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Abstract

The class of generalized a-matrices is presented by Cvetkovi¢, L. (2006), and
proved to be a subclass of A-matrices. In this paper, we present a new class of
matrices-generalized irreducible a-matrices, and prove that a generalized ir-
reducible a-matrix is an A-matrix. Furthermore, using the generalized arith-
metic-geometric mean inequality, we obtain two new classes of A-matrices.
As applications of the obtained results, three regions including all the eigen-
values of a matrix are given.
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1. Introduction

H-matrices play a very important role in Numerical Analysis, in Optimization
theory and in other Applied Sciences [1]-[7]. Here we call a matrix

A= (%) € C™ an H-matrix if its comparison matrix com(A4)= (m,j) defi-
neded by

m;, =|aii|,m,j =—|aij|,i,je N={1,2,--,n},j#i

is an M-matrix, Ze., (com(A))_l >0 [4].

One interesting problem involving on A-matrices is to identify whether or not
a matrix is an A-matrix [2] [8]. But it is not easy to do this by its definition. So
researchers turned to study some subclasses of H-matrices, which are easy to
identify [1] [2] [3] [4] [5] [8] [9] [10]. One of the classical subclasses is strictly
diagonally dominant matrices (see Definition 1) which was first presented by

Lévy only for real matrices [11]. And Minkowski [12] and Desplanques [13] ob-

DOI: 10.4236/alamt.2018.83010 Aug. 9, 2018

111 Advances in Linear Algebra & Matrix Theory


http://www.scirp.org/journal/alamt
https://doi.org/10.4236/alamt.2018.83010
http://www.scirp.org
https://doi.org/10.4236/alamt.2018.83010
http://creativecommons.org/licenses/by/4.0/

Y. Sun et al.

tained the general complex result.

Definition 1. A matrix 4 =(ai/.) € C™ is called a strictly diagonally domi-

nant matrix if forany ie N,
|a,|>7(4)= Z|aij|
i#j

As is well known, a strictly diagonally dominant matrix is nonsingular.

This can lead to the following famous Ger$gorin’s Theorem.

Theorem 1. [12] Let A= (al./.) eC™ and o(A) be the spectrum of A. Then

o(4)=r(4)=Ur, (4)
ieN
where T, (A) = {z € C:|z—a”.| <r (A)} .

By considering the irreducibility of a matrix, Taussky [14] [15] extended the
notion of a strictly diagonally dominant matrix, and given the following subclass
of H-matrices (see Definition 2). A matrix A is irreducible if and only if its di-
rected graph G (A) is strongly connected (for details, see [16] [17]).

Definition 2. A matrix 4= (a,,j.) €C™ is called an irreducibly diagonally

dominant matrix if A is irreducible, if for any ie N,
|an‘|2rf(’4) (1)

and if strict inequality holds in (1) for at least one 4

Theorem 2. ([17], Theorem 1.11) For an irreducibly diagonally dominant
matrix A, then A is nonsingular.

Another one subclass of H-matrices is provided by Ostrowski (see [14] or
Theorem 1.16 of [17]).

Theorem 3. [18] Forany A= (ay.) eC™ ,andany «€[0,1], assume that

|al.l.| > (rl. (A))a (Ci (A))HZ for each ie N (2)

where ¢, (4)=r, (AT). Then A, which is called a,-matrices, is nonsingular and
is an A-matrix.

By the nonsingularity of a,-matrices, one can easily obtain the corresponding
eigenvalue localization theorem as below.

Theorem 4. [17] Forany A= (a,.j) eC™ ,andany «a€[0,1], then

O-(A)g{zeC:|Z—a,-,-|§”i(A)”C,~(A)La}

For irreducible matrices, Hadjidimos in [19] gave extensions of Theorem 4 by
the nonsingularity of the so-called irreducible a,-matrices (see Theorems 5 and
6).

Definition 3. A matrix 4= (a,.j) € C™ is called an irreducible a,-matrix if A

isirreducible, if for any ie N,
i =7, (4)” ¢ (4)™" 3)
hold for some « €[0,1], with at least one inequality being strict.

