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Abstract 
We apply general tensor calculus to arbitrary nonrelativistic classical Lagran-
gian systems and derive general relationships between the torsion tensor and 
other quantities associated with the coordinate configuration space, such as 
the metric, the Christoffel symbols, the Euler-Lagrange equations, the affine 
connections, and the curvature tensor. Using Euler angle metric spaces as 
examples of spaces with nonzero torsion, we calculate these quantities for 
nonrelativistic rigid rotators of arbitrary structure. For free rotations, we 
show that the Euler-Lagrange equations agree with the manifestly correct Eu-
ler equations. 
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1. Introduction 

In 1922, Élie Cartan included torsion [1] in Einstein’s general relativity [2] [3]. 
Work continued on the Einstein-Cartan theory attempts to associate particle 
spin and/or rotating matter with torsion [4] [5]. Other investigations considered 
general effects of torsion in space-time [6] and in a gravitational model of the 
strong interaction [7]. In addition, several authors (including Einstein) investi- 
gated the torsion concept in an attempt to unify electromagnetism with gravity 
[8] [9] [10]. Trautman [11] also rewrote the Einstein field equations to include 
nonzero torsion and solved the system for a model consisting of a spinning 
cloud of dust previous to the big bang. Shapiro [12] investigated effects of 
including a torsion background in quantized fields. Despite these and many 
other investigations, the physical role of torsion is still unclear, and modern 
general relativity is still torsion-free. 

In what follows, in Section 2, we apply general tensor calculus to classical 

How to cite this paper: Trejo-Mandujano, 
H.A. and Goedecke, G.H. (2018) On Prop-
erties of Torsional Metric Spaces. Journal of 
Modern Physics, 9, 1793-1806. 
https://doi.org/10.4236/jmp.2018.99113  
 
Received: July 12, 2018 
Accepted: August 6, 2018 
Published: August 9, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2018.99113
http://www.scirp.org
https://doi.org/10.4236/jmp.2018.99113
http://creativecommons.org/licenses/by/4.0/


H. A. Trejo-Mandujano, G. H. Goedecke 
 

 

DOI: 10.4236/jmp.2018.99113 1794 Journal of Modern Physics 
 

nonrelativistic Lagrangian systems. We establish general relations between the 
torsion tensor and other quantities in the coordinate configuration space, such 
as basis vectors, the metric, the affine connections, the Christoffel symbols, the 
Euler-Lagrange equations, and the curvature tensor. In Section 3, we consider 
the often-used “zyz” Euler angle spaces associated with rigid rotators as 
examples. Very few authors have pursued these examples, e.g. [13] [14]. We 
outline the development of a symbolic computer algorithm that calculates the 
essential geometrical quantities for anisotropic rigid rotators. The theory and the 
computational results, as well as hand calculations, show that the associated 
Euler angle 3-spaces are indeed non-Euclidean flat spaces with torsion, and that 
for free rotators the Euler-Lagrange equations agree with the Euler equations 
derived from conservation of angular momentum. In Section 4, we discuss our 
results and provide a list of conclusions and suggestions for future work in this 
area. In Appendix, we report the results of calculations for the popular yaw, 
pitch, and roll angles. 

2. General Theory 

We represent the N generalized coordinates of a classical system by the set 
1, , Nx x x =  � , where each px  is an independent real continuous variable 

that may have any physical dimension and any range. Typical generalized 
coordinates are Cartesian and radial variables having dimension length, and 
spherical polar and Euler angles having no dimension. A nonrelativistic system 
moves on a trajectory in this N-dimensional configuration space (N-space) 
given by 

( ) ( ), 1, ,p px X t p N = = �  

where t is the time. The space may or may not be a Euclidean space NE  or a 
Riemannian space NR  [15]. 

