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Abstract 
 
This paper is a logical continuation of my recently-published paper. Security of modern communication 
based on RSA cryptographic protocols and their analogues is as crypto-immune as integer factorization (iFac) 
is difficult. In this paper are considered enhanced algorithms for the iFac that are faster than the algorithm 
proposed in the previous paper. Among these enhanced algorithms is the one that is based on the ability to 
count the number of integer solutions on quadratic and bi-quadratic modular equations. Therefore, the iFac 
complexity is at most as difficult as the problem of counting. Properties of various modular equations are 
provided and confirmed in numerous computer experiments. These properties are instrumental in the pro-
posed factorization algorithms, which are numerically illustrated in several examples. 
 
Keywords: RSA Cryptography, Integer Factorization, Modular Quadratic Equations, Modular Bi-Quadratic 
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1. Introduction and Problem Statement 

Security of modern communication based on RSA or 
Rabin cryptographic protocols and their analogues is as 
crypto-immune as difficult is the integer factorization 
(iFac) [1-3]. This paper is a continuation of the paper [4]. 
In that paper is considered a factorization algorithm of 
semi-prime n=pq for two cases: where either both factors 
p and q are non-Blum primes i.e.,  

p=q=1(mod4),             (1.1) 

or at least one factor is a non-Blum prime. In this paper 
an iFac algorithm is provided, which also works if both 
factors p and q are Blum primes, i.e., 

p=q=3(mod4).             (1.2) 

The SQUAR-algorithm discussed in [4] is based on 
several properties (formulated as propositions and con-
jectures) of dual modular elliptic curves, where b is a 
positive integer:  

 2 2 2 mody x x b n  



;       (1.3) 

and           .       (1.4)  2 2 2 mody x x b n 

Let us reiterate some of these properties and then con-
sider their generalizations.  

Let p=q=1(mod4); n=pq; let P(n,b) and M(n,b) denote 
the number of points on elliptic curves (EC) (1.3) and 
(1.4) respectively. 
For the sake of brevity, we call P(n,b) and M(n,b) the 
counts. 

Conjecture 1.1: Consider n=pq, and let primes p and 
q satisfy (1.1);  

if              ,1 ,1P n M n  ;            (1.5) 

then for every integer b 

  ,P n b M n b , ;            (1.6) 

otherwise, for every integer b 

  ,P n b M n b , .            (1.7) 

If n is a prime and (1.5) holds, then for every b also 
holds 

   , , 2P n b M n b n   .     (1.8) 

Remark 1.1: Conjecture1.1 plays an important role in 
the design of the iFac described in [4]; further details are 
provided in the Appendix. 

Proposition 1.2: If the factors p and q are congruent 
to 1 modulo n=pq, then the following identities hold for 
non-negative integers m and s: 
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if 

mod 4 2m s 

s

2



;            (1.9) 

then 

  , 2 , 2mP n M n .         (1.10) 

Proposition 1.3: If the factors p and q are congruent 
to 1 modulo n=pq, , and 1b b

  1 2, ,P n b M n b , 

then 

   1, , 2M n b P n b .           (1.11) 

The proposed iFac2 algorithm described below is less 
restrictive than the integer factorization SQUAR-algo- 
rithm described and analyzed in [4], because it is also 
applicable if both p and q satisfy (1.1). 

Proposition 1.4: {modular reduction-in-exponent}: 
Consider elliptic curves  

 2 2 modey x x b n  



;       (1.12) 

and 

 2 2 modey x x b n  ;       (1.13) 

where ; then for every integer b>0 and e>0 the 
following identities hold: 

4e 

   mod 4, ,e eP n b P n b ;        (1.14) 

   mod 4, ,e eM n b M n b .       (1.15) 

Proof {by mathematical induction}: Consider substitu-
tions 

3: mod  and : mod2y Yb n x Xb n  ;     (1.16) 

into (1.12). Then after cancellation of the same term  
in both parts of (1.12) we derive the EC  

6b

 2 2 4 modeY X X b n  



 

.       (1.17) 

Repeating the substitutions (1.16) and cancellations of 
term , we derive the proof of (1.14). Analogously we 
proceed with the proof of (1.15). 