Theorem 5. ([19], Theorem 2.1) For an irreducible a,-matrix A, then A is

nonsingular.
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Theorem 6. [19] For any 4 =(al.j)e C™, and any «a€[0,1], for which (3)
holds, then

o(4) T (4)Ure(4)
where

z—a;<r, (A)a G (A)lia

' (4)=U{zec:

ieN

r(4)= U {zec:

ieN\N;

!

z—a;<r, (A)a ¢ (A)l_a

!

and N, is the set of indices for which strict inequality holds in (3).

We remark here that although Hadjidimos in [19] pointed out that irreducible
a,-matrices is nonsingular, he didn’t give the relationship between a,-matrices
and H-matrices. In fact, the class of a,-matrices is a subclass of H-matrices,
which is showed by the following theorem.

Theorem 7. For an irreducible a,-matrix 4, then A4 is an A-matrix.

Proof. We let com(4)=D—-B , where D =diag(|a“|,|a22|,~-, ) ,» and
prove that the spectral radius ,o(D_lB) of D'B isless than 1. In fact, if there
exists an eigenvalue A of D™'B such that |ﬂ| =1, then

arm

D(/II - D’IB) =AD - B, is an irreducible a,-matrix, and hence it is nonsingular.
But this contradicts the fact that A is an eigenvalue of the matrix D'B. There-
fore, p(Dle) <l.

According to (com(A))7l = Z(D’IB)j D™ >0, the conclusion follows.

J=0

Recently, Cvetkovi¢ in [4] presented a new subclass of H-matrices, which is
called generalized a-matrices defined as below, and given a new eigenvalue locali-
zation set by using the nonsingularity of generalized a-matrices (see Theorem 9).

Theorem 8. ([4], Theorem 16) If for a matrix 4 =(al.,.) e C™ | there exists
ae [0,1] and ke N such that for each subset S N of cardinality &

la,| > (5 (A))" (5 (4)) 455 (4).5 =N \S @)

holds, where °(A4)= Y |a,.j| and ¢ (4)=r’ (AT ) , then the matrix A, which
Jjes, j#i
is called a generalizaed a-matrices, is nonsingular, moreover it is an H-matrix.
Theorem 9. ([5], Theorem 17) For any Az(a,.j)eC”X”, and any «€[0,1],
then

o(4)e N YU

keN/S |S|=k ieN
where

ks = {Z eC: |z —ail.| < (rl.s (A))a (cls (A))lia + rig (A)}

We now present a new class of matrices-generalized irreducible a-matrix,
which is different from the class of generalized a-matrices and will be proved to

be an A-matrix in Section 2.
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Definition 4. A matrix Az(a,.j)eC”x" is called a generalized irreducible
a-matrix if A is irreducible and if there exists « € [0,1] and ke N such that
for each subset S N of cardinality &

a2 (17 (4)) " (e (4)) 41 (4) (5)

holds, with at least one inequality in (5) being strict.

The outline of this paper is given as follows. In Section 2, we prove that a ge-
neralized irreducible a-matrix is nonsingular, and is an A-matrix. By using its
nonsingularity, we also obtain a new eigenvalue localization set. Combining with
the generalized arithmetic-geometric mean inequality, we in Section 3 obtain
two other subclasses of H-matrices, consequently, two corresponding eigenvalue
localization set. And then the simplifications of the obtained eigenvalue localiza-

tion sets are given in Section 4.

2. Nonsingularity of Generalized Irreducible a-Matrices

In this section, we prove that a generalized irreducible a-matrix is nonsingular,
and obtain a new eigenvalue localization set by using its nonsingularity.

Theorem 10. If a matrix A= (a,.j) eC™ is a generalized irreducible
a-matrix, then it is nonsingular, moreover it is an A-matrix.

