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Abstract 
The class of generalized α-matrices is presented by Cvetković, L. (2006), and 
proved to be a subclass of H-matrices. In this paper, we present a new class of 
matrices-generalized irreducible α-matrices, and prove that a generalized ir-
reducible α-matrix is an H-matrix. Furthermore, using the generalized arith-
metic-geometric mean inequality, we obtain two new classes of H-matrices. 
As applications of the obtained results, three regions including all the eigen-
values of a matrix are given. 
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1. Introduction 

H-matrices play a very important role in Numerical Analysis, in Optimization 
theory and in other Applied Sciences [1]-[7]. Here we call a matrix  

( ) n n
ijA a C ×= ∈  an H-matrix if its comparison matrix ( ) ( )ijcom A m=  defi-

neded by 

{ }, , , 1, 2, , ,ii ii ij ijm a m a i j N n j i= = − ∈ = ≠  

is an M-matrix, i.e., ( )( ) 1
0com A

−
≥  [4]. 

One interesting problem involving on H-matrices is to identify whether or not 
a matrix is an H-matrix [2] [8]. But it is not easy to do this by its definition. So 
researchers turned to study some subclasses of H-matrices, which are easy to 
identify [1] [2] [3] [4] [5] [8] [9] [10]. One of the classical subclasses is strictly 
diagonally dominant matrices (see Definition 1) which was first presented by 
Lévy only for real matrices [11]. And Minkowski [12] and Desplanques [13] ob-
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tained the general complex result. 
Definition 1. A matrix ( ) n n

ijA a C ×= ∈  is called a strictly diagonally domi-
nant matrix if for any i N∈ , 

( )ii i ij
i j

a r A a
≠

> =∑  

As is well known, a strictly diagonally dominant matrix is nonsingular. 
This can lead to the following famous Geršgorin’s Theorem. 
Theorem 1. [12] Let ( ) n n

ijA a C ×= ∈  and ( )Aσ  be the spectrum of A. Then 

( ) ( ) ( )i
i N

A A Aσ
∈

⊆ Γ = Γ


 

where ( ) ( ){ }:i ii iA z C z a r AΓ = ∈ − ≤ . 

By considering the irreducibility of a matrix, Taussky [14] [15] extended the 
notion of a strictly diagonally dominant matrix, and given the following subclass 
of H-matrices (see Definition 2). A matrix A is irreducible if and only if its di-
rected graph G (A) is strongly connected (for details, see [16] [17]). 

Definition 2. A matrix ( ) n n
ijA a C ×= ∈  is called an irreducibly diagonally 

dominant matrix if A is irreducible, if for any i N∈ , 

( )ii ia r A≥                          (1) 

and if strict inequality holds in (1) for at least one i. 
Theorem 2. ([17], Theorem 1.11) For an irreducibly diagonally dominant 

matrix A, then A is nonsingular. 
Another one subclass of H-matrices is provided by Ostrowski (see [14] or 

Theorem 1.16 of [17]). 
Theorem 3. [18] For any ( ) n n

ijA a C ×= ∈ , and any [ ]0,1α ∈ , assume that 

( )( ) ( )( )1ii i ia r A c A
α α−

>  for each i N∈             (2) 

where ( ) ( )T
i ic A r A= . Then A, which is called α2-matrices, is nonsingular and 

is an H-matrix. 
By the nonsingularity of α2-matrices, one can easily obtain the corresponding 

eigenvalue localization theorem as below. 
Theorem 4. [17] For any ( ) n n

ijA a C ×= ∈ , and any [ ]0,1α ∈ , then 

( ) ( ) ( ){ }1: ii i iA z C z a r A c Aα ασ −⊆ ∈ − ≤  

For irreducible matrices, Hadjidimos in [19] gave extensions of Theorem 4 by 
the nonsingularity of the so-called irreducible α2-matrices (see Theorems 5 and 
6). 

