35.53)** 

1.22625 
(26.4)** 

K 
1.57664 

(11.89)** 
1.3988 

(10.66)** 
2.13438 

(11.04)** 
1.73995 

(10.61)** 
1.86872 

(12.29)** 
1.80353 
(11.3)** 

1.35557 
(12.36)** 

1.94618 
(9.78)** 

1.38038 
(16.15)** 

2.09635 
(11)** 

1.92125 
(11.75)** 

1.9214 
(10.78)** 

λ 
0.01993 
(0.88) 

0.02316 
(1.08) 

0.01796 
(0.7) 

0.01808 
(0.78) 

0.05783 
(2.34)* 

0.0368 
(1.52) 

0.00742 
(0.35) 

0.00132 
(0.05) 

0.0375 
(1.71) 

−0.00666 
(−0.27) 

0.04697 
(1.9) 

0.00514 
(0.21) 

n 
4.7153 

(6.06)** 
8.14022 
(2.68)** 

2.83973 
(11.66)** 

3.8967 
(6.11)** 

4.46409 
(7.78)** 

4.8989 
(5.85)** 

6.1737 
(4.48)** 

5.4031 
(4.51)** 

5.91206 
(7.83)** 

2.31309 
(13.38)** 

4.04235 
(8.17)** 

3.65427 
(7.51)** 

SK 0.12846 0.10119 n/a 0.16105 0.33563 0.189 0.04159 0.0054 0.21373 n/a 0.33541 0.05259 

KU 16.74093 6.87491 n/a n/a 18.00594 11.2943 10.03874 7.53358 10.57564 n/a 157.40163 n/a 

LogL −4631.58 −4731.1 −5321.66 −4384.13 −4915.63 −4650.79 −4982.82 −4827.62 −4574.69 −5524.25 −5122.28 −4562.86 

LR-N. 626.77** 356.77** 1376.83** 570.44** 555.16** 387.37** 603.04** 219.9** 1064.3** 2342.45** 617.93** 625.12** 

R2 0.08796 0.08452 0.02661 0.09582 0.06226 0.11384 0.09067 0.10726 0.01501 0.04539 0.04814 0.07417 

OBS 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 

 
Data GMP HE IDA NI NU OGE PCG PEG PGN PNM PNW POM 

α 
0.01708 
(0.63) 

0.02526 
(1.38) 

0.01703 
(0.77) 

0.04233 
(1.86) 

0.02871 
(1.1) 

0.05375 
(2.35)* 

0.02504 
(0.78) 

0.02812 
(1.24) 

0.01937 
(0.92) 

0.01434 
(0.48) 

0.04156 
(1.54) 

0.01162 
(0.49) 

β 
0 

(0) 
0.25115 
(17.8)** 

0.28275 
(17.02)** 

0.2745 
(16.28)** 

0.26276 
(13.39)** 

0.26909 
(15.83)** 

0.45387 
(23.01)** 

0.39926 
(22.84)** 

0.40404 
(24.81)** 

0.36322 
(15.33)** 

0.28999 
(14.04)** 

0.33895 
(18.49)** 

σ̂  
1.51031 

(37.36)** 
1.03229 

(31.91)** 
1.28364 

(24.93)** 
1.27692 

(36.04)** 
1.48315 

(29.76)** 
1.29844 

(32.69)** 
3.70063 

(33.23)** 
1.27678 

(33.74)** 
1.19715 

(40.24)** 
1.70006 
(40.4)** 

1.54067 
(35.22)** 

1.32433 
(34.1)** 

K 
0.89041 

(12.15)** 
1.7801 

(10.69)** 
1.89576 

(11.65)** 
1.61926 

(12.38)** 
1.7651 

(11.54)** 
1.64702 

(12.09)** 
2.59563 

(14.12)** 
1.72383 

(10.76)** 
1.86959 

(16.81)** 
2.20637 

(11.67)** 
1.91113 

(12.84)** 
1.72963 

(10.93)** 

λ 
0.00893 
(0.53) 