2.1. Euler-Lagramge Equations 

For nonrelativistic non-dissipative classical systems, the Lagrangian functional L 
has the form  

( ) ( ) ( )1 2 , , .p q p
pq pL mg X X mu X t X w X t= + −� � �           (1) 

Here, the first term is the kinetic energy, m is an overall mass parameter that 
may be chosen at will, pq qpg g=  is called the metric of the N-space, and an 
overdot indicates a time derivative. We follow the extended Einstein summation 
convention that repeated indices are summed over from 1 to N. The ( ),pu X t  
are the covariant components of an N-vector potential, and ( ),w X t  is an 
N-scalar potential energy. We insert the mass parameter so that the distance ds 
between infinitesimally separated points is given by the ususal expression, 

( )2d d dp q
pqs g x x x= . If the system contains particles having different masses 

and/or different moments of inertia, those quantities appear in the metric, 
ratioed to m. The conjugate momenta are  
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.r q
r rq rP L X mg X mu= ∂ ∂ = +� �                     (2) 

The Euler-Lagrange (EL) equation is  

d d .r
rP t L X= ∂ ∂                          (3) 

This equation is assumed to be the correct physical motion equation. When 
applied to Equations (2) and (1) it yields the detailed EL motion equation  

[ ] ( )1, ,q p q p
rq t r r r p p rg X r pq X X u m w u u X−+ = −∂ − ∂ + ∂ − ∂�� � � �         (4) 

where r
r X∂ = ∂ ∂ . The quantities [ ] [ ], ,r pq r qp=  are the Christoffel symbols 

of the first kind, defined by  

[ ] ( )( ), 1 2 .p rq q rp r pqr pq g g g= ∂ + ∂ − ∂                (5) 

Equation (4) reduces to the geodesic equation if the potentials pu  and w are 
constants. 

2.2. Basis Vectors 

We use the coordinate basis vector approach to general tensor calculus in metric 
spaces; see e.g. [16] [17]. In this work, we need only the covariant (subscripted) 
basis vectors ( )p xe , which are tangents to the coordinate curves [18]. In general, 
they are not unit vectors and they carry physical dimensions; for example, the 
covariant basis vectors in an Euler angle 3-space have the dimension of length, 
as shown below. The generalized dot or inner products among these basis 
vectors are defined so that  

.p q pqg⋅ =e e                          (6) 

We also need the inverse matrix pqg  such that pq p
qr rg g δ= , the Kronecker 

delta. 
These generalized-coordinate basis vectors at any point x may be expressed as 

a linear combinations (LC) of a set of N Cartesian unit basis vectors  
( )ˆ , 1, ,i i N=e �  that are independent of position x in the N-space:  

( ) ( ) ˆ ,p pi ix x= Λe e                        (7) 

where the Cartesian basis vectors satisfy ˆ ˆi j ijδ⋅ =e e , the Kronecker delta metric. 
In many cases the generalized coordinates px  may be obtained by a global 
coordinate transformation ( ) ( )p i i px x x x↔� �  from global Cartesian coordinates 

ix� , e.g., consider spherical polar coordinates [ ], ,px r θ φ  =   in Euclidean 
3-space. Then the matrix ( )Λ  is given by i p

pi x xΛ = ∂ ∂� . In such cases, the 
matrix elements satisfy the integrability condition 2 i p q

q pi p qi x x x∂ Λ = ∂ Λ = ∂ ∂ ∂� . 
In other cases, such as torsional spaces, this condition is not satisfied, and the 
space is non-Euclidean. Such matrices ( )Λ  may always be found. They provide 
the easiest route to detailed expressions for the affine connections and the 
torsion tensor for Euler angle and other isolated spaces. 

2.3. Affine Connections and Torsion 

In this work, we consider only isolated spaces, as defined recently by Goedecke 
[18]. In such spaces, the coordinate derivatives of the N-space basis vectors at 
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any point x may be written as LC's of those same basis vectors:  

( ) ( ) ( ).r
p q pqx x x∂ = Γe e                       (8) 

(This relation is not valid in non-isolated spaces such as some subspaces of 
higher-dimensional ones, e.g., a 2-sphere embedded in Euclidean 3-space [18].) 
The coefficients r

pqΓ  are exactly the conventional affine connections. In terms 
of the matrix Λ  defined by Equation (7), the connections are given by  

( )( )1 .r
pq p qi ir

−Γ = ∂ Λ Λ                        (9) 

In isolated spaces, the matrix Λ  is square, and its inverse exists. 
These connections themselves do not constitute a mixed tensor of third rank 

[1]. However, their antisymmetric parts,  

( )( )1 2r r r r
pq pq qp qpT T= Γ −Γ = −                   (10) 

do form a tensor of third rank, called the torsion tensor. In terms of the 
matrix Λ ,  

( )( )( )11 2 .r
pq p qi q pi irT −= ∂ Λ − ∂ Λ Λ                 (11) 

Evidently, in any Euclidean space, the torsion tensor is zero in all coordinate 
systems. 