Definition 3. A matrix ( ) n n
ijA a C ×= ∈  is called an irreducible α2-matrix if A 

is irreducible, if for any i N∈ , 

( ) ( )1ii i ia r A c Aα α−≥                      (3) 

hold for some [ ]0,1α ∈ , with at least one inequality being strict. 
Theorem 5. ([19], Theorem 2.1) For an irreducible α2-matrix A, then A is 

nonsingular. 
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Theorem 6. [19] For any ( ) n n
ijA a C ×= ∈ , and any [ ]0,1α ∈ , for which (3) 

holds, then 

( ) ( ) ( )1 2A A Aα ασ ⊆ Γ Γ  

where 

( ) ( ) ( ){ }11 : ii i i
i N

A z C z a r A c Aα αα −

∈

Γ = ∈ − ≤


 

( ) ( ) ( ){ }
1

12

\
: ii i i

i N N
A z C z a r A c Aα αα −

∈

Γ = ∈ − <


 

and 1N  is the set of indices for which strict inequality holds in (3). 
We remark here that although Hadjidimos in [19] pointed out that irreducible 

α2-matrices is nonsingular, he didn’t give the relationship between α2-matrices 
and H-matrices. In fact, the class of α2-matrices is a subclass of H-matrices, 
which is showed by the following theorem. 

Theorem 7. For an irreducible α2-matrix A, then A is an H-matrix. 
Proof. We let ( )com A D B= − , where ( )11 22, , , nnD diag a a a=  , and 

prove that the spectral radius ( )1D Bρ −  of 1D B−  is less than 1. In fact, if there 
exists an eigenvalue λ of 1D B−  such that 1λ ≥ , then  

( )1D I D B D Bλ λ−− = − , is an irreducible α2-matrix, and hence it is nonsingular. 
But this contradicts the fact that λ is an eigenvalue of the matrix 1D B− . There-
fore, ( )1 1D Bρ − < . 

According to ( )( ) ( )1 1 1

0
0

j

j
com A D B D

∞− − −

=

= ≥∑ , the conclusion follows. 

Recently, Cvetković in [4] presented a new subclass of H-matrices, which is 
called generalized α-matrices defined as below, and given a new eigenvalue locali-
zation set by using the nonsingularity of generalized α-matrices (see Theorem 9). 

Theorem 8. ([4], Theorem 16) If for a matrix ( ) n n
ijA a C ×= ∈ , there exists

[ ]0,1α ∈  and k N∈  such that for each subset S N⊆  of cardinality k 

( )( ) ( )( ) ( )
1

, \S S S
ii i i ia r A c A r A S N S

α α−
> + =                (4) 

holds, where ( )
,

S
i ij

j S j i
r A a

∈ ≠

= ∑  and ( ) ( )TS S
i ic A r A= , then the matrix A, which 

is called a generalizaed α-matrices, is nonsingular, moreover it is an H-matrix. 
Theorem 9. ([5], Theorem 17) For any ( ) n n

ijA a C ×= ∈ , and any [ ]0,1α ∈ , 
then 

( ) , ,

/

k S
i

k N S S k i N
A ασ

∈ = ∈

⊆ Γ
  

 

where 

( )( ) ( )( ) ( ){ }1, , :k S S S S
i ii i i iz C z a r A c A r A

α αα −
Γ = ∈ − ≤ +  

We now present a new class of matrices–generalized irreducible α-matrix, 
which is different from the class of generalized α-matrices and will be proved to 
be an H-matrix in Section 2. 
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Definition 4. A matrix ( ) n n
ijA a C ×= ∈  is called a generalized irreducible 

α-matrix if A is irreducible and if there exists [ ]0,1α ∈  and k N∈  such that 
for each subset S N⊆  of cardinality k 

( )( ) ( )( ) ( )1S S S
ii i i ia r A c A r A

α α−≥ +                  (5) 

holds, with at least one inequality in (5) being strict. 
The outline of this paper is given as follows. In Section 2, we prove that a ge-

neralized irreducible α-matrix is nonsingular, and is an H-matrix. By using its 
nonsingularity, we also obtain a new eigenvalue localization set. Combining with 
the generalized arithmetic-geometric mean inequality, we in Section 3 obtain 
two other subclasses of H-matrices, consequently, two corresponding eigenvalue 
localization set. And then the simplifications of the obtained eigenvalue localiza-
tion sets are given in Section 4. 