0.01915 
(0.81) 

0.00958 
(0.4) 

0.03129 
(1.37) 

0.03459 
(1.47) 

0.04544 
(1.98)* 

0.02206 
(0.85) 

−0.01319 
(−0.57) 

0.03266 
(1.31) 

0.06899 
(2.62)** 

0.02404 
(0.98) 

0.02423 
(1.03) 

n 
8.47444 
(3.16)** 

4.29366 
(5.9)** 

3.40655 
(9.16)** 

4.45892 
(6.83)** 

3.9108 
(7.18)** 

4.14196 
(7.16)** 

n/a 
4.5781 

(5.38)** 
3.82797 

(20.82)** 
4.09302 
(9.09)** 

3.80983 
(10.07)** 

4.43101 
(5.87)** 

SK 0.07244 0.1281 0.14737 0.21603 0.29957 0.36192 n/a −0.08038 0.28550 0.41152 0.20891 0.15657 

KU 15.25315 28.4597 n/a 23.03044 n/a 65.12891 n/a 16.91787 n/a 60.11703 n/a 21.4893 

LogL −4800.23 −4120.4 −4617.66 −4727.17 −5144.01 −4738.13 −5421.32 −4782.28 −4512.1 −5696.39 −5286.74 −4876.01 

LR-N. 1763.69** 468.92** 938.52** 710.16** 665.23** 766.09** 2532.76** 449.98** 18181.1** 519.5** 1046.42** 503.67** 

R2 0 0.05861 0.04686 0.04484 0.03197 0.04206 0.04261 0.09575 0.00037 0.04413 0.03124 0.06583 

OBS 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 
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Data PPL PSD SCG SO SRP TE TXU UIL UTL WEC WPS WR 

α 
0.03794 
(1.51) 

0.0281 
(1.32) 

0.03463 
(1.75) 

0.05432 
(2.3)* 

0.01638 
(0.58) 

0.03161 
(1.48) 

0.04145 
(1.83) 

0.03472 
(1.81) 

0.03334 
(1.07) 

0.02829 
(1.36) 

0.03052 
(1.69) 

0.00937 
(0.39) 

β 
0.32879 
(18.5)** 

0.26917 
(16.52)** 

0.27145 
(19.03)** 

0.38496 
(20.61)** 

0.27807 
(15.09)** 

0.26518 
(16.21)** 

0.3327 
(18.89)** 

0.25387 
(16.27)** 

0 
(0) 

0.29023 
(17.65)** 

0.27091 
(18.88)** 

0.25373 
(14.76)** 

σ̂  
1.44237 
(25.6)** 

1.1919 
(36.73)** 

1.10238 
(33.34)** 

1.34322 
(41.04)** 

1.90986 
(8.62)** 

1.17319 
(43.16)** 

1.28233 
(27.04)** 

1.06128 
(49.29)** 

1.50574 
(32.71)** 

1.15014 
(38.41)** 

0.99239 
(52.91)** 

1.4101 
(22.38)** 

K 
1.57153 

(11.37)** 
1.68135 

(11.47)** 
1.40588 

(10.74)** 
2.0868 

(13.57)** 
1.96469 

(11.25)** 
1.39883 

(10.76)** 
2.03412 

(10.23)** 
1.67291 

(13.42)** 
0.99411 

(12.11)** 
1.88553 

(10.62)** 
1.55622 
(12.9)** 

1.65203 
(11.1)** 

λ 
0.04057 
(1.83) 

−0.00542 
(−0.23) 

0.02084 
(0.98) 

0.04126 
(1.6) 

0.01396 
(0.58) 

0.02309 
(1.07) 

0.02145 
(0.85) 

−0.00447 
(−0.19) 

0.01642 
(0.73) 

0.05015 
(2.02)* 

0.04414 
(1.93) 

0.00421 
(0.19) 

n 
3.95257 
(6.2)** 

4.67901 
(5.89)** 

5.41577 
(3.91)** 

3.97617 
(12.14)** 

2.51462 
(11.78)** 

7.98421 
(2.66)** 

3.81108 
(6.78)** 

6.2272 
(6.02)** 

12.34229 
(1.58) 