A pertinent general relationship exists among the Christoffel symbols, the 
symmetrized affine connections, and the torsion tensor. To derive it, we apply 
Equations (6) and (8), and obtain  

, ,; ,s
r p q rs pq r pq q p r q prg⋅ ∂ = Γ ≡ Γ ⋅∂ = Γe e e e  

and add these to get  

, , .p qr r pq q prg∂ = Γ + Γ                     (12) 

Then, using this equation and Equations (5) and (10), we obtain  

[ ] ( ),, ,qpr pqrr pqr pq T T= Γ + +                  (13) 

where the notation ( ),r pqΓ  means the symmnetric part, i.e.  

( ) ( ) ( ), ,, 1 2 r pq r qpr pqΓ ≡ Γ + Γ . 

2.4. Curvature 

We assume an isolated space, as above, so that Equation (8) holds. We follow 
Goedecke’s method [18] by calculating  

( ) ,t
p q q p r rpq tR∂ ∂ − ∂ ∂ =e e                   (14) 

where  
t t t s t s t
rpq p qr q pr qr ps pr qsR ≡ ∂ Γ − ∂ Γ + Γ Γ −Γ Γ             (15) 

is the usual 4th rank curvature tensor of the space. But since  

( )( )anything 0p q q p∂ ∂ − ∂ ∂ =  provided the second partials exist, which they do 
almost everywhere, then 0t

rpqR =  for an isolated space, so such a space is by 
definition flat. For example, isolated Euler angle 3-spaces are indeed flat, despite 
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being torsional and thus non-Euclidean, as we verify by direct calculation of 
Equation (15) in the next section. 

Note that in a torsional space, the affine connections that appear in the 
curvature tensor are not equal to the Christoffel symbols of the second kind. 
Instead, they satisfy ( )

s s s
pq pqpq TΓ = Γ + , and ( ),s pqΓ  satisfies Equation (13), 

whereby  

( )s s s sr
pq pq pq qpr pqrT g T T Γ = + − +                   (16) 

is a general relation valid in all N-spaces. This relation and Equation (13) were 
derived by Schouten [15], using quite different nomenclature and notation. 

3. Rotations of Rigid Bodies 

This familiar topic provides calculable examples of the general relations presented 
above for torsional spaces. Leonhard Euler (1707-1783) introduced the angles 
named for him as coordinates to describe all possible rotations of any rigid body 
about a center point, usually the center of mass. These angles expressed as 
functions of time connect a Cartesian triad of basis vectors fixed in a rotating 
rigid body to a non-rotating Cartesian reference triad, both with origins at the 
body center of mass, which itself may be translating nonuniformly under the 
influence of various force fields. In this section we investigate the properties of 
Euler angle metric spaces associated with a rigid body having arbitrary structure. 

3.1. Euler Angles and Angular Velocities 

We choose the Euler angles ( )1 2 3, ,α α α  corresponding to the ( ), ,α β γ  used 
by Arfken [19]. This choice is called the “zyz” set [20], corresponding first to a 
rotation by 1α  about the non-rotating Cartesian system z-axis, then a rotation 
by 2α  about the new y-axis, then a rotation by 3α  about the final z-axis. 
Altogether there are 12 sets of Euler angles that may be used, but the principal 
results of our investigation will be the same for all sets. (In Appendix, we 
present these results for another popular set of Euler angles.) 

