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Abstract 
This paper proposes an adaptive and diverse hybrid-based ensemble method 
to improve the performance of binary classification. The proposed method is 
a non-linear combination of base models and the application of adaptive se-
lection of the most suitable model for each data instance. Ensemble method, 
an important machine learning technique uses multiple single models to con-
struct a hybrid model. A hybrid model generally performs better compared to 
a single individual model. In a given dataset the application of diverse single 
models trained with different machine learning algorithms will have different 
capabilities in recognizing patterns in the given training sample. The pro-
posed approach has been validated on Repeat Buyers Prediction dataset and 
Census Income Prediction dataset. The experiment results indicate up to 
18.5% improvement on F1 score for the Repeat Buyers dataset compared to 
the best individual model. This improvement also indicates that the proposed 
ensemble method has an exceptional ability of dealing with imbalanced data-
sets. In addition, the proposed method outperforms two other commonly 
used ensemble methods (Averaging and Stacking) in terms of improved F1 
score. Finally, our results produced a slightly higher AUC score of 0.718 
compared to the previous result of AUC score of 0.712 in the Repeat Buyers 
competition. This roughly 1% increase AUC score in performance is signifi-
cant considering a very big dataset such as Repeat Buyers. 
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1. Introduction 

In supervised learning techniques, ensemble learning method is the technique 
that uses multiple single models to construct a hybrid model in order to achieve 
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better performance compared to that of using a single model [1]. A general 
workflow for solving classification problems using ensemble methods consists of 
the following steps. Firstly, raw data usually need to be pre-processed for initial 
training dataset, during which feature extraction and normalization are applied. 
Secondly, training sets for each individual single model are derived from the ini-
tial training dataset. Thirdly, single models are trained from different training 
datasets or by different algorithms. Parameter tuning and validation for each in-
dividual model are included in this phase in the third step. Fourthly and finally, 
all the single models are combined to construct the ensemble. The final hybrid 
model is constructed based on the results of individual models and the model is 
further validated and tested. 

There are a number of ensemble learning techniques proven to be successful 
in practice. Based on our understanding, most of the techniques could be gener-
ally categorized into two types according to their different concerns: Type I 
techniques focus on deriving new training sets from the initial training set to 
train multiple different single models. Type II techniques focus on finding ways 
to blend the individual models [1]. In this paper, we are interested in Type II 
techniques as a method for improving predictive performance in binary classifi-
cation problems.  

For a given dataset the application of diverse single models trained with dif-
ferent machine learning algorithms will have different capabilities in recognizing 
patterns in the given training sample. It is therefore very important to select 
those highly diverse single models and combine them properly using an efficient 
diversity principle in order to achieve best performance [2]. The most popular 
Type II ensemble techniques assign weights to all trained single models and then 
linearly combine them [3], [4]. Since, for all unknown instances, the contribu-
tion of each individual model to the final prediction is fixed, which may limit 
performance. It is therefore important to dynamically adjust each single model’s 
contribution for different instances and this requires methods based on 
non-linear blending which is one of the goals of this research. 

Moreover, the existing Type II ensemble methods take all the outputs of the 
combined single models into account, which means that the weaknesses of each 
of the single models are also kept in the hybrid model. If an ensemble method 
can adaptively select the most suitable single model to predict each instance, 
then the weaknesses of the single models can be avoided. In order to maximize 
the complementation effect, only those single models with the highest pairwise 
diversities should be selected to construct the ensemble model.  

The objective of this research is therefore to find an ensemble model that can: 
1) select base models based on their pairwise diversities; 2) recognize the best 
suitable base model for each data instance; and 3) predict each unknown in-
stance using a suitable base model. If this objective is achieved, the overall per-
formance of the predictions can be improved by using the new diverse hybrid 
ensemble. The contributions of this paper are as follows: 1) a novel ensemble 
method for solving binary classification problem is proposed; 2) the pairwise di-
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versities of single classifiers are measured using two different methods and the 
results of these measurements are used to select and combine the base classifiers; 
3) multiple machine learning algorithms are used to train different base models 
and a comprehensive framework is designed and implemented; and 4) the pro-
posed ensemble method is validated using the Repeat Buyer Prediction Compe-
tition [5] and the Censure Income Prediction CIP [6] dataset from University of 
California machine learning repository.  