2. Nonsingularity of Generalized Irreducible α-Matrices 

In this section, we prove that a generalized irreducible α-matrix is nonsingular, 
and obtain a new eigenvalue localization set by using its nonsingularity. 

Theorem 10. If a matrix ( ) n n
ijA a C ×= ∈  is a generalized irreducible 

α-matrix, then it is nonsingular, moreover it is an H-matrix. 
Proof. First, Apparent we remark that the case k = 1 represents the class of ir-

reducibly diagonally dominant matrices, while k = n represents irreducible 
α2-matrices, so in both cases the nonsingularity has already been shown in 
Theorem 2 and Theorem 5, respectively. So, from now on, we suppose that 1 < k 
< n.  

Suppose on the contrary that A is singular. Then there exists a nonzero vector 
( )T

1 2, , , nx x x x=   such that Ax = 0, that is, 

, 1

n

ii i ij j
i j j

a x a x
≠ =

− = ∑ , for each i N∈  

Taking absolute values in the above equation and using the triangle inequality 
gives 

, 1 , ,

n

ii i ij j ij j ij j
i j j i j j S i j j S

a x a x a x a x
≠ = ≠ ∈ ≠ ∈

≤ = +∑ ∑ ∑  for each i N∈  

Note that for the nonzero vector ( )T
1 2, , , nx x x x=   there always exists a 

subset S N⊂  of cardinality k such that i jx x≥  and 0ix >  for each i S∈  
and each j S∈ . Hence, for each i S∈ . 

( )
, 1 ,

n
S

ii i ij j ij j i i
i j j i j j S

a x a x a x r A x
≠ = ≠ ∈

≤ ≤ +∑ ∑              (6) 

equivalently, 

( )( )
, 1

n
S

ii i i ij j
i j j

a r A x a x
≠ =

− ≤ ∑  

Furthermore, by (5) in Definition 4, we have 
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( )( ) ( )( ) ( )( )1

,
,S S S

i i i ii i i ij j
j S j i

r A c A x a r A x a x i S
α α−

∈ ≠

≤ − ≤ ∈∑       (7) 

with at least one strict inequality holds above. Using Höder’s inequality (see 
Lemma 2.1 in [19]) we get 

( )( ) ( )( )
111

1

, ,

S S
i i i ij ij j

j S j i j S j i
r A c A x a a x

α α
α α

α

−
−

−

∈ ≠ ∈ ≠

   
≤    
   
∑ ∑ , i S∈  

that is  

( )( ) ( )( ) ( )( )
111

1

,

S S S
i i i i ij j

j S j i
r A c A x r A a x

α
α α α

α

−
−

−

∈ ≠

 
≤  

 
∑ , i S∈       (8) 

without loss of generality, suppose that for any i S∈ , ( ) 0S
ir A ≠ . In fact, if 

there exists 0i S∈  such that ( )
0

0S
ir A = , i.e., 

0
0i ka =  for each k S∈ , 0k i≠ , 

then from (7),we have 

( )( )0 0 0 0
0S

i i i ia r A x− ≤ . 

Note that 0ix ≠  for each i S∈ . then 

( ) ( )
0 0 0 0

S
i i i ia r A r A≤ = . 

Since A is a generalized irreducible α-matrix, we have 

( )( ) ( )( ) ( ) ( )
0 0 0 0 0 0

1S S S S
i i i i i ia r A c A r A r A

α α−
≥ + =  

hence, 

( )
0 0 0

S
i i ia r A= , 0i S∈                        (9) 

Furthermore, by (6) and (9), we get that 

( )
0 0 0 0 0

S
i i i i j j i

j S
a x a x r A

∈

= =∑  

which implies that there is 0j S∈  such that 
0 0

0i ja ≠  and 
0 0

0i jx x= ≠ . 
Because A is irreducible. Let { }( ) { }1 1 0\S S i j=  , for 1 1 0,i S i i∈ ≠ . Note that 

( )1
0 0 0

0S
i i jr A a≥ >  

then we only consider 1S  instead of S . 