4.88652 
(5.3)** 

8.61146 
(3.75)** 

3.61687 
(6.81)** 

SK 0.38868 −0.03273 0.12786 0.28395 n/a 0.10206 0.17479 −0.01885 0.09581 0.24506 0.1615 0.05299 

KU n/a 15.52784 12.43875 n/a n/a 6.98832 n/a 7.13074 9.1353 10.72751 5.71448 n/a 

LogL −4984.19 −4571.21 −4283.62 −4946.5 −5125.39 −4589.18 −4764.81 −4324.27 −4143.2 −4539.15 −4148.69 −4871.91 

LR-N. 747.67** 510.65** 562.61** 1770.18** 1909.21** 356.45** 435.13** 411.35** 560.08** 309.54** 261.32** 782.88** 

R2 0.05309 0.05044 0.06017 0.05387 0.02391 0.05059 0.06869 0.05425 0 0.06336 0.07138 0.0341 

OBS 3026 3026 3026 3026 3026 3026 3026 3026 2467 3026 3025 3026 

The estimated model is , , ,i t i i m t i tR Rα β ε= + +  where Ri,t and Rm,t are excess returns. The models were estimated with maximum likelihood using the SGT, SGED, 

EGB2, IHS, symmetric T, Laplace, and normal pdf’s for each of the utilities. The estimations above were estimated using the SGT density specification of Equation 
(3). Parentheses include the T-values based on robust standard errors for the estimates. SK and KU are the sample skewness and kurtosis for the model residuals. 
LR-Normal is the log-likelihood ratio for testing the SGT against the normal pdf. It follows the χ2 distribution with 3 d.f. *Statistically significant at the 95% level. 
**Statistically significant at the 99% level. 

 
The results in Table 2 show that there is substantial leptokurtosis for every 

utility CAPM regression residuals with an available estimate of kurtosis. The 
value of the kurtosis parameter for the normal pdf is 3. Kurtosis is not defined 
for the SGT with a value of n < 4, therefore an estimate of kurtosis does not exist 
for every regression. k, a SGT kurtosis parameter, is significant for every estima-
tion and KU is also substantially larger than three for every utility estimation. n 
is also a kurtosis parameter for the SGT and is significant for almost every utility 
CAPM estimation. This provides further evidence that OLS, where k = 2, does 
not provide the best fit of the data. 

The asymmetric model estimation results for the SGT are in Table 3. The 
asymmetry coefficient ( ),i n i iβ β β− += −  which is equal to the difference be-
tween the up and down market betas, is positive and significant at the 99 percent 
level for all but two utilities. Therefore, electric utilities stock returns responses 
have an asymmetry where the down market betas are substantially larger than up 
market betas. This result suggests that the information signals in utility stock 
returns is evidence that regulation is stringent and that electric utility stock re-
turns are responsive to down markets, meaning that they fall quickly in response 
to declines in the stock market total return, and have little response to rises in 
stock market returns. 
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Table 3. Asymmetric response model sgt estimation results. Reprinted with permission from 
Taylor and Francis and R. A. Michelfelder [32], 2015. “Electric Utility Regulation and In-
vestment in Green Energy Resources,” Journal of Sustainable Finance & Investment, 5, 48-64. 