Proof. First, Apparent we remark that the case & = 1 represents the class of ir-
reducibly diagonally dominant matrices, while & = n represents irreducible
a,-matrices, so in both cases the nonsingularity has already been shown in
Theorem 2 and Theorem 5, respectively. So, from now on, we suppose that 1 < &
<1

Suppose on the contrary that A4 is singular. Then there exists a nonzero vector
x=(x,%,x,) such that Ax=0, that is,

—a,x; = Zn: a;x; , foreach ie N
i#j,j=1
Taking absolute values in the above equation and using the triangle inequality

gives
n
|al.l.||x,.|s Z |aij||xj|: Z |a,.j.||xj|+ zi|aif||xj| foreach ie N
i#j,j=1 i#j,jeS i#j,jeS

Note that for the nonzero vector x=(x,,x,,,x, )T there always exists a
subset S < N of cardinality &k such that |x,.| Z|xj| and |xl.| >0 foreach ieS

and each jeS . Hence, foreach ieS.
n —
la,[[x]< > |a,.j||xj| < X |a,.j||xj|+rl.s (4)]x] (6)

i, j=1 i%j,jeS

equivalently,
— n
<|“w|_”is (A))|x,.|£ > |aij||xj|
i#j,j=1

Furthermore, by (5) in Definition 4, we have
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(7 () (e ()l = (lal =" (D)l < 2 Jaflslies @)

with at least one strict inequality holds above. Using Hoder’s inequality (see

1 l-a
1‘1] , 1eS§

1 1-a
la) ,ieS (8)

Lemma 2.1 in [19]) we get

(5" () (e (A))Hl HE [jﬁ;jj“vga (/}MM [

that is

() () o2 | 2

Jjes,j#i

without loss of generality, suppose that for any ieS, r°(4)#0. In fact, if
there exists i, €S such that 7’ (4)=0, ie, a,, =0 foreach keS, k=i,

i
(Ja
Note that |xi| #0 foreach ieS.then
S(4) =
<7 (A) =7, (A) .
Since A is a generalized irreducible a-matrix, we have

2 (13 ()" (e (4)) "+ (4) =15 (4)

then from (7),we have

<0.

~ry ()]

i

oo

aioio

a

iolo
hence,

:rif(A), iyeS 9)

ainin

Furthermore, by (6) and (9), we get that

Jjes

which implies that thereis j, € S suchthat a . #0 and |x. |=
0Jo ]

_.5
aioio X aioj x‘/'| =T (A)

x,|#0.
Because A is irreducible. Let S, = (S \ {il}) U{Ji}, for i €S,i #i,. Note that
i (4)= |aiﬂjﬂ| >0

o

then we only consider S, instead of S.

For every ieS, 7 (A4)>0, By canceling (;;.S (A))a on both sides of (8)and

, we have

Z(cls (A))|xl|i g[ > |aij||xj 1-lajieS
ieS JES, j#i

where strict inequality holds above for at least one i€ .S.Summing on all 7in §

raising both sides of (8) to the power "
-a

in the above inequalities gives

>(ef ()l <X

ieS ieS

( )3 |"v||xf|l_]a]

JjeSs. j#i

equivalently
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Z(cf(A))|xi|'—‘a<z[ 5 Jalx,

ieS ieS \_jeS,j#i

Sl

This is a contradiction. Therefore, A is nonsingular.

Moreover, similar to the proof of Theorem 7, we can easily prove that 4 is an
H-matrix.

From Theorem 10, we easily get the corresponding eigenvalue localization set
as below.

Corollary 1. Forany 4= (a,.j) eC™,andany «a€[0,1], then

| I {z eCilz—a,|< (rl.s (A))a (cf‘ (A))l_a +r’ (A)} ;

where

ek = {z eC: |z —al.l.| < (rl.s (A))a (cis2 (A))Hz + rig (A)}

and S, =S8\S, with §, is the set of indices for which strict inequality holds in
(5).

3. Applications

Combining the nonsingularity of generalized (irreducible) a-matrices with the

generalized arithmetic-geometric mean inequality:
aa+(l-a)b=a"b"™

where a,b>0 and a€[0,1].

We obtain two other subclasses of A-matrices, consequently, two new eigen-
value localization set.

Theorem 11. If for a matrix 4= (a,.j) € C™, there exists a € [0,1] and

ke N such that for each subset S < N of cardinality &

|a,| > ar’ (4)+(1-a)c’ (A)+1;§(A) (10)

holds, then A, which is called a generalized sum g-matrix, is nonsingular, more-
over it is an A-matrix.