Let the ˆ
ie  be the unit basis vectors of the “barred” Cartesian coordinate 

system that rotates with the object, and the ˆie  be the same for the non-rotating 
(“unbarred”) system, where 1,2,3i = . These basis vectors are related by  

( )( )ˆ ˆi ij jR tα=e e                          (17) 

where  

( ) ( ) ( ) ( )3 2 1z y zR R R Rα α α α=                  (18) 

is the rotation matrix for given set bα   . The constituent matrices zR  and 
yR  are given by  

( ) ( )
cos sin 0 cos 0 sin
sin cos 0 ; 0 1 0 .
0 0 1 sin 0 cos

z yR R
µ µ µ µ

µ µ µ µ
µ µ

−   
   = − =   
   
   

      (19) 

We may obtain the angular velocity 3-vector ω  from the defining equation  
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( ) ( )
ˆd ˆ .
d
i

i
t

t
t

≡ ×
e

eω                         (20) 

With ˆˆi i i iω ω= =e eω , we also obtain expressions for the nonrotating and 
rotating Cartesian components of the angular velocity from Equations (20) and 
(19):  

; .b b
i ib i iba bω α ω α= =� �                      (21) 

These equations imply that  

( ) ( )( ) ,ib ik kbb R a b R a= → =                    (22) 

where ( )b  and ( )a  are 3 3×  matrices given by  

( ) ( )

1 2 1 2 3 3

1 2 1 2 3 3

2 2

0 sin sin cos sin cos sin 0
0 cos sin sin ; sin sin cos 0
1 0 cos cos 0 1

a b
α α α α α α
α α α α α α

α α

   − −
   

= =   
   
   

 (23) 

The relations in this subsection are independent of the structure of the rigid 
body that rotates with the barred system. 

3.2. Kinetic Energy and Metric 

The rotational kinetic energy for a general rotating rigid body is  

2 2 2
1 1 2 2 3 3

1 ,
2 2

b c
bc

mT I I I gω ω ω α α = + + =  � �                (24) 

where iI  are the three principal moments of inertia in the rotating (barred) 
body-fixed system; we have chosen a principal axis rotating Cartesian system, as 
we may always do. Combining Equations (21) and (24) yields  

1 ,bc i ib ic ib icg m I b b B B−= =                     (25) 

where for convenince we have defined the quantities  
,ib i ibB l b=                            (26) 

with principal axis radii of gyration il  given by  

.i
i

Il
m

=                            (27) 

Applying Equation (23) and Equations (25)-(27) yields the following metric 
components:  

( )
2 2 2 2 2 3 2 2 2 2 3 2 2

11 3 1 2

2 2 3 2 3
12 2 1 21

2 2
13 3 31

cos cos sin sin sin

cos sin sin

cos

g l l l

g l l g

g l g

α α α α α

α α α

α

= + +

= − =

= =

 

2 2 3 2 2 3
22 2 1

23 32
2

33 3

cos sin
0

g l l
g g

g l

α α= +
= =

=

                   (28) 

The basis vectors be  of the Euler angle 3-space yield the correct metric, 
Equation (25):  

https://doi.org/10.4236/jmp.2018.99113


H. A. Trejo-Mandujano, G. H. Goedecke 
 

 

DOI: 10.4236/jmp.2018.99113 1799 Journal of Modern Physics 
 

1ˆ ˆ
b ib i i bi bB B−= ↔ =e e e e                      (29) 

3.3. Affine Connections 

Using Equations (29) and (17), we obtain  
ˆ ,b bj j= Λe e                           (30) 

where  

.bj ib ijB RΛ =                           (31) 

Then, using Equation (30) and its inverse yields ( )( )1
c b c bj jd d

−∂ = ∂ Λ Λe e , from 
which we infer an expression for the affine connection  

( )( )1 .d
cb c bj jd

−Γ = ∂ Λ Λ                      (32) 

Equations (30) and (32) correspond to the general Equations (7) and (9). 
While it is possible to hand-calculate detailed expressions for these affine 
connections and Christoffel symbols in terms of the Euler angles, the algebra is 
difficult for a general anisotropic rotator. In Section 3.6, we outline our 
construction of a symbolic computer algorithm that produces the desired 
expressions. 