Furthermore, compared to our exploratory paper on the subject matter [7], 
the research presented in this paper includes a thorough performance and com-
plexity analysis and more study on the classifiers. In addition, we have added a 
second dataset, the Census Income Prediction. This dataset is less complex and 
we used it as a control for the more complex Repeat Buyers Prediction dataset.  

The remainder of this paper is organized as follows: Section 2.0 discusses the 
background and related work. Section 3.0 describes the proposed ensemble me-
thod. Section 4.0 presents the analysis of the experimental results and finally, 
conclusion and possible directions for the future research are discussed in Sec-
tion 5.0. 

2. Background and Related Work 
2.1. Classification 

Machine learning is divided into two main types: supervise and unsupervised 
learning. Other types such as semi-supervise learning and reinforcement learn-
ing can be derived from the two main types [8]. The main objective of supervise 
learning is to train a model using a training data with labels so that the model 
can be used for predicting test (unknown) data. An unsupervised learning tech-
nique reveals patterns of an unlabeled data. Supervised learning problems fall 
into two categories—classification and regression. The two are similar except for 
the outputs of the trained models. The outputs of classification are discrete while 
that of regression is continuous. In this paper, the proposed ensemble method is 
for solving classification problems. 

Classification problems can be categorized into two types based on the num-
ber of classes to be identified: binary classification and multiclass classification 
[8]. The former identifies instances as one of the two pre-defined classes, whe-
reas the latter classifies instances into one of the more than two classes. The re-
search work in this paper focuses on binary classification. 

2.2. Feature Engineering, Binary Classifiers and Confusion Matrix 

Feature engineering is a process of selecting a set of features that describes a set 
of problems and matching machine learning algorithms to solve those problems. 
Also, feature engineering includes data normalization since the original raw data 
may include redundant properties or noise, it is then necessary to tweak the data 
using normalization to achieve better performance. Additionally, some features 
of the raw data may impose extra workload on the training and testing which 
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could be very expensive in terms computational time and space. These features 
may be redundant just occupying memory space and more computation time 
with no benefit to the training or testing of the final model. It is therefore neces-
sary to carefully perform feature analysis with the aim of removing or reducing 
the effect of redundant or noisy features.  

Formally, a classifier is a derived function that maps instances to targets, of 
which all parameters are determined [9]. A machine learning algorithm is a 
process that estimates the parameters of the function by learning the train data, 
so that the classifier could fit the train data. A binary classifier is a function that 
maps instances to positive or negative class label [10]. According to the types of 
outcomes, classifiers could be recognized as a discrete classifier or probabilistic 
classifier. A discrete classifier directly generates a predicted class label for an in-
stance whereas a probabilistic classifier assigns each instance a score to indicate 
its degree of confidence in belonging to one class [11]. Moreover, for the proba-
bilistic classifiers, the assigned score could either be an absolute probability, or 
could be any uncalibrated real value with a higher value representing a higher 
probability. In other words, probabilistic classifiers rank instances according to 
their probabilities of being a member of a class in ascending or descending or-
der. Afterwards, compared to the absolute predictions by discrete classifiers, a 
relative threshold is assigned to probabilistic classifiers to determine the pre-
dicted classes of instances. The instances with a score higher than the threshold 
is considered as positive, while those with a score lower than the threshold is 
classified as negative.  

Confusion Matrix is generally used for presenting and interpreting the per-
formance of a classifier on a dataset. It is an n × n matrix (n represents the 
number of classes) constructed from the Cartesian product of actual classes and 
predicted classes [12]. Each entry of the matrix indicates the number of instances 
in each ordered pair of the Cartesian product. For binary classification, n equals 
to 2, therefore represents the two classes of Positive and Negative. There are four 
outcomes for test instances in a classification [12]:  
• True Positive (TP): the number of instances that have been correctly classi-

fied as Positive by the classifier; 
• False Positive (FP): the number of instances that have been incorrectly clas-

sified as Positive by the classifier; 
• True Negative (TN): the number of instances that have been correctly clas-

sified as Negative by the classifier; 
• False Negative (FN): the number of instances that have been incorrectly 

classified as Negative by the classifier. 
Based on these four outcomes, the following rates and measures are defined: 