6b

A generalized reduction-in-exponent can be formulated 
for a hyperelliptic curve {HEC}. 

Proposition 1.5: Consider HECs 

 modtr d ey x x b n  ;        (1.18) 

and .       (1.19)   mod / mode d t r mtr dY X X b n   

If t<d and gcd(d, r)=m, then for every integer b>0 both 
HECs have equal number of points. 
Proof: after appropriate substitutions, the proof is analo-
gous to the proof of Proposition 1.4 (details of the proof 

and an example are provided in the Appendix}.  
Special case: if m=1 and t=0, then 

 mod mod r d e drY X b n .          (1.20) 

2. iFac1 Algorithm Based on EC  

SQUAR-algorithm described in paper [4] requires con-
sideration of a sequence of elliptic curves with control 
parameter b. Namely, for every b=1,2,3,5,··· to count the 
number of points on each EC until four distinct counts 
are found; {see Example 2.1 below}. 
In the following algorithm we need at most three distinct 
counts. Let  : ,i iP P n b . 
The iFac1 algorithm: 
1) Compute 1 2 1, , ,  iP P P P  until two distinct integers 
are found; 

2) if         1 i sign P n sign P n            (2.1) 

then        1: gcd , ;ip P P n   q=n/p;        (2.2) 

else compute  1: gcd ,iw P P  n ;              (2.3) 

3) if w>1, then p:=w;                         (2.4) 
        else find a 3rd distinct count ; kP

4)       1: gcd , ;kp P P  n  q=n/p.           (2.5) 

Example 2.1: For semi-prime n=6525401, the sets 
 are as follows: 1 2 3 4,  ,   and S S S S

 
 
 

1

2

3

1,7,11,17, 29,31,41, ; 7012681 ;

2,5,13, 23,37, ; 6055665 ;

3,19, ; 6514053 ;

S b L

S b S

S b A

  

  

  







 (2.6) 

S4={b=43,53,···; B=6519205}. 

Therefore, the SQUAR-algorithm provided in [4] re-
quires at least fifteen basic steps, because 43 is the four-
teenth prime (2.5). Yet, since 

1P P2 ; and ;            (2.7) 1 3P P P  2

then the 1st  1 3: gcd ,factor P P n  . 
Hence, instead of counting points 

1 2 3 5 7 43, , , , , ,P P P P P P            [4], 

in fifteen elliptic curves, we determine both factors of n 
after three distinct counts. 

3. iFac1 Validation 

Definition 3.1: A pair of counts  is called a 
resolventa if 

 ,i jP P 
 gcd , 1i jP P n  . 

If w=1 (2.1), then we need to compute the 3rd distinct 
value {see Example 2.1}. However, if w>1, then we 
compute the 1st factor, say, p, and then q:=n/p. The fol-
lowing proposition and examples provide explanations. 
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


Proposition 3.1: If primes p and q are selected ran-
domly, then with probability greater than 2/3 we can 
determine factors of semi-prime n if we know only two 
distinct counts  and . 1 i

Proof: It is demonstrated in the paper [4] that if 
p=q=1(mod4), then there exist two positive integers c<p 
and d<q, and four sets 1 2 3 4  such that for 
every b the number of points on the elliptic curves (1.3) 
and (1.4) is equal either A or B or L or S, where 

P P

,  ,   and S S S S

 
 

: ;

: ;

A p c q d

B p c q d

  

  
            (3.1) 

 
  

: ;

: ;

L p c q d

S p c q d

  

  


            (3.2) 

{see Example2.1}. 
For instance, let’s analyze  

gcd(L+S, n);              (3.3) 

where    L+S=2(n+cd)   (3.2).        (3.4) 
Let’s find under what conditions p divides L+S: suppose 
that 

                  n+cd=ph,                (3.5) 

where h is an integer. Then (3.5) implies 

that          (n+cd)modp=phmodp=0;        (3.6) 

and               cdmodp=0.              (3.7) 

Since c<p, therefore, p must divide d.  

Hence, if   , and p|d,             (3.8) c p d q  

then we can find factors p and q after considerations of 
only two distinct counts 1  and i . Although this case 
is possible {see Example 3.2}, for large primes p and q it 
is highly improbable. 