3.4. Euler Equations 

The well-known Euler equations [20] for a torque-free rigid rotator follow from 
the constancy of the body’s intrinsic angular momentum 3-vector S . A simple 
derivation that takes advantage of rotating basis vectors begins with the expression  

ˆ .i i iI ω=S e                            (33) 

We apply Equation (20) to obtain  
ˆ ˆd d 0 .k k k i i it I Iω ω= = + ×S e e� ω                    (34) 

Expanding the cross-product using ˆ ˆ
i k kji jω× =e e ω  yields the Euler equations 

for kω :  

0.k k kji i j iI Iω ω ω+ =�                         (35) 

We expect these equations to be equivalent to the geodesic equation applied to 
an anisotropic free rotator:  

[ ], 0.d b c
adg a bcα α α+ =�� � �                     (36) 

We may investigate the equivalence of Equations (35) and (36) as follows. 
First, substitute Equations (21) and (27) into Equation (35), then multiply the 
whole equation by kab  and use Equation (25), to obtain  

( ), 0,d b c
ad a bcg α α α+ Γ =��� � �                      (37) 

where  
2 2

,a bc ka k c kb i kji jc ibb l b l b b Γ = ∂ + 
�                   (38) 

are defined as the “Euler affine connections”, with symmetrized forms defined 
by  
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( ) ( ) ( ), ,, 1 2 .a bc a cba bcΓ = Γ + Γ� � �                    (39) 

These results show that the relation  

( ) [ ], ,a bc a bcΓ =�                         (40) 

must be satisfied in order that the Euler equations for a free rotator are indeed 
equivalent to the geodesic equations. The hand calculations of the ( ),a bcΓ�  
quantities are also quite difficult for anisotropic rotators. We verified Equation 
(40) for such rotators using the algebraic computer algorithms described in 
Section 3.6 below and also using hand calculations. 

3.5. Isotropic Rotators 

We make hand calculations for an isotropic rotator, defined as any rigid body 
for which 1 2 3l l l l= = = . The metric reduces to  

2

2

2

1 0 cos
0 1 0 .

cos 0 1
g l

α

α

 
 

=  
 
 

                  (41) 

The Christoffel symbols of the first kind are easily calculated:  

[ ] [ ] [ ] ( ) 2 21, 23 3,12 2,13 1 2 sin ,l α= = − = −             (42) 

with [ ] [ ], ,a bc a cb=  and with all others zero. 
One fairly efficient way to obtain expressions for the affine connections in this 

isotropic case is to begin with Equation (30), put il l= , note that ij ik jkR R δ= , 
and find that  

ˆ ,b ib ila=e e                           (43) 

where iba  are the elements of the matrix ( )a  given by Equation (23). Then, 
continue by using the derivatives and the inverse of Equation (43), and obtain 

( )( )1
c b c ib di da a−∂ = ∂e e , which reveals that the affine connections are given by  

( )( )1 .d
cb c ib dia a−Γ = ∂                        (44) 

If we then apply ,
d

a cb ad cbgΓ = Γ , we obtain  
2 2

1,23 3,12 2,13 sin ,l αΓ = Γ = −Γ = −                  (45) 

with all others zero. Therefore, the symmetrized affine connections are simply 
equal to  

( ) ( ) ( ) ( )2 2
1, 23 3, 12 2, 13 2 sin ,l αΓ = Γ = −Γ = −              (46) 

with of course ( ) ( )1, 32 1, 23Γ = Γ , etc., and with all others zero.Then, using  
( )( ), ,1 2abc a bc a cbT = Γ −Γ , we obtain the covariant torsion tensor,  

( )2 22 sin ,abc abcT l α= −                      (47) 

where abc  is the completely antisymmetric Levi-Civita 3-index symbol. As 
indicated by Equation (13), Equation (47) verifies that the symmetrized affine 
connections are equal to the Christoffel symbols for an isotropic nonrelativistic 
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rotator. 
It remains to be shown that the intrinsic angular momentum is conserved for 

the isotropic free rotator. The condition for that conservation is Equation (40). 
From Equation (39) with il l=  one obtains easily  

( ) ( ) ( )2
, 2 ,ka c kb b kca bc l b b bΓ = ∂ + ∂�  

because the terms in kji  in Equation (39) cancel out. Then, using Equation (23), 
it is a simple matter to hand calculate ( ),a bcΓ�  and show that indeed Equation 
(40) is valid. 