Utility ( ),i n i iβ β β− += −
 

LR-Normal 
Regression Error Term 

Skewness Kurtosis 

AEP 0.63591** 644.99** 0.06714 20.09796 

CIN 0.47909** 345.79** 0.14922 6.78236 

CMS 0.33106** 1383.21**   

 0.42911** 566.34** 0.13054  

DPL 0.41650** 553.43** 0.45028 42.55113 

DTE 0.65440** 390.64** 0.16753 17.70259 

DUK 0.62964** 609.71** 0.08367 10.97236 

ED 0.74933** 216.75** 0.00737 7.20859 

EDE −0.00120 1081.50** 0.26244 11.34728 

EIX 0.64973** 2343.33**   

ETR 0.51522** 631.41** 0.28481  

FPL 0.52046** 631.53** 0.20061  

GMP 0.00113 1901.47** 0.11253 23.29952 

HE 0.31769** 459.53** 0.12574 20.51400 

IDA 0.34791** 933.80** 0.17406  

NI 0.36974** 704.70** 0.26356 22.2486 

NU 0.34370** 670.02** 0.47053  

OGE 0.36356** 763.45** 0.41151 55.11190 

PCG 0.67678** 2558.41**   

PEG 0.61655** 461.34** −0.17928 40.07774 

PGN 0.65285** 18,117.66** 0.37742  

PNM 0.42358** 517.25** 0.44438 105.94479 

PNW 0.48876** 1037.71** 0.31613  

POM 0.38260** 498.89** 0.25469 30.87543 

PPL 0.32531** 736.91** 0.39597 720.96758 

PSD 0.33936** 509.28** −0.04004 20.7707 

SCG 0.28571** 559.55** 0.20312 14.26283 

SO 0.62606** 1817.25** 0.32385  

SRP 0.29644** 1893.73**   

TE 0.34318** 345.94** 0.15439 8.06323 

TXU 0.53978** 439.85** 0.03524  

UIL 0.22461** 407.47** −0.01053 7.24365 

UTL 0.00032 659.85** 0.20288 26.12142 

WEC 0.33071** 300.99** 0.29048 12.58194 

WPS 0.31888** 256.06** 0.19964 5.60454 

WR 0.34982** 787.05** 0.20040  

**Statistically significant at 99.99%. Missing skewness and kurtosis indicate that they are not defined for the SGT 
and do not exist. The results above are estimates of the model (Equation (2)) as shown below using the SGT den-
sity: ( ). , , , , , , , , , ,i t i n i n t r i r t i i n n t i r r t m t i tR D D D D Rα α α β β β µ= + + + + + + . 
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Table 3 also shows the results of the likelihood ratio test comparing the fits of 
the SGT and normal pdf’s of the regression errors. The likelihood ratios are χ2 
distributed with three degrees of freedom. The χ2 tests show that the SGT pro-
vides a better fit for the regressions than OLS. All χ2 statistics are significant at 
the 99.99 percent level. Note once again that the regression residuals’ skewness is 
generally positive and the kurtosis estimate indicates leptokurtic pdf’s for the re-
siduals. 

If there were no asymmetry in utility stock returns responses in down and up 
markets, the coefficient would be insignificant. Table 3 suggests that there is a 
positive asymmetric response in utilities returns in down markets for all but two 
utilities The down market beta is significantly larger than the up market beta. 
These results do not support the notion of lax electric utility regulation. The re-
sults show that the down market betas are larger than the betas for normal mar-
ket conditions and larger than up market betas. The results demonstrate asym-
metry in returns but they do not support the hypothesis that utility returns have 
a strong up market response and weak down market response. Therefore, the 
information signal in stock returns provides evidence of stringent regulation. 

Turning to the impact of deregulation on systematic risk, Table 4 displays the 
SGT estimation results for standard CAPM estimations in the pre- and 
post-deregulation periods as well the slope dummy variable coefficient for dere-
gulation in the asymmetric response model. For the CAPM estimations, all utili-
ties with non-zero betas had a significant drop in beta after deregulation. Addi-
tionally, the robust measure of beta changes, i.e., the slope dummy variable coef-
ficient in the asymmetric model (βi,r) period shows a significant and consistent 
reduction in beta for 29 of 36 utilities and all of these slopes are significant at a 
minimum 95% level of significance. 