P P

Analogously, we proceed with an analysis of gcd(A+B, n). 
Example 3.1: Consider n=9037729; 

and         EC  2 3 mody x x n  .          (3.9) 

If =8894593; =9176905; then compute 1P A iP B
w:=gcd(A+B, n)=1. 

Since w=1, it means that we cannot find the factors of n 
because the combination {A, B} is not a resolventa {see 
Table 3.1}. Yet, after we find the third distinct value 

=L=9342205; the factorization is accomplished: kP

p=3361 and q=2689. 

Example 3.2: {Highly improbable case}: Consider 
n=24853. Let’s verify that, if we know any two counts, 
we can find p and q. There are six cases to consider:  

1). =A; =B;  2). =A; =L; 1P iP 1P iP

3). =A; =S;  4). =B; =L; 1P iP 1P iP

5). =B; =S;  6). =L; =S; 1P iP 1P iP

Table 3.1. Sums and greatest common divisors. 

Sums X+Y gcd(X+Y,n) Resolventas 

A+B=2(n–cd) 1  No 

A+L=2(p+c)q q Yes 

A+S=2p(q–d) p Yes 

B+L=2p(q+d) p Yes 

B+S=2(p–c)q q Yes 

L+S=2(n+cd) 1  No 

 
where A=17385; B=31161; L=35685; and S=15181. Then 
for each of these combinations we find a factor of n. In-
deed, 

gcd(A+B,n)=29; gcd(B+L,n)=857; 

gcd(B+S,n)=29; gcd(A+L,n)=29; 

gcd(A+S,n)=857; gcd(L+S,n)=29. 

Although such case is possible, it is highly improbable if 
p and q are randomly selected. 

Example 3.3: Consider n=8405801 and EC (3.9). 
Compute 1 =8387409; = ; =8995597; and 
w:=gcd( + , n)=2801. 

P
P

2P 1P 3P

1 3

Because w>1, therefore 
P

 p:=w and q:=n/p=3001. 

In general, every combination {A, L}, or {A, S}, or {B, L} 
or {B, S} has a common factor. Hence, if w=1, 

then             1gcd , 1kP P n  ,          (3.10) 

otherwise         1gcd , 1iP P n  .          (3.11) 

Since n is a semi-prime, then in each of these cases we 
compute a factor of n. For instance, if  

1=  and iP A P L , 

then             A L p c q   ;           (3.12) 

and            gcd ,p c q n q    .         (3.13) 

For more details see Table A2. 
Although the iFac1 algorithm is computationally simpler 
than the SQUAR algorithm, we can further simplify the 
iFac algorithm via application of other modular equations.  

4. Modular Quadratic and Bi-quadratic 
Equations 

In this section are considered properties of quadratic, 
bi-quadratic modular equations and equations with , 
where the moduli are prime or semi-prime. 

3m 

Proposition 4.1: Consider a modular quadratic equa-
tion (MQE) 

2 2 mod y x b n ;        (4.1) 

Copyright © 2011 SciRes.                                                                                IJCNS 
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let G(n, b) denote the number of integer pairs (x, y) 
{called points on quadratic curve (4.1)} that satisfy (4.1); 
if n is a prime, then for every non-zero b co-prime with n 

 , 1G n b n  ; 

if n is a semi-prime and n=pq, then for every non-zero b 
co-prime with n 

    , 1G pq b p q  1 .       (4.2) 

Proof is provided in the Appendix. 
Conjecture 4.2: Consider a modular equation  

V(p, m, b): 

 2 2 modmy x b p  ;          (4.3) 

where p is a prime; let G(p, m, b) denote the number of 
points on (4.3); 
if (4.3) is either a quadratic or bi-quadratic equation (i.e., 
if m=1 or m=2), and pmod4=3, then 

 , , 1. G p m b p             (4.4) 

if m=1 and pmod4=1, then (4.4) holds. 