• True Positive Rate (TPR): also called Sensitivity or Recall is the proportion 
of real positive instances that are correctly identified; 

• True Negative Rate (TNR): also called Specificity is the proportion of real 
negative instances that are correctly identified; 
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• False Positive Rate (FPR): also called Fall-out is the proportion of real nega-
tive instances that are incorrectly identified, can be calculated from 
(1—Specificity) as well; 

• False Negative Rate (FNR): also called Miss Rate is the proportion of real 
positive instances that are incorrectly identified; 

• Positive Predictive Value (PPV): also called Precision is the proportion of 
predicted positive instances that are correctly identified; 

• Accuracy: The proportion of all instances that are correctly identified. 
Now, in this paper, the accuracy, precision and recall for the diverse hybrid 

ensemble model are defined as: 

TP TNAccuracy
TP TN FP FN

+
=

+ + +
 

TPDefective Pr ecision
TP FP

 =
+

 

TPDefective Recall
TP FN

 =
+

 

Among these terminologies, Precision (PPV) and Recall (TPR) are the two 
universal metrics describing the performance of a classifier on a dataset. However, 
it is worth mentioning that the accuracy may not be an adequate measure of per-
formance because it is very sensitive to class distribution of the given dataset [13]. 
In the case of imbalance dataset, for example, if 99% of the instances are negative 
and only 1% is positive, a classifier could even achieve a high accuracy of 99% by 
simply identifying all instances as negative, which is meaningless in practice. 
Therefore, in this paper, Area Under the Receiver Operating Characteristic Curve 
(AUC) and F1 score are selected as the metrics to evaluate the performance of the 
proposed ensemble method. 

2.3. Receiver Operating Characteristics (ROC), AUC, and F1 Score 

A ROC curve is a plot that visualizes the performance of a binary classifier. It is 
drawn as a 1 × 1 square area called ROC space, of which x-axis and y-axis are de-
fined as False Positive Rate (i.e. FPR) and True Positive Rate (i.e. TPR), respec-
tively [13]. Therefore, the plots in ROC space describe the trade-off between the 
benefit (TPR) and the cost (FPR) of a classifier.  

For each discrete classifier on a given dataset, there is only one corresponding 
confusion matrix, which is plotted as a single point in ROC space [13]. On the 
other hand, probabilistic classifiers could yield different confusion matrixes as 
threshold varies, so that multiple points are plotted in ROC space [14].  

A threshold represents the strictness of a probabilistic classifier making a posi-
tive prediction. A higher threshold could result in lower FPR with TPR sacrificed. 
On the contrary, lower thresholds could lead to both increased FPR and TPR 
from which the points plotted are closed to (1, 1) point in the ROC space. If more 
actual positive instances could be assigned relatively higher scores by the proba-
bilistic classifier, then a higher TPR with a lower FPR could be achieved even 
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when a relatively higher threshold is set, so that the points plotted from higher 
thresholds are close to the (0, 1) point in ROC space. The ROC curve, in this case, 
is pulled up to the perfect classification point, which leads to a larger area under 
the ROC curve (AUC). AUC represents the probability that a classifier assigns a 
higher score to a randomly selected positive instance than a negative one [13] and 
a larger AUC indicates that a better performance is achieved by the classifier. 

F1 score [15] is a commonly used metric to evaluate the performance of a clas-
sifier. F1 score for the diverse hybrid ensemble model is defined as the harmonic 
mean of precision and recall: 

1
2 Pr esicion Recall 2 PPV TPRF

Pr ecision Recall PPV TPR
∗ ∗ ∗ ∗

= =
+ +

 