These results verify that this Euler angle metric space is indeed a space with 
torsion, whereby it is not a Euclidean space. It must also be a flat space because it 
is an isolated space. Using the values of the affine connections ,

d da
cb a cbgΓ = Γ  

that can be obtained easily from Equation (45), it is straightforward if a bit 
laborious to hand-calculate all the components of the curvature tensor a

bcdR  
defined by Equation (15) and show that they are indeed zero. 

3.6. Anisotropic Rotators 

In this section we investigate properties of the “zyz” Euler angle 3-spaces for 
rigid rotators of arbitrary shape and structure. 

3.6.1. Equations in Matrix Form 
The computer program that we developed for the general algebraic calculations 
requires the equations to be in matrix form. In matrix notation, Equation (25) 
for the metric is simply  

( ) ( ) ( )T ,g B B=                       (48) 

where ( )TB  is the transpose of ( )B . In order to calculate the affine connections, 
we first define the matrix ( )cM  by specifying its elements  

( ) .d
c cbbd

M = Γ                         (49) 

Then Equation (32) in matrix form is  

( ) ( )( )( ) 1 ,c cM −= ∂ Λ Λ                     (50) 

where ( )Λ  is the matrix with elements bjΛ  defined by Equation (31). Equation 
(50) is very convenient computationally. 

3.6.2. Method and Results 
Our computer algorithm calculates the affine connections, the Euler affine 
connections, and the torsion tensor in any Euler angle metric space for any rigid 
rotator, starting from Equation (50). The algorithm also calculates the corres- 
ponding curvature tensor, using Equation (15), and the Christoffel symbols, 
using Equations (28) and (5). We selected MATLAB [21], [22] to perform the 
symbolic calculations. Equations (52)-(54) below summarize the results of our 
calculations for the “zyz” Euler angles. The results are written using the following 
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abbreviations:  

3sin ; cos ; 2 2 3.i i
i is c aα α α→ → →                (51) 

Equations (52) show the nonzero Christoffel symbols [ ],a bc , which as 
expected are symmetric under interchange of their last two indices, and were 
computationally found to be equal to the corresponding symmetrized Euler 
affine connections ( ),a bcΓ� . This result means that the Euler Equation (35) are 
indeed equivalent to the geodesic equations for a torque-free rotator. Equations 
(53) present the nonzero symmetrized affine connections ( ),a bcΓ . Comparison 
with (52) reveals that these symmetrized connections are not equal to the 
Christoffel symbols. Equations (54) list the covariant torsion tensor abcT . Note 
that it is not proportional to the Levi-Civita symbol abc . Also, note that in the 
special case of isotropic rotators, for which all il l= , the quantities in all these 
equations reduce to their values calculated in Subsection 3.5. 

[ ] ( ) [ ]

[ ] ( )( ) [ ]

[ ] ( )
[ ] ( ) ( )( ) [ ]

[ ] ( )

2 2 2 2 2 2
2 2 1 3 2 3 2 3

2 2 2
2 1 2

2 2
2 3 3 1 2

2 2 2
2 1 2 3

2 2 2 2 2 2
2 2 1 3 2 3 2 3

1,12 1,21

1,13 sin 2 3 2 1,31

1,22

1,23 cos 2 3 cos 2 3 2 1,32

2,11

c s l c l c l l

s a l l

c c s l l

s a l a l l

c s l c l c l l

= − + − =

= − − =

= − −

= − − + =

= − − + −

 

[ ] ( ) ( )( ) [ ]

[ ] ( )( ) [ ]

[ ] ( )( )
[ ] ( ) ( )( ) [ ]

[ ] ( )( )

2 2 2
2 1 2 3

2 2
1 2

2 2 2
2 1 2

2 2 2
2 1 2 3

2 2
1 2

2,13 cos 2 3 cos 2 3 2 2,31

2,23 sin 2 3 2 2,32

3,11 sin 2 3 2

3,12 cos 2 3 cos 2 3 2 3,21

3,22 sin 2 3 2

s a l a l l

a l l

s a l l

s a l a l l

a l l

= − + + =

= − =

= −

= − − + + =

= − −

       (52) 

( ) ( )( )( ) ( )

( ) ( )( )( ) ( )

( ) ( )

( ) ( ) ( )