Table 4.1. Values of G(p, m, b). 

pmod4 m=1 m=2 m ≥ 3: if gcd(m,p–1)=1 

pmod4=1 1p   1p   1p  

pmod4=3 1p   1 1p   p  

 
Conjecture 4.3: Consider a modular equation  

V(n, m, b): let b>0; 

2 2 modmy x b n  


1

;        (4.5) 

and let G(n, m, b) denote the number of points on (4.5); 
if both factors p and q are primes, and if (4.5) is either a 
quadratic or bi-quadratic equation (i.e., if m=1 or m=2), 
then for every b>0 

   , , 1 1G pq m b p q   ;         (4.6) 

if an odd prime m is co-prime with , then 
for every b and m each co-prime with  

 1p q 
 n

     , , 1 1G n m b p q n     .     (4.7) 

Here  is called the Euler totient function.  n
 

Table 4.2. Values of G(pq, m, b). 

 m=1  m=2 m>3; if =1 gcd ,m n  

p=q(mod4)=1  n    n  n  

p=q(mod4)=3  n   n   n  

pqmod4=3  n    n  n  

Numerous computer experiments for m=2, 3, 5, 7 con-
firmed Conjecture 4.3 Thirty six examples in Table 4.3 
demonstrate the correctness of the Conjecture 4.3 for 
m=1, 2, 3, and 5. In italics are shown the cases, where 

 gcd ,  m n >1, i.e., where (4.7) does not hold. 
 

Table 4.3. Values of G(pq, m, b); m=1,2,3,5. 

 m=1 m=2 3m  ; if =1  gcd ,m n  

65,85, 
377 

48,64, 
336 ok

36,28 
324 

m=3:32,64, 224 
m=5: 48,64, 336 

77,161
209 

60,132
180 ok

60,132
180 ok

m=3: 140,308,20 
m=5: 12,132, 36 

55,95 
187 

40,72 
160 ok

20,36, 
140 

m=3: 40, 8, 160 
m=5: 8, 72, 32 

{see also Table 6.1 and 6.2 below}. 
 

The iFac algorithm described below is based on Pro-
position 4.1. This algorithm is computationally efficient 
if there exists an efficient procedure (an oracle) that counts 
the points on either the MQE (m=1) or bi-quadratic 
equation (m=2) (4.5). 

Definition 4.1: {equivalence}: Problem 1A  is equi- 
valent to problem 2A  if their time complexities satisfy 
the inequality    1 2T A T A . 

Definition 4.2: {strong equivalence}: Problems 1A  
and 2A  are strongly equivalent if their time complexi-
ties  and T  satisfy 1 2T   1 2T T   

1

. 
Tables 6.1 and 6.2 illustrate Conjecture 4.2 and Conjec-
ture 4.3. 

5. iFac2 Algorithm 

Conjecture 4.3 can be applied to design an iFac2 algo-
rithm. As it implied from the following discussion, this 
algorithm is more efficient than the SQUAR-algorithm 
proposed in [4]. Yet, for the seemingly simple iFac2 
algorithm we need to know how to efficiently count the 
number of points G(n, m, b) on modular Equation (4.5) 
for m=1 or m=2. 
The algorithm 
1) Select b=m=1; compute G(n) for V(n,1,1)  (4.5) and 
(4.6); 
2) Compute  

 :R n G n   ;            (5.1) 

3) Solve quadratic equation 
2 0z Rz n   ;             (5.2) 

suppose  are its roots; 1 2

4) {Integer factors p and q}: 
and z z

21:  and :p z q z  .           (5.3) 

Therefore, the iFac2 problem is equivalent to the prob-
lem of counting points on the MQE (4.1). 

Copyright © 2011 SciRes.                                                                                IJCNS 
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and Remark 5.1: It is well-known that, if n is a semi-prime 
and if we know the value of Euler totient function  n  
(4.7), then we can find the factors of n. The Conjecture 
4.3 is the framework that allows us to compute  n . 

 : 1 19874R n G n    . 