The buffering impact is not supported by these results. An inspection of the 
variance of market returns in pre- and post-periods suggest that the volatility of 
the market rose more relative to utility returns to result in declining betas. Since 
1996, the market had been ravaged at that time with problems such as the tech-
nology sector meltdown, a recession in the early 2000’s, and investor confidence 
problems associated with corporate governance. This would result in a lower 
level of systematic risk for the utilities if the correlation coefficient remains the 
same but the ratio of the standard deviations of the utility stock to market re-
turns falls. This can be seen by inspection of the beta: 

, ,
2

i m i m i m i
i

mm

ρ σ σ ρ σ
β

σρ
= =  

where ρi,m= correlation coefficient of the utility stock i and market returns, σi is 
the standard deviation of utility i’s returns and σm is the market returns standard 
deviation. The σm for the S & P 500 daily total return was 0.723 for the 
pre-deregulation period and was 1.268 for the post deregulation period. 

Consistent with Blinder and Norton [5], the concern arises that other va-
riables effecting betas are not controlled. The results in that article show a strong  
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Table 4. Table of Pre- and post-regulation betas and deregulation slope coefficient. Reprinted 
with permission from Taylor and Francis and R. A. Michelfelder [32], 2015. ‘‘Electric Utility 
Regulation and Investment in Green Energy Resources,” Journal of Sustainable Finance & In-
vestment, 5, 48-64. 