2 2
1 2 3 2 3 1 3 2 31, 12 1, 21

2
2 1 2 1 2 31, 13 1, 31

3 2 3 3 1 21, 22

2 2 2 2 2 2 2
2 1 3 1 1 2 3 1 3 3 1 2 3 3 2 31, 23 1, 32

sin 2 2 4

sin 2 3 4

2

a l l l l l l c l c

s a l l l l l

l c c s l l

s l s l l l l l s l l l s l l s

Γ = + + − + − = Γ

Γ = − − + + = Γ

Γ = − −

Γ = − − + − − + + + = Γ

 

( ) ( )
( ) ( )( ) ( )

( ) ( ) ( )

( ) ( )( )( ) ( )

2 2
2 2 1 2 1 3 1 3 3 2 3 32, 11

2 3 3 1 2 1 2 32, 12 2, 21

2 2 2 2 2 2 2
2 1 3 1 2 3 1 3 2 3 2 3 2 3 3 22, 13 2, 31

1 2 1 2 32, 23 2, 32

2

2

sin 2 3 4

c s l l l l l l c l l c

c c s l l l l l

s l s l l l l s l s l l l s l l

a l l l l l

Γ = − − + −

Γ = − − + − = Γ

Γ = − + − + − + = Γ

Γ = − + + = Γ

 

( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )

2
3 2 1 23, 11

3 2 3 1 23, 12 3, 21

3 1 23, 22

sin 2 3 2

cos 2 3 cos 2 3 2

sin 2 3 2

l s a l l

l s l l a l a

l a l l

Γ = −

Γ = − − + = Γ

Γ = − −

            (53) 
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( )
( )( )( )

( )
( )( )

2 2 2 2 2 2 2 22
121 1 3 1 2 1 3 3 1 3 2 3 2 2 3 3 3 112

2
131 3 3 2 1 2 1 2 3 113

2 2 2 2 2 2 2
132 2 1 3 1 1 2 3 1 3 3 1 2 3 3 2 3 123

221 2 3 3 1 2 1 2 3 212

2
1 2

2

2

cT l c l l l l c l l l c l l l c l T

T c s c l l l l l T

T s l s l l l l l s l l l s l L s T

T c c s l l l l l T

= − − + − + + − = −

= − − + − = −

= − + − + − + = −

= − − + − = −

 

( )( )

( )
( )

232 3 3 1 2 1 2 3 223

2 2 2 2 2 2 22
213 1 3 1 2 3 1 3 2 3 2 3 2 3 3 2 231

312 3 2 1 2 3 321

2

2
2

T s c l l l l l T
sT l s l l l l s l s l l l s l l T

T l s l l l T

= − + − = −

= − + + + − − + = −

= − + − = −

       (54) 

In addition, we calculated the Riemann-Christoffel curvature tensor for an 
anisotropic rotator using Equation (15) and the calculated values of the affine 
connections. We found that all components are zero, as predicted. 

4. Conclusions and Discussion 
4.1. Conclusions 

The principal goals of this work were to investigate properties of affinely 
connected metric spaces with torsion, and to provide applications to the familiar 
Euler angle spaces that describe rigid body rotations. The results allow the 
following conclusions: 

1) In any affinely connected metric space, the symmetrized affine connections 
are equal to the corresponding Christoffel symbols if and only if the covariant 
torsion tensor is completely antisymmetric or zero (see Equation (13)); 

2) Any Euler angle 3-space is a flat space with torsion. The covariant torsion 
tensor is completely antisymmetric if and only if the rigid rotator being described 
is isotropic; 

3) For torque-free rotations of all rigid bodies, the Euler-Lagrange equations 
that follow from the kinetic energy expressed in terms of the Euler angles agree 
with the Euler equations that follow from constancy of the intrinsic angular 
momentum vector; 

4) Torsion has no direct effect on the coordinate motions of any non-relativistic 
Lagrangian system, because the torsion tensor does not appear in the Euler- 
Lagrange motion Equations (4); 

5) Torsion does have an effect on the detailed form of the Riemann-Christoffel 
curvature tensor in any space, because the affine connections that appear therein 
are not equal to the corresponding Christoffel symbols if the space is torsional; 
see Equations (15) and (16). 