The quadratic equation 
2 19874 98743069 0z z   ;        (5.4) 

Example 5.1: Let n=98,743,069; 
has two roots: then 

1,2 9937 30z   . G(n)=98,723,196; 
 

Table 6.1. V(p, m, 1):  2 2= 1 modmy x p . 

p m = 2 m = 3 m = 5 m = 7 * p m = 2 m = 3 m = 5 m = 7 

59 58 58 58 58 * 2011 2010 2186 2162 2010 

101 98 100 92 100 * 2017 1998 2084 2016 2284 

1777 1854 1748 1776 1776 * 99923 99992 99992 99992 99992 

1913 1998 1912 1912 1912 * 99991 99990 101102 101102 99990 

 
Table 6.2. V(p, m, 1) for 6 710 10p  . 

p m = 1 m = 2 m = 3 m = 5 m = 7 

2,696,527 2696526 2696526 2689958 2696526 2701694 

5,264,647 5264646 5264646 5273726 5264646 5264646 

6,878,407 6878406 6878406 6875918 6878406 6878406 

 
Therefore, by the Vieta theorem, p and q are the roots 

of quadratic equation 
Hence, 

1 2: =9967 and : 9907p z q z   . 

 2 1 ,z n G n m z n 0       .       (7.3) 
6. Properties of Modular Equations for m>1: 

Computer Experiments 
Q.E.D 

8. Conclusions 
Table 6.1 describes results of computer experiments for 
various primes p and Several factorization algorithms were described and ana- 

lyzed in [4] and in this paper {see Table 8.1}. It is obvi-
ous that modular Equation (4.5) can be used for the 
iFac2 only if either m=1 or m=2. From the paper it fol-
lows that the complexity of integer factorization is at 
most as difficult as the problem of counting how many 
solutions have modular Diophantine equations. There-
fore, the problem of counting points on the MQE is 
equivalent with the iFac2 problem. 

 2 2 1 modmy x  p .          (6.1) 

Remark 6.1: In Tables 6.1 and 6.2 in italic are indi-
cated cases where  if  , 1G m p p   gcd , 1 1m p   . 
Notice that since 

 101 1777 1913 2017 1 mod4 ,     

the bi-quadratic modular equations do not have exactly 
p–1 points. 

Table 8.1. Algorithms & residues modulo 4. 

7. iFac2 Algorithm Validation 
Algorithm Case1 Case2 

SQUAR 
Four ECs:  

(8.1)-(8.8); [4] 
Not 

applicable 

iFac1 
Three ECs:  
(2.1)-(2.6) 

Not 
applicable 

iFac2 
One MQE: 
(5.1)-(5.4) 

One MQE: 
(5.1)-(5.4) 

From Conjecture 4.3, the number of points G(n,m) on 
modular Equation (4.5) is equal 

    , 1G pq m p q   1 .        (7.1) 

If there is a computationally efficient algorithm that 
computes G(n,1) or G(n,2), then it implies that for 2m    

Case1: p=q=1(mod4) or (p+q)mod4=0;  
1 ,p q n G n m     .         (7.2) Case2: p=q=3(mod4). 
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Appendix 

A1. Proof of Proposition 4.1 

Consider MQE:  

 2 2 mody x b n  .          (A.1) 

Proposition 4.1: If n is a prime, then the number of 
points with non-negative x and y on quadratic curve Q(n) 
is equal n–1; if n=pq, then Q(pq)=(p–1)(q–1). 

Proof: Consider an integer parameter t on interval  
[1, n–1]. The modular multiplicative inverse of t exists if 
and only if gcd (t, n)=1.  

Consider     1 1 2 modv t t b n n   ; 

and 

    1 1 2 modw t b t n n   .       (A.2) 

If n is a prime, then there are n–1 integers that are 
co-prime with n; if n is a semi-prime and n=pq, then 
there are (p–1)(q–1) integers that are co-prime with n. If 
n is odd, then ( 1) 2n   is an integer; therefore both v 
and w are integers.  
It is easy to verify that for every t there is a unique pair 
{v, w} that satisfies (A.1). Therefore, we proved that 
(A.1) has at least n–1 solutions for n prime and has at 
least (p–1)(q–1) if n=pq. Let us show that there are no 
other solutions. 
Let assume that there exists a solution (g, h) that is dis-
tinct from every pair in (A.2). First of all, 

2 2 mod g h b n 
 g h

, which implies that, if , 
then neither ; 

1 1b n  
mod 0n 

nor 

 mod 0g h n 

0

.            (A.3) 