Proof. By the generalized arithmetic-geometric mean inequality, we have

|al.l.| >ariS (A)-i—(l—a)cis (A)-i—rig(A)Z(r.S(A))a (ciS(A))HZ +r.§(A)

i

This implies that A is generalized a-matrix. Hence A is nonsingular. Fur-
thermore, similar to the proof of Theorem 7, we can obtain easily that A is an
H-matrix.

From Theorem 11, we also get a corresponding eigenvalue localization set.

Corollary 2. Forany 4= (a..) eC™,andany a€[0,1], then

q

o(4)e N YUr™

keN/S |S|=k ieS
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where
7;2’k’s :{Z € C5|Z—aii| SOnﬂz's (A)+(1_a)cis (A)+F’S(A)}

According to Theorem 10 and the generalized arithmetic-geometric mean in-
equality, we can obtain easily the following subclass of A-matrices and the cor-
responding eigenvalue localization set.

Theorem 12. If for an irreducible matrix 4= (a,.j) e C™ , there exists
a€[0,1] and ke N such that for each subset S <N of cardinality &

|al.l.|Zar[S(A)+(1—a)ciS(A)+rl.§(A) (11)

holds, with at least one inequality in (11) being strict, then A4 is nonsingular,
moreover it is an A-matrix.

Corollary 3. Forany 4= (aly.) eC™,andany a€[0,1], then

o(4)c U[(ny’k’slju[uy,.wz]j

keN/S |S|=k \ \ ieS) ieS,

where

yhs ={ze C:lz-a;|<ar’ (A)+(1—a)cl.s(A)+rI.S(A)}

yis ={zeCilz—a|<ar’ (4)+(1-a)cf (4)+ 1 (4)]

i i

and S, =S5\S, with §, is the set of indices for which strict inequality holds in
(11).

4. Simplifications of Eigenvalue Localization Sets

The eigenvalue localization sets in Theorem 9 and Corollary 2 are not of much
practical use because of the restriction of a. To solve this problem, we in this
section use the method provided in [5] [6], and obtain more convenient forms of
the two eigenvalue localization sets. First, the sufficient and necessary conditions
of generalized a-matrices and generalized sum a-matrices are given.

For a matrix 4 =(ay.)eC"X” with n>2, and for SC N of cardinality

k € N, we partition the set of indices S into three sets:
R={ieS:r’(4)>c’ (4)}
C={ieS:(4)<c’(4)}

L={ieS:rl.S(A)=c.S(A)}

1

where 7 (4)=c’(4)=0.

Consequently, R=C=0 if k= 1. Obviously, S=RUCUL.

Lemma 13. A matrix 4= (ay.) e C™ with n>2, is a generalized a-matrix
if and only if there exists k € N, such that for each subset S < N of cardinali-
ty kthe following two conditions hold:

1) |a,|> min{rl.s (4).c (A)} +r (4),ieS;

i
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2 1 |an‘ _r[S (A) >1 CJS' (A)
Og S Og S >
) S G RP
s () e ()
for each ieR, for which ¢ (4)#0, and for each jeC , for which

rjs (A) #0.

Proof. The case k = 1: The class of generalized a-matrices reduces to strictly
diagonally dominant matrices. And note that the condition (1) changes to

Ja,| > 1° (4)=r,(4).ies.

This also holds for each S c N of cardinality & = 1, that is, for any ie N,
|ail.| >r,(A), which implies that A is strictly diagonally dominant.

The case k= n: The class of generalized a-matrices reduces to a,-matrices. On
the other hand, the condition (1) changes to

|al.l.| > min{ris (A),cis (A)} = min{rl, (A),cl. (A)}

And the condition (2) changes to

lo M >lo < (A) ieS
g"z(’“ ¢(4) gcf«(A) jai] .
S(4) (4

Hence by Theorem 5 in [5], A in this case is an a,-matrix.

The case 1 < k< m: Similar to the proof of Theorem 5 in [5], the conclusion in
this case follows easily.

Similar to the proof of Lemma 13, for generalized sum a-matrices we also ob-
tain easily its sufficient and necessary condition by Theorem 4 in [5].