In this case, precision denotes the degree of confidence for a classifier to pre-
dict an instance as positive, while recall indicates the ability of a classifier to iden-
tify the positive instances. The best value of F1 score is 1 and the worst is 0. F1 
score conveys the balance between precision and recall. For example, an F1 score 
of 0.45 is calculated from a precision of 0.9 and a recall of 0.3, while another F1 
score of 0.5 is obtained with both precision and recall being 0.5. Therefore, for a 
classifier, a tradeoff between its precision and recall is beneficial for achieving a 
higher F1 score. Moreover, the reasonable tradeoff can be accomplished by tuning 
the threshold, which is highly correlated with the class distribution of the given 
dataset [16]. For example, a threshold of 0.5 may be appropriate for the dataset 
with balanced class, while a higher threshold could be better if the proportion of 
positive instances is very small. F1 score is selected as the performance evaluation 
metric in this paper because it is considered more suitable in practice compared 
to AUC [17] when a dataset is suffering from imbalanced class problem [16]. In 
addition, AUC is a “curve” metric indicating the general or average performance 
of a classifier, while the F1 score is a “point” metric that could be more meaning-
ful in practice [18]. Both AUC and F1 score are compared in this work. 

2.4. Classification Learning Algorithms 

In classification, each model trained by an algorithm uses a formula for calcu-
lating the approximation of the probability or discrete class, which is defined as 

( )ŷ f x= . Therefore, a loss function (or cost function) ( )( ),L y f x  of the mod-
el is defined as a function that quantizes the cost for the deviation of predictions  

from the actual values, such as squared loss ( )( ) ( )( )21,
2

L y f x y f x= −  [19].  

Given a training data, if its loss function is convex and differentiable, then an 
optimization algorithm can be applied to find a set of parameters ( )f x , so that 
the loss function is minimized on that given data. The convexity of the loss func-
tion could guarantee that the found minimum is the global one. This process of 
optimization is to accomplish parameter estimation, and different selection of 
loss functions could lead to different estimations of the parameters. 

In this paper, the following factors are taken into account when selecting ma-
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chine learning algorithm. 1) The algorithm should have the ability to learn a 
probabilistic classifier because of AUC and F1 score. 2) The algorithm should be 
capable to learn sparse data since the given dataset is under high sparsity. 3) 
Since the main concern of this work is the ensemble method it is better for the 
selected algorithm to be simple so that the parameter tuning for the ensemble 
models could be easier. 4) The algorithm should achieve a proper balance be-
tween the performance of the single model and its training time as well as its re-
source requirement. So, with this in mind we have selected Logistic Regression 
under the general regression model (GRM), and for the ensemble, we have se-
lected Boosting, Bagging, and Stacked Generalization.  

Logistic regression, a generalization of linear regression (also called Genera-
lized Linear Model GLM) can learn a model and it is a function mapping of an 
instance to a predicted class. The output of the function is a real value between 0 
and 1 that indicates the probability of the instance being one of the binary 
classes. The instance could then be classified as positive if its predicted probabil-
ity is larger than the pre-determined threshold [9]. Theoretically, the meta-level 
model could be learnt by any type of supervised machine learning algorithms, 
but logistic regression is selected to be the meta-level learner because of its sim-
plicity and efficiency and therefore, all the base models are linearly combined. 
Furthermore, the GLM is capable of accepting dependent variables that have 
other distributions other than normal distributions for ordinary linear regres-
sion, such as Bernoulli distribution for logistic regression. It is done by mapping 
the linear regression model to the response variable through a link function and 
a quantizer. A standard logistic function is applied as the link function, which is 
defined as following: 

( ) 1
1 e tP t −=
+

 

where t represents the ordinary linear regression model that is formulated as: 
Tt β= +w x  

where β  denote an unobservable bias from the actual value. The final logistic 
regression model is formulated as: 

( ) ( ) ( )T

11
1 e

iF x P y
β− +

= = =
+

w x
 

where ( )F x  is interpreted as the probability of the ith instance being positive. 
Generally, logistic regression can find a hyperplane T 0β+ =w x  as the deci-

sion boundary that slices the train data into two parts: the points above the 
hyperplane denote the instances with higher probabilities of being positive than 
that of being negative, and the points under the hyperplane are considered as the 
instances more likely to be negative. Additionally, the points on the hyperplane 
represent the instances with equal probabilities of being positive and negative. 
Note that the hyperplane is precisely the quantizer. 