Symbol 1990-02 Pre-96 Post-96 β∆  Dereg. Slope ( )r i,β  

AEP 0.3767** 0.5958** 0.2676** −0.3327 −0.3319** 

CIN 0.3620** 0.4803** 0.2859** −0.1936 −0.1957** 

CMS 0.2860** 0.4446** 0.2299** −0.2167 −0.2090** 

D 0.3550** 0.4671** 0.2870** −0.1806 −0.1700** 

DPL 0.3403** 0.4836** 0.2786** −0.2059 −0.1892** 

DTE 0.4145** 0.6817** 0.3024** −0.3795 −0.3594** 

DUK 0.4259** 0.6035** 0.3203** −0.2851 −0.2865** 

ED 0.4161** 0.7617** 0.2752** −0.4833 −0.4735** 

EDE 0.1581** 0.0006 0.2178** 0.2167 0.1405** 

EIX 0.4728** 0.6132** 0.3759** −0.2317 −0.2334** 

ETR 0.3177** 0.5667** 0.1984** −0.3683 −0.3647** 

FPL 0.3333** 0.5296** 0.2283** −0.3013 −0.2905** 

GMP 0.0002 0.0021 0.0002 0.0000 −0.0012 

HE 0.2489** 0.2895** 0.2363** −0.0590 −0.0668 

IDA 0.2845** 0.3205** 0.2787** −0.0388 −0.0319 

NI 0.2755** 0.3505** 0.2486** −0.1030 −0.1039* 

NU 0.2669** 0.4239** 0.1935** −0.2200 −0.1991** 

OGE 0.2699** 0.3577** 0.2376** −0.1206 −0.1254** 

PCG 0.4541** 0.6932** 0.3100** −0.3813 −0.3788** 

PEG 0.3984** 0.6191** 0.2929** −0.3348 −0.3249** 

PGN 0.4020** 0.6364** 0.2990** −0.3414 −0.3346** 

PNM 0.3639** 0.5093** 0.3138** −0.1959 −0.1845** 

PNW 0.2893** 0.5530** 0.1874** −0.3644 −0.3793** 

POM 0.3374** 0.4240** 0.2886** −0.1418 −0.1326** 

PPL 0.3285** 0.3310** 0.3267** −0.0058 0.0085 

PSD 0.2701** 0.3450** 0.2416** −0.1026 −0.0996* 

SCG 0.2712** 0.3196** 0.2518** −0.0710 −0.0725* 

SO 0.3853** 0.6699** 0.2439** −0.4213 −0.3995** 

SRP 0.2788** 0.2685** 0.2875** 0.0149 0.0032 

TE 0.2643** 0.3599** 0.2292** −0.1366 −0.1295** 

TXU 0.3321** 0.4801** 0.2580** −0.2233 −0.2308** 

UIL 0.2545** 0.2244** 0.2784** 0.0534 0.0414 

UTL 0.0000 0.0003 0.0368 0.0029 0.0003 

WEC 0.2900** 0.3969** 0.2519** −0.1460 −0.1355** 

WPS 0.2682** 0.3307** 0.2459** −0.0946 −0.0921** 

WR 0.2519** 0.3273** 0.2249** −0.1027 −0.1209** 

Median 0.3044 0.4373 0.2542 −0.1871  

Mean 0.3070 0.4293 0.2489 −0.1804  

*Statistically significant at 95%; **Statistically significant at 99%. 
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association between falling betas and deregulation, albeit in the opposite direc-
tion proposed by Peltzman [14]. One possibility is that if utilities generally faced 
unfavorable regulation, as the results herein suggest, then less regulation may be 
perceived by investors as less risky than “profit protection” from adversarial reg-
ulatory agencies. 

The Binder and Norton [5] asset beta model would suggest the result of a de-
cline in fixed or variable cost, a rise in expected output, increasing electric prices, 
or buffering by the regulator. All of these effects on beta are effected by regula-
tion. Another alternative could be that electric utilities have been divesting of 
generation assets due to regulatory requirements or the result of a strategic deci-
sion since it was the generation function that was deregulated. Generation is the 
business activity of a vertically integrated utility that creates the most risk for the 
utility. It requires the largest capital investment and faces the greatest chance of 
being excluded from rate base (excluded from earning a return in a regulated 
environment) in determining the revenue requirement due to “used and useful” 
tests by regulators. Generation units are built many years in advance based on 
forecasts of electric power demands. If a unit is deemed as excess capacity, its 
book value may be partially or completely excluded from rate base and no return 
is earned on that asset. Such regulatory problems occurred during periods of 
rising prices due to fuel costs, high inflation, and interest rates (the Joskow [8] 
effect). Also, wholesale generation is the only portion of the electric utility busi-
ness that has been deregulated nationwide. This impact suggests that the regula-
tory buffering effect may be rising since as many utilities divested of their most 
risky assets under a historically regulated or newly deregulated regime. 

A competing theory to the buffering hypothesis, Joskow and MacAvoy [30] 
asserted that regulatory lag increased risk as the regulatory process is slow to re-
spond to changes in conditions that adversely affect utility profits. Therefore, 
deregulation would reduce the risk of the firm no longer subject to the regulato-
ry process. This is a possible explanation for the results in the study. Fraser and 
Kannan [31] did a study on both the buffering and regulatory lag hypotheses 
and found no support for regulatory lags. 

In a presentation of a utility beta study to the US Edison Electric Institute 
(electric utility research and lobbying institute) member companies by the Brat-
tle Group [32] (The Brattle Group is a utility finance and economics consulting 
group based in Cambridge, MA that testifies on the cost of equity capital for 
public utilities.), they found that there has been a trend toward falling betas with 
deregulation with an industry beta falling from 0.45 in February 1989 to 0.2 by 
December 2003. There is more research to be done to affirm that buffering has 
increased with deregulation and the causes of this unexpected result. 

6. Conclusions 

This paper investigated the asymmetric response of utility stock price volatility 
for information signals of investors’ perceptions of utility regulatory policy. Se-
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condly, it estimated the impact of wholesale deregulation on systematic risk, or, 
the buffering effect associated with deregulation. The results indicate that utility 
stock returns do respond asymmetrically to daily up and down markets and that 
the down market response of utility stock returns dominates. This direction of 
the asymmetry suggests that investors’ perceptions of utility regulatory policy 
are stringent. 

Furthermore, the impact of deregulation on utility stock returns was modeled 
with pre- and post-wholesale-deregulation estimates of systematic risk. This de-
regulation required that electric utilities open their bulk power transmission 
lines to alternative purveyors of electric power. Systematic risk decreased sub-
stantially with wholesale competition. The result leads to the notion that the 
buffering impact was swamped any of a number of possibilities effecting the in-
dustry or market. They include the relative risk of the market increased, the cost 
structure of utilities improved, utilities faced positive demand shocks, prices in-
creased, or the utility industry divested generation to a level that reduced their 
investment risk. 