Lemma 14. A matrix 4= (al.j) eC™ with n>2, is a generalized sum
a-matrix if and only if there exists k€ N such that for each subset SN of

cardinality & the following two conditions hold:
1) |al.l,| > min{rf (4),c! (A)} +1°(4),ieS;
a7 ()=e (4) _ & (A)=(|al =" (4))
r[S (A)—C[S(A) C[S (A)_riS(A)

foreach ie R andeach jeC.

2)

We now establish two eigenvalue localization sets by Lemmas 13 and 14,

which are the equivalent forms of the sets in Theorem 9 and Corollary 2 respec-

tively.
Corollary 4. For any A= (a,.j) e C™, then
o (A4) T (4)UTH (4),
where
T (4)= N YUz eClz=a,| <min(r* (4).¢5 (4))+7° (1)}
keN/S|S|=k ieS
=Ny U )
keN\S |S|=k ieRcS.c7 (A4)20
jeCeS 5 (4)0
and
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e-af - () e |- ()] "
C-S(A) s (A) T

i J

ff;’s(A)z ze(C:

Proof For any Aeo(A4), AI-A is singular. Note that the moduli of every
off-diagonal entry of A/ — A4 is the same as A. Hence, for each S c N, the sets
Rc N and Cc N for the matrix A/ — A remain the same. If
A#THS (A)Ufk’S(A) , then AI— A satisfies the conditions (1) and (2) of
Lemma 13, hence A/—A4 is a generalized a-matrix, which implies that A/ -4
is nonsingular. This is a contradiction. Hence, 1=I"° (4) yres (4).

Combining with Lemma 14 and similar to the proof of Corollary 4, we have
the following result.

Corollary 5. For any A= (a,.j) e C™, then

o (4) =T (U7 (4),
where T'** (A) is defined as Corollary 4,

72(4)= 1 U U 77 (4).
keN/S |S|=k zjeERng%

and
749 () ={z Cx(jz=a, =1 (4)) (] (1)1 (4)
#(lz=ay = ()(n (4) - ()
<l (A)r ()= (4)r7 ()]
Remark 1. Obviously, the forms of the sets in Corollaries 4 and 5, which are
without the restriction of @, are easier to be determined than those in Theorem 9

and Corollary 2. In addition, similar to the proof of Lemma 3.5 in [6], we can

prove that the set in Corollary 4 is tighter than that in Corollary 5, ie.,
(T (U () < (T (4) U7 (4)

However, T** (A) ures (A) is determined more difficultly than

in

N
TS ~k,S e . ’; (A)
' (4)U7""(4). because it is difficult to compute exactly logcf(A) ()

r]‘S( A !

=

some cases.

5. Conclusion

In this paper, we present a new class of matrices-generalized irreducible
a-matrices, and prove that a generalized irreducible g-matrix is an A-matrix.
Furthermore, using the generalized arithmetic-geometric mean inequality, we
obtain two new classes of H-matrices. As applications of the obtained results,

three regions including all the eigenvalues of a matrix are given.

Acknowledgements

This work is supported by Applied Basic Research Project of Yunnan Province

DOI: 10.4236/alamt.2018.83010

119 Advances in Linear Algebra & Matrix Theory


https://doi.org/10.4236/alamt.2018.83010

Y. Sun et al.

(No. 2018FB001), CAS “Light of West China” Program and Program for Excel-

lent Young Talents, Yunnan University.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-

per.

References

(1]

(2]

(7]

(8]

(9]

[10]

(13]
(14]

[15]

(16]

Bru, R., Cvetkovié, L., Kosti¢, V. and Pedroche, F. (2010) Characterization of
al-and a2-Matrices. Central European Journal of Mathematics, 8, 32-40.

Bru, R, Giménez, L. and Hadjidimos, A. (2012) Is A€ C"™ a General H-Matrix?
Linear Algebra and its Applications, 436, 364-380.
https://doi.org/10.1016/j.1aa.2011.03.009

Cvetkovi¢, L., Kosti¢, V. and Varga, R.S. (2004) A New Gersgorin-Type Eigenvalue
Inclusion Set. Electronic Transactions on Numerical Analysis, 18, 73-80.