The core concept of Bagging [17] is to train multiple base classifiers from dif-
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ferent new training sets that are randomly sampled from the original train data 
with replacement, then make the final prediction for each instance by averaging 
the scores (for a probabilistic classifier) or majority voting (for a discrete classifi-
er). In this paper, Random Forests provided by Scikit-learn is applied, which is a 
popular implementation of Bagging and uses decision tree as the base model. 

Boosting [19], [20] is a family of ensemble learning algorithms that combines 
a set of weak learners to construct a relatively strong one. Compared to Bagging 
method, Boosting algorithms is intended to improve performance by reducing 
bias. Adaptive Boosting (AdaBoost) and Gradient Boosting Machine (GBM) are 
the two most popular Boosting algorithms [21]. In this paper, an implementa-
tion of AdaBoost provided by Scikit-learn and an implementation of GBM called 
Extreme Gradient Boosting (Xgboost) are used. Xgboost was initially released as 
an open source project by [11]. Both of the selected implementations of Ada-
Boost and GBM are probabilistic classifiers and able to deal with sparse data. 
Formally, an ensemble model trained by a boosting algorithm can be formulated 
as follows [11]: 

( ) ( ) 0
1

T

T t t
t

F x h xα α
=

= +∑  

where T denotes the number of base models, ( )TF x  represents the final en-
semble model, and ( )th x  represents the hypothesis generated by the 𝑡𝑡th base 
classifier. tα  is the weight assigned to the 𝑡𝑡th base classifier and 0α  is a con-
stant determined in the first stage for initializing the model. For gradient boost-
ing, each additive base model is trained to fit the residual of the existing ensem-
ble model, so that the final model becomes more accurate by taking the hypo-
thesis generated by this newly added base classifier into account. The gradient 
boosting algorithm is a process to minimize the loss function of the final ensem-
ble model without prior knowledge of the final loss function. This is achieved by 
minimizing the loss function of the existing ensemble model whenever a new 
base model is added. Therefore, with the accumulation of the base models, the 
loss of the implied final function declines gradually. In other words, with a 
training set ( ){ } 1

,
n

i i i
x y

=
, a convex and differentiable loss function ( )( ),L y F x  

and the number of iterations T, the underlying mathematics of this process can 
be defined as follows [11]: 
1) Initialize the model with a constant: 

( )0 0
1

arg min ,i
i

n
F L y

α
α α

=

= = ∑  

2) For t = 1 to M: 
a) Calculate the residuals as the negative gradient: 

( )( )
( ) ( )1

1
1

,i t i
i t i it

t i

L y F x
y F x r

F x
−

−
−

∂
− = − =

∂
 

b) Fit a new base model ( )th x  with the new training set ( ){ } 1
,

n
i it i

x r
=

: 
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( ) ( )( )
1

arg min ,t it t
i

n

i
h

h x L r h x
=

= ∑  

c) Determine the multiplier tα  of the newly added base model ( )th x : 

( ) ( )( )1
1

arg min ,t i t i t i
i

n
L y F x h x

α
α α−

=

= +∑  

d) Update the existing ensemble model: 

( ) ( ) ( )1m m m mF x F x h xα−= +  

e) Output the final ensemble model as follows: 

( ) ( ) 0
1

T t

T

t
t

F x h xα α
=

= +∑  

The bias of the model is reduced by incrementally training the base models to 
learn the errors of their predecessor ensemble models. However, the concept of 
correcting the errors made by the predecessor model may be overfitting-prone, 
especially for the relatively noisy data. Accordingly, several regularization tech-
niques are introduced into the model for constraining the learning procedure, so 
that the final ensemble model is prevented from overfitting the training set. 
Consequently, Boosting methods can reduce the bias of model with keeping va-
riance under control. 

Stacked Generalization, which is also known as Stacking was first proposed by 
David H. Wolpert [22]. It is a high level ensemble method that introduces a me-
ta-level model to combine a group of base models, which are usually of diverse 
types. In Stacking, each of the linear or non-linear models is selected as the me-
ta-level model to combine a group of base models that are the same as those in 
our proposed method.  