Consider an integer  

 : modu g h n   ;          (A.4) 

where ;  1 1u n  
then 

1 modg h u b n  .            (A.5) 

Thus,  

 1 12 modg u u b n    ;        (A.6) 

and  

 1 12 modh u b u n    .        (A.7) 

If n is odd, then modular inverse of 2 exists and 

 12 mod 1 2modn n n   .       (A.8) 

Hence, the solution (g, h) has the same parametric repre-
sentation as (v, w), if u=t. The contradiction proves the 

Proposition 4.1.                           Q.E.D. 
Example A1: Consider Q(17):  

 2 2 2 mod17y x  . 

There are sixteen points on Q(17):  

       ( 6,0); 0, 7 ; 1, 4 ; 2, 6 ; 7, 8        . 

A2. Complexity Analysis 

There are several algorithms that count points on elliptic 
and hyper-elliptic curves. If some of these algorithms can 
be applied for counting points on quadratic or bi-quad- 
ratic modular equations with the same time complexities, 
then the Schoof-Elkies-Atkin (SEA) algorithm is currently 
the best known algorithm that counts points on a modular 
cubic curve with expected running time  4logO p  
[5-7]. Therefore, if, for instance, p is of order 

   1024 3072 10O O , then 

    40 124log 2 10O p O O   .       (A.5) 

Because the SEA algorithm does not work if a=1 and 
b=0 [8], consider a modular equation  

 2 2 2 mody x b p  with 0b   and an algorithm 
with complexity  logsO p  that counts points on this 
curve. Since there are algorithms with complexity 
 8logO p

8s
 that count points for every elliptic curve, 

therefore  . Thus 

    10 3log 2 10 ss sO p O O  .       (A.6) 

This implies that in the worst case the problem can be 
solved with complexity  2410O . 

A3. Proof of Proposition 1.5 

Consider hyperelliptic curves (HECs) 

 modtr d ey x x b n   ;        (A.7) 

and 

   mod mode d t r mtr dY X X b n     .    (A.8) 

If 0  t<d and gcd(d,r)=m, then for every positive inte- 
ger b both HECs have equal number of points. 

Proof: Consider substitutions 

: ; :w zx Xb y Yb  ;           (A.9) 

into Equation (A.7); then we derive 

 moddr r z w tw ed tY b X b X b n   .    (A.10) 

Now let us find such integers w and z, for which the 
following equation holds 
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 mod .rz dw n           (A.10) 

The case is simplified if  t  n  and  d n . 

If gcd(r, d)=m; then w=r/m and z=d/m. 
Hence,  ,   dr rt em i.e. d t r m e    . 

Therefore, after cancellation of equal terms in both 
sides of the modular Equation (A.10), we derive a HEC 

  modr d t e d t r mY X X b n    .     (A.11) 

Example A3: Let consider HEC 

 6 15 177711 mod1913y x x b   ;      (A.12) 

then HEC  16 5 11 mod1913Y X bX    has the same 

number of points as (A.12). 
 

Table A1. # of EC and sequence in which A, B, L and S are computed; here S<A<B<L. 

n P1; b=1 P2; b P3; b P4; b p q 

3434941 B=3537485;1 L=3633945;2 A=3328341;5 S=3239993;-5 1933 1777 

4016813 B=4034637;1 S=3748057;2 L=4294809;5 A=3989749;-5 2113 1901 

4647169 A=4552177;1 B=4731865;11 S=4330189;13 L=4974445;17 3121 1489 

4915189 S=4557869;1 A=4836777;2 B=4980665;7 L=5285445;-7 1489 3301 

6295057 B=6394801;1 L=6509965;5 S=6082957;7 A=6192505;11 2017 3121 

9037729 A=8894593;1 S=8737213;11 B=9176905;13 L=9342205;19 3361 2689 

9906433 L=10181817;1 S=9633073;2 A=9717861;5 B=10092981;7 5021 1973 

 
Remark A1: In five of seven experiments, the very 

first two counts {B, L}; {B, S}; {S, A}; {B, L}; and {A, S} 
are resolventas, i.e. they provide a factor of n: 

 1 2: gcd , .p P P  n
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