As emphasized, the first and last of these conclusions apply in any N-space, 
whereby they apply to relativistic systems. Extension of these results to 
nonrelativistic systems of many rigid bosies is trivial: We simply have three 
Euler angles and three CM coordinates for each body in the system. Extension to 
relativistic many-body systems should be pursued, but it may not be simple, and 
is beyond the scope of this work. 
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4.2. Discussion 

One topic that merits discussion is the significance of torsion. We should 
consider two types of significance, geometrical and physical. 

The principal geometrical significance follows directly from the definition of 
the affine connection in terms of coordinate basis vectors, Equation (13), which 
provides the insight that p q q p∂ = ∂e e  in any torsion-free space. At first glance it 
seems rather unlikely that these partial derivatives would be the same for p q≠ . 
However, as shown earlier, they are equal in all curvilinear coordinate systems x 
in any Euclidean space. A corollary insight is also well-known: An isolated 
N-space with torsion does not admit any global Cartesian or pseudo-Cartesian 
coordinate systems, and is thus a non-Euclidean space. Another geometrical 
significance was noted in conclusion v) just above. 

The physical significance of torsion is still unknown. Several possible inter- 
pretations and applications have been proposed, as discussed in the Introduction; 
we will not repeat that discussion here. We have shown that nonzero torsion 
always accompanies rigid body rotations. 
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Appendix: Other Euler Angles 

In Equations (A1) and (A2) below we present the results of calculations for 
anisotropic rigid bodies using “xyz” rotations, with Euler angles known as yaw, 
pitch, and roll angles. The results have the same character as those in Equations 
(52) and (54), and they reduce to the correct values for isotropic bodies.  

[ ] ( ) [ ]
[ ] ( )( ) [ ]
[ ] ( )
[ ] ( ) ( )( ) [ ]
[ ] ( )

2 2 2 2 2 2
2 2 1 2 3 2 3 3

2 2 2
2 2 3

2 2
2 2 3 2 3

2 2 2
2 1 2 3

2 2 2 2 2 2
2 2 1 2 3 2 3 3

1,12 1,21

1,13 sin 2 3 2 1,31

1,22

1,23 cos 2 3 cos 2 3 2 1,32

2,11

c s l l c l l c

c a l l

c c s l l

c l a l a l

c s l l c l l c

= + − − =

= − =

= − −

= − − + =

= − + − −

 

[ ] ( )( ) [ ]
[ ] ( ) ( )( ) [ ]

[ ] ( )( )( )
[ ] ( ) ( )( ) [ ]
[ ] ( )( )

2 2
2 3

2 2 2
2 1 2 3

2 2 2
2 2 3

2 2 2
2 1 2 3

2 2
2 3

2, 23 sin 2 3 2 2,32

2,31 cos 2 3 cos 2 3 2 2,13

3,11 sin 2 3 2

3,12 cos 2 3 cos 2 3 2 3,21

3,22 sin 2 3 2

a l l

c l a l a l

c a l l

c l a l a l

a l l

= − − =

= + − =

= − −

= − + − =

= −

         (A1) 

( )
( )( )( )

( )
( )( )( )

2 2 2 2 2 2 2 2
121 2 2 1 1 2 3 1 3 3 1 3 2 3 2 2 3 3 3 112

2
131 2 2 3 2 1 3 113

2 2 2 2 2 2 2
132 2 2 3 2 2 3 1 2 3 1 2 3 3 1 3 3 123

221 3 2 3 2 3 2 1 3 212

2

sin 2 3 4

2

2

T c s l l l c l l c l l l c l l l l c T

T c a l l l l l T

T c l c l l l l l c l l l c l l c T

T c s s l l l l l T

= − + − + − + − = −

= − − + = −

= − + − + − + = −

= − − − + = −

 

( )
( )( )( )( )

( )

2 2 2 2 2 2 2
231 2 2 3 2 3 1 2 3 3 3 3 1 3 3 1 3 213

232 2 3 2 1 3 223

321 1 2 2 1 3 312

2

sin 2 3 4

2

T c l c l l l l c l c l l l c l l T

T a l l l l l T

T l c l l l T

= − − + + + − − + = −

= − − − + = −

= − + = −

      (A2) 
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