For every i S∈ , ( )
0

0S
ir A > , By canceling ( )( )S

ir A
α

 on both sides of (8)and 

raising both sides of (8) to the power 1
1 α−

, we have 

( )( )
11

11

,

S
i i ij j

i S j S j i
c A x a x i Sαα −−

∈ ∈ ≠

 
≤ ∈ 
 

∑ ∑  

where strict inequality holds above for at least one i S∈ . Summing on all i in S 
in the above inequalities gives 

( )( )
11

11

,

S
i i ij j

i S i S j S j i
c A x a x αα −−

∈ ∈ ∈ ≠

 
<  

 
∑ ∑ ∑  

equivalently 
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( )( ) ( )( )
1 11

1 11

,

S S
i i ij j i j

i S i S j S j i j S
c A x a x c A xα αα − −−

∈ ∈ ∈ ≠ ∈

 
< = 

 
∑ ∑ ∑ ∑ . 

This is a contradiction. Therefore, A is nonsingular. 
Moreover, similar to the proof of Theorem 7, we can easily prove that A is an 

H-matrix.  
From Theorem 10, we easily get the corresponding eigenvalue localization set 

as below. 
Corollary 1. For any ( ) n n

ijA a C ×= ∈ , and any [ ]0,1α ∈ , then 

( ) 1 2

1 2

, , , ,

/

k S k S
i i

k N S S k i S i S
A α ασ

∈ = ∈ ∈

    
⊆ Γ Γ            



   

 

where 

( )( ) ( )( ) ( ){ }1 1
1, , :k S SS S

i ii i i iz C z a r A c A r A
ααα −

Γ = ∈ − ≤ + ; 

( )( ) ( )( ) ( ){ }2 2
1, , :k S SS S

i ii i i iz C z a r A c A r A
ααα −

Γ = ∈ − < + . 

and 2 1\S S S=  with 1S  is the set of indices for which strict inequality holds in 
(5). 

3. Applications 

Combining the nonsingularity of generalized (irreducible) α-matrices with the 
generalized arithmetic-geometric mean inequality: 

( ) 11a b a bα αα α −+ − ≥  

where , 0a b ≥  and [ ]0,1α ∈ . 
We obtain two other subclasses of H-matrices, consequently, two new eigen-

value localization set. 
Theorem 11. If for a matrix ( ) n n

ijA a C ×= ∈ , there exists [ ]0,1α ∈  and 
k N∈  such that for each subset S N⊆  of cardinality k 

( ) ( ) ( ) ( )1S S S
ii i i ia r A c A r Aα α> + − +              (10) 

holds, then A, which is called a generalized sum α-matrix, is nonsingular, more-
over it is an H-matrix. 

Proof. By the generalized arithmetic-geometric mean inequality, we have 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )
1

1S S S S S S
ii i i i i i ia r A c A r A r A c A r A

α α
α α

−
> + − + ≥ +  

This implies that A is generalized α-matrix. Hence A is nonsingular. Fur-
thermore, similar to the proof of Theorem 7, we can obtain easily that A is an 
H-matrix.  

From Theorem 11, we also get a corresponding eigenvalue localization set. 
Corollary 2. For any ( ) n n

ijA a C ×= ∈ , and any [ ]0,1α ∈ , then 

( ) , ,

/

k S
i

k N S S k i S
A ασ γ

∈ = ∈

⊆
  
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where 

( ) ( ) ( ) ( ){ }, , : 1k S S S S
i ii i i iz C z a r A c A r Aαγ α α= ∈ − ≤ + − +  

According to Theorem 10 and the generalized arithmetic-geometric mean in-
equality, we can obtain easily the following subclass of H-matrices and the cor-
responding eigenvalue localization set. 

Theorem 12. If for an irreducible matrix ( ) n n
ijA a C ×= ∈ , there exists 

[ ]0,1α ∈  and k N∈  such that for each subset S N⊂  of cardinality k. 

( ) ( ) ( ) ( )1S S S
ii i i ia r A c A r Aα α≥ + − +                 (11) 

holds, with at least one inequality in (11) being strict, then A is nonsingular, 
moreover it is an H-matrix. 