Figure 1 shows the process of Stacking, during which all base models are 
trained from the training set and tested on the testing set. Then, the meta model 
takes the outputs of all base models for testing data as new feature vectors and 
the corresponding actual class values in testing data as targets, so that the meta 
model can learn a combination of all base models to reduce the overall error. 
Based on our objectives, Stacking is a type of generalized and flexible method of 
ensemble, which could be easily applied together with other ensemble methods 
to further enhance the total performance. 

2.5. Related Works 

Ensemble methods such as Bagging, Boosting and Stacking which combine the de-
cisions of multiple hypotheses are some of the strongest existing ensemble me-
thods and therefore provide a reliable foundation for our proposed ensemble me-
thod. The work in [23] applied Random Forests to classification of hyperspectral 
data on the basis of a binary hierarchical multi-classifier system. The work in 
[24] presented an algorithm for musical style and artist prediction from an au-
dio waveform by utilizing AdaBoost for the selection and aggregation of audio 
features. Gradient Boosting Machine (GBM) was used in [25] for incorporating  
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Figure 1. Process of stacking. 
 
diverse measurements of bone density and geometry so as to improve the accu-
racy of bone fracture prediction compared to standard measurement. The work 
in [26] examined the generalization behavior by comparing single level learning 
models to multiple level learning models (stacked generalization method) on a 
multilayer neural network. The results show that the stacked generalization 
scheme could improve classification performance and accuracy compared to the 
single level model. The method is also used in Wang’s approach [27] in which 
the stacking approach performed successfully in predicting membrane protein 
types based on pseudo-amino acid composition.  

There are several schemes proposed for the customized selection of classifiers, 
thus to find the best base classifier for each individual instance on the basis of 
local accuracy. For example, the work in [27] proposed the method of Dynamic 
Integration, in which weighted voting were applied by giving higher weight to a 
classifier if its training data were in the same region as the testing example. The 
work in [28] introduced an approach to group classifiers by their similarities and 
to retain one representative classifier per cluster. The core notion of this type of 
methods is to enhance the overall performance by choosing and/or assigning 
more weight to those classifiers that perform best in instances that are similar to 
the one that is being classified. Also, static ensemble methodologies are gradually 
developed and used. For instance, the work in [29] proposed a linear ensemble 
algorithm that takes into account both the accuracy of individual classifiers and 
the diversity among classifiers, which are also vital factors where importance 
should be attached when designing ensemble methods. 

One of the dataset used in this work is from the Repeat Buyers Prediction 
Competition [5]. In this two-stage competition with different amount of data 
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provided, the work by Liu [30] won the first place in Stage 1 by using both fea-
ture engineering and model training. The work by He [31] won the first place in 
Stage 2, in which a four-step solution was used consisting of 1) characteristics 
analysis and strategy design, 2) feature extraction and selection, 3) data training 
and 4) hybrid ensemble on both models and features. Both of the award winners 
suggested that feature engineering is the key element to their works and that the 
ensemble method applied in these two approaches perform better than any of 
the individual classifier. However, only linear ensemble methods were utilized in 
their works. The goal of our approach is to use a non-linear method. 

3. The Proposed Ensemble System 
3.1. Overview 

In this section we use positive (+) and negative (-) to denote the two classes in a 
binary classification. 

To solve classification problems, a classifier is learnt by an algorithm, so that a 
hypothesis can be proposed based on the classifier that best fits the given train-
ing set. For a dataset, a single classifier may have its own “blind area”, i.e., some 
points cannot be clearly identified, especially when the dataset is 
high-dimensional or non-linear. For example, in a 2-dimensional space, as 
shown in Figure 2, a plus sign indicates an instance belonging to the positive 
class, and a minus represents the negative class. Using different single classifiers 
(green H1, blue H2, and yellow H3 lines, Figures 2(a)-(c) the points (circled in 
red) cannot be correctly classified. By applying the ensemble technique, multiple 
models can be integrated to reduce those blind areas as shown in the lower three 
diagrams (Figures 2(d)-(f)). Each data instance in the blind areas is then classi-
fied by the capable base model. For example, with the combination of H1 and 
H2 as depicted in Figure 3, point 6 can be identified by H1 generated by clas-
sifier 1, not circled in red, as is the case in (b), whereas point 2 can be identified 
by H2 from classifier 2, not circled in red, compared to (a). Accordingly, the 
combination of H1 and H2 has four unrecognized points, the combination of H2 
and H3 has two less unrecognized points, and the combination of H1 and H3 
has only one unrecognized point. As a result, classifiers H1 and H3 are consi-
dered the proper group for constructing the ensemble model for this example. In 
summary, high diversities among base models can improve the ability of the en-
semble model by satisfying more types of data instances. 