Some policy implications of these results suggest that stringent or adverse 
regulation, which attempts to squeeze as much of the financial resources of the 
regulated utility for lower rates, increases the volatility of utility stocks, invest-
ment risk, and therefore the cost of common equity capital. Therefore, lax regu-
lation or regulation that is favorable to investors by reducing risk may have a 
rate reducing impact as the costs of common equity are less due to lower in-
vestment risk. A future area for research is whether lax regulation with a lower 
cost of common equity capital results in relatively lower rates than in adverse 
regulatory jurisdictions. 
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Appendix 1 

Symbol   Utility Company Name  
AEP   American Electric Power 
CIN    Cinergy 
CMS   CMS Energy 
D    Dominion Resources 
DPL   Dayton Power and Light 
DTE   DTE Energy 
DUK   DUK Duke Power 
ED    Consolidated Edison 
EDE   Empire District 
EIX    Edison International 
ETR   Entergy 
FPL    Florida Power and Light 
GMP   Florida Public Service 
HE    Hawaii Electric 
IDA   Idaho Power 
NI    NiSource 
NU    Northeast Utilities 
OGE   Oklahoma Gas and Electric 
PCG   Pacific Gas and Electric 
PEG   Public Service Electric and Gas 
PGN   Progress Energy 
PNM   Public Service of New Mexico 
PNW   Pinnacle West 
POM   Potomac Electric Power Company 
PPL    Pennsylvania Power and Light 
PSD   Puget Power and Light 
SCG   SCANA Corp 
SO    Southern Companies 
SRP    Sierra Pacific Power 
TE    TECO Energy 
TXU   Texas Utilities 
UIL    United Illuminating 
UTL   Unitil Corp 
WEC   Wisconsin Electric 
WPS   WPS Resources 
WR    Western Resources 

Appendix 2 

The Bawa, Brown, Klein (1981) asymmetric response model can be re-written as 
follows: 

,. ,,i t i t i m ti i m tt i tD D R RR α α εβ β+ + − − + + − − ++= + +  
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where 1tD+ =  for all positive excess returns and zero otherwise, 1tD− =  for all 
negative returns and zero otherwise. Add and subtract both sides of the above 
equation by i tDα+ −  and ,i n tDβ +  and note 

( ) ( ) ( ) ( ), ,. , ,i t t i i t i m t m t i i m ti t i tD D D R RR Rα α εβ β βα+ + − − + − + + − − + −= + + − ++ − + +  

can be re-written as: 

( ). , , , , , ,i t i n i n t i m t i n t m ti i tR D R D Rα α β εβ β− ++ +−= + +  

or, 

( ). , , , , , ,i t i n i n t i i n n t m t i tR D D Rα α β β ε= + + + + . 

In the above equation note that 1t tD D+ −+ =  for all values of rm,t and 

, ,, n tm m tt Dr r− = . Additionally, tD−  is re-written as Dn,t. The final model for esti-
mating asymmetry and the impact of deregulation on returns includes the above 
model augmented with deregulation slope and intercept dummy variables, Dr,t. 
The final model is: 

( ). , , , , , , , , , ,i t i n i n t r i r t i i n n t i r r t m t i tR D D D D Rα α α β β β µ= + + + + + +  

,i nβ  is the asymmetry coefficient and is the difference between the down and 
up market betas ( )i iβ β− +− , and ,i rβ  is the coefficient that represents the 
change in beta due to deregulation and iβ  is the standard CAPM beta. It fol-
lows from the results for the above models that the intercept and slope of the 
model for the pre-deregulation period are respectively iα  and iβ  and for the 
post-deregulation period ,i r iα α+  and ,i r iβ β+ . In this respect, the coefficients 

,r iα  and ,r iβ  show the change in the value of the intercept and slope dummies 
during the post deregulation period. Statistical significance of these coefficients 
will indicate that the parameters are different during the two periods. More spe-
cifically, a positive ,r iβ  implies that the deregulation period is associated with 
an increase in systematic risk. 
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