Corollary 3. For any ( ) n n
ijA a C ×= ∈ , and any [ ]0,1α ∈ , then 

( ) 1 2

1 2

, , , ,

/

k S k S
i i

k N S S k i S i S
A α ασ γ γ

∈ = ∈ ∈

    
⊆             



   

 

where 

( ) ( ) ( ) ( ){ }1, , : 1k S S S S
i ii i i iz C z a r A c A r Aαγ α α= ∈ − ≤ + − +  

( ) ( ) ( ) ( ){ }2, , : 1k S S S S
i ii i i iz C z a r A c A r Aαγ α α= ∈ − < + − +  

and 2 1\S S S=  with 1S  is the set of indices for which strict inequality holds in 
(11). 

4. Simplifications of Eigenvalue Localization Sets 

The eigenvalue localization sets in Theorem 9 and Corollary 2 are not of much 
practical use because of the restriction of α. To solve this problem, we in this 
section use the method provided in [5] [6], and obtain more convenient forms of 
the two eigenvalue localization sets. First, the sufficient and necessary conditions 
of generalized α-matrices and generalized sum α-matrices are given. 

For a matrix ( ) n n
ijA a C ×= ∈  with 2n ≥ , and for S N⊆  of cardinality 

k N∈ , we partition the set of indices S into three sets: 

( ) ( ){ }: S S
i iR i S r A c A= ∈ >  

( ) ( ){ }: S S
i iC i S r A c A= ∈ <  

( ) ( ){ }: S S
i iL i S r A c A= ∈ =  

where ( ) ( ) 0S S
i ir A c A= = . 

Consequently, 0R C= =  if k = 1. Obviously, S R C L=   . 
Lemma 13. A matrix ( ) n n

ijA a C ×= ∈  with 2n ≥ , is a generalized α-matrix 
if and only if there exists k N∈ , such that for each subset S N⊆  of cardinali-
ty k the following two conditions hold: 

1) ( ) ( ){ } ( )min , ,S S S
ii i i ia r A c A r A i S> + ∈ ; 
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2) ( )
( )

( )
( ) ( )

( )

( )
( )

log logS S
i j
S S
i j

SS
jii i

S Sr A r A
i ii ic A c A

c Aa r A
c A a r A
−

>
−

, 

for each i R∈ , for which ( ) 0S
ic A ≠ , and for each j C∈ , for which 

( ) 0S
jr A ≠ . 
Proof. The case k = 1: The class of generalized α-matrices reduces to strictly 

diagonally dominant matrices. And note that the condition (1) changes to 

( ) ( ) , .S
ii i ia r A r A i S> = ∈  

This also holds for each S N⊆  of cardinality k = 1, that is, for any i N∈ , 
( )ii ia r A> , which implies that A is strictly diagonally dominant. 

The case k = n: The class of generalized α-matrices reduces to α2-matrices. On 
the other hand, the condition (1) changes to 

( ) ( ){ } ( ) ( ){ }min , min , .S S
ii i i i ia r A c A r A c A> =  

And the condition (2) changes to 

( )
( )

( ) ( )
( )

( )
log logS S

i j
S S
i j

jii
r A c A

i iic A r A

c Aa
c A a

> , .i S∈  

Hence by Theorem 5 in [5], A in this case is an α2-matrix. 
The case 1 < k < n: Similar to the proof of Theorem 5 in [5], the conclusion in 

this case follows easily. 
Similar to the proof of Lemma 13, for generalized sum α-matrices we also ob-

tain easily its sufficient and necessary condition by Theorem 4 in [5]. 
Lemma 14. A matrix ( ) n n

ijA a C ×= ∈  with 2n ≥ , is a generalized sum 
α-matrix if and only if there exists k N∈  such that for each subset S N⊆  of 
cardinality k the following two conditions hold: 

1) ( ) ( ){ } ( )min , ,S S S
ii i i ia r A c A r A i S> + ∈ ; 

2) ( ) ( )
( ) ( )

( ) ( )( )
( ) ( )

S SS S
i ii iii i i

S S S S
i i i i

c A a r Aa r A c A
r A c A c A r A

− −− −
>

− −
 

for each i R∈  and each j C∈ . 
We now establish two eigenvalue localization sets by Lemmas 13 and 14, 

which are the equivalent forms of the sets in Theorem 9 and Corollary 2 respec-
tively. 