Cvetkovi¢, L. (2006) H-Matrix Theory vs. Eigenvalue Localization. Numerical Algo-
rithms, 42, 229-245. https://doi.org/10.1007/s11075-006-9029-3

Cvetkovi¢, L., Kosti¢, V., Bru, R. and Pedroche, F. (2011) A Simple Generalization
of Gers$gorin’s Theorem. Advances in Computational Mathematics, 35, 271-280.
https://doi.org/10.1007/s10444-009-9143-6

Li, C.Q. and Li, Y.T. (2011) Generalizations of Brauer’s Eigenvalue Localization
Theorem. Electronic Journal of Linear Algebra, 22, 1168-1178.
https://doi.org/10.13001/1081-3810.1500

Varga, R.S. and Krautstengl, A. (1999) On Ger$gorin-Type Problems and Ovals of
Cassini. Electronic Transactions on Numerical Analysis, 8, 15-20.

Huang, T.Z. (1995) A Note on Generalized Diagonally Dominant Matrices. Linear
Algebra and its Applications, 225, 237-242.
https://doi.org/10.1016/0024-3795(93)00368-A

Brauer, A. (1947) Limits for the Characteristic Roots of a Matrix II. Duke Mathe-
matical Journal, 14, 21-26. https://doi.org/10.1215/S0012-7094-47-01403-8

Minkowski, H. (1900) Zur Theorieder Einheitenin den algebraischen Zahlkorpern.
Nachrichten von der Gesellschaft der Wissenschaften zu Géttingen, Mathema-
tisch- Physikalische Klasse, 1900, 90-93.

Lévy, L. (1881) Sur le possibilité du léquibreélectrique. Comptes Rendus Mathema-
tique Academie des Sciences, Paris, 93, 706-708.

Ger3gorin, S. (1931) Uber die Abgrenzung der Eigenwerte einer Matrix. Izvestiya
RAN. Seriya Matematicheskaya, 7, 749-754.

Desplanques, J. (1887) Théoeém dalgébre. . de Math. Spec, 9, 12-13.

Taussky, O. (1948) Bounds for Characteristic Roots of Matrices. Duke Mathemati-
cal Journal, 15, 1043-1044. https://doi.org/10.1215/S0012-7094-48-01593-2

Taussky, O. (1949) A Recurring Theorem on Determinants. 7he American Mathe-
matical Monthly, 56, 672-676. https://doi.org/10.2307/2305561

Varga, R.S. (2001) Ger$gorin-Type Eigenvalue Inclusion Theorems and Their
Sharpness. Electronic Transactions on Numerical Analysis, 12, 113-133.

Varga, R.S. (2004) Gers$gorin and His Circles. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-3-642-17798-9

DOI: 10.4236/alamt.2018.83010

120 Advances in Linear Algebra & Matrix Theory


https://doi.org/10.4236/alamt.2018.83010
https://doi.org/10.1016/j.laa.2011.03.009
https://doi.org/10.1007/s11075-006-9029-3
https://doi.org/10.1007/s10444-009-9143-6
https://doi.org/10.13001/1081-3810.1500
https://doi.org/10.1016/0024-3795(93)00368-A
https://doi.org/10.1215/S0012-7094-47-01403-8
https://doi.org/10.1215/S0012-7094-48-01593-2
https://doi.org/10.2307/2305561
https://doi.org/10.1007/978-3-642-17798-9

Y. Sun et al.

[18] Ostrowski, A. (1951) Uber das Nichverschwinder einer Klasse von Determinanten
und die Lokalisierung der charakterischen Wurzeln von Matrizen. Compositio.
Mathematica, 9, 209-226.

[19] Hadjidimos, A. (2012) Irreducibility and Extensions of Ostrowski’s Theorem. Li-
near Algebra and its Applications, 436, 2156-2168.
https://doi.org/10.1016/j.1aa.2011.11.035

DOI: 10.4236/alamt.2018.83010 121 Advances in Linear Algebra & Matrix Theory


https://doi.org/10.4236/alamt.2018.83010
https://doi.org/10.1016/j.laa.2011.11.035

	Generalized Irreducible α-Matrices and Its Applications
	Abstract
	Keywords
	1. Introduction
	2. Nonsingularity of Generalized Irreducible α-Matrices
	3. Applications
	4. Simplifications of Eigenvalue Localization Sets
	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