Corollary 4. For any ( ) n n
ijA a C ×= ∈ , then 

( ) ( ) ( ), ,ˆk S k SA A Aσ ⊆ Γ Γ , 

where 

( ) ( ) ( )( ) ( ){ },

/
: min ,k S S S S

ii i i i
k N S S k i S

A z C z a r A c A r A
∈ = ∈

Γ = ∈ − ≤ +
  

; 

( ) ( )
( )
( )

, ,

\ , 0
, 0

ˆ ˆ
S
i
S

i

k S k S
ij

k N S S k i R S c A
j C S r A

A A
∈ = ∈ ⊆ ≠

∈ ⊆ ≠

Γ = Γ
  

; 

and 
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( ) ( )
( )

( )
( )

( )
( )

( )
( )

log

,ˆ : 1

S
i

S Sc Ai i
Sr Ai

r A
SS c A

jj jii ik S
ij S S

i j

z a r Az a r A
A z C

c A c A

 
  − −− −  Γ = ∈ ≤    

  

. 

Proof. For any ( )Aλ σ∈ , I Aλ −  is singular. Note that the moduli of every 
off-diagonal entry of I Aλ −  is the same as A. Hence, for each S N⊆ , the sets 
R N⊆  and C N⊆  for the matrix I Aλ −  remain the same. If  

( ) ( ), ,ˆk S k SA Aλ ≠ Γ Γ , then I Aλ −  satisfies the conditions (1) and (2) of 
Lemma 13, hence I Aλ −  is a generalized α-matrix, which implies that I Aλ −  
is nonsingular. This is a contradiction. Hence, ( ) ( ), ,ˆk S k SA Aλ = Γ Γ . 

Combining with Lemma 14 and similar to the proof of Corollary 4, we have 
the following result. 

Corollary 5. For any ( ) n n
ijA a C ×= ∈ , then 

( ) ( ) ( ), ,ˆk S k SA A Aσ γ⊆ Γ  , 

where ( ),k S AΓ  is defined as Corollary 4, 

( ) ( ), ,

/

ˆ ˆk S k S
ij

k N S S k i R S
j C S

A Aγ γ
∈ = ∈ ⊆

∈ ⊆

=
  

. 

and 

( ) ( )( ) ( ) ( )( ){
( )( ) ( ) ( )( )

( ) ( ) ( ) ( )}

,ˆ :k S S S S
ii i j j

S S S
jj j i i

S S S S
j i i j

A z C z a r A c A r A

z a r A r A c A

c A r A c A r A

γ = ∈ − − −

+ − − −

≤ −

 

Remark 1. Obviously, the forms of the sets in Corollaries 4 and 5, which are 
without the restriction of α, are easier to be determined than those in Theorem 9 
and Corollary 2. In addition, similar to the proof of Lemma 3.5 in [6], we can 
prove that the set in Corollary 4 is tighter than that in Corollary 5, i.e., 

( ) ( )( ) ( ) ( )( ), , , ,ˆ ˆk S k S k S k SA A A AγΓ Γ ⊆ Γ 
 

However, ( ) ( ), ,ˆk S k SA AΓ Γ  is determined more difficultly than 

( ) ( ), ,ˆk S k SA AγΓ  . because it is difficult to compute exactly ( )
( )

( )
( )

log S
j
S
j

S
i
Sc A
i

r A

r A
c A

 in 

some cases. 

5. Conclusion 

In this paper, we present a new class of matrices-generalized irreducible 
α-matrices, and prove that a generalized irreducible α-matrix is an H-matrix. 
Furthermore, using the generalized arithmetic-geometric mean inequality, we 
obtain two new classes of H-matrices. As applications of the obtained results, 
three regions including all the eigenvalues of a matrix are given. 
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