In addition, the problem in this example (Figure 2) may not be properly 
solved with the existing ensemble techniques, such as averaging and general 
stacking method. As illustrated in Figure 4, the existing ensemble model is built 
by simply averaging all the hypotheses (H1, H2, and H3) of the three classifiers, 
but there are still five unrecognized points for the final hypothesis compared to 
Figure 2(f) with only one unrecognized point. This shows that a pairwise di-
verse method (as proposed in this paper) is a better option than just averaging or 
general stacking method. 
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Figure 2. Base model selections using pairwise diversity. 

 

 
Figure 3. Proposed system’s architecture. 

 

 
Figure 4. Ensemble model by Averaging. 
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In the proposed ensemble method, a meta-level model is learnt, which recog-
nizes the capable base classifier for each data instance. In addition to the me-
ta-level model from all trained single classifiers, only those with high pairwise 
diversities are selected as base models. Finally, the constructed ensemble model 
is able to support adaptive selection of the proper base model for each data in-
stance. In order to accomplish this, two key problems demand prompt solutions: 
1) the pairwise diversity must be defined for the measurement. 2) A training set 
needs to be designed for learning the meta-level model. 

As explained in Section 2.1 a probabilistic classifier performs the classification 
by ranking the instances according to their predicted probabilities of being posi-
tive. Therefore, for the first problem, the pairwise diversity is defined as the dif-
ference between the ranks of instances provided by two classifiers. For the 
second problem, in order to map each data instance to its appropriate base mod-
el, the meta-level model should be trained from the same feature vectors that 
have been used to train the single model. Additionally, each data instance in the 
training set needs to be relabeled to indicate its proper base model. A base model 
is considered proper for a data instance, if it can generate the most certain pre-
diction. By ranking all the instances according to their predicted probabilities, 
the certainty of a prediction is defined as the relative position of an instance in 
the ordered queue. For example, a prediction for a data instance is considered 
more certain if a positive instance is ranked at a lower position (or a negative in-
stance at a higher position) in an ascent sorting. Overall, the pairwise diversity is 
measured on a group of instances for base model selection, while the certainty is 
on the basis of a single instance for relabeling the training set. 

3.2. System Design 

The system design for our model consists of seven modules: Pre-processor, Re-
labeler, Base Model Selector, Single Model Learner, Meta Model Learner, Meta 
Model and Base Models, which are organized as shown in Figure 3. Each mod-
ule is briefly described as follows. 
• The Pre-processor is responsible for data transformation, data normalization 

and feature engineering, as well as splitting the known data into a training set 
and a testing set. 

• The Single Model Learner learns single classifiers from the training set with 
the original labels for data instances. 

• The Base Model Selector takes both the testing set and the outputs of the Sin-
gle Model Learner as inputs, to determine the Base Models for constructing 
the ensemble. 

• The Relabeler receives the training set with original labels for data instances, 
and then relabels the training set with the outputs of the Base Model Selector. 
The relabeling of each instance is performed according to the behaviors of 
Base Models on the original training set.  

• The Meta Model Learner uses the relabeled training set to train the meta 
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model.  
• The Meta Model takes the feature vector of each unknown instance to predict 

its most suitable base model, and then passes the feature vector to the se-
lected Base Model for the final prediction, which is the output of the system. 

3.3. Base Model Selector and Re-Labeler 

The Base Model Selector is the module that determines the base models for con-
structing the final ensemble model. The pairwise diversities are calculated from 
the ranks, and the algorithm for determining the single models based on diversi-
ties is described as follows: 

Algorithm 1: Base Model Selection 
1) Given a testing set { }| 1, 2, ,iS s i n= =   and a group of trained single clas-

sifiers { }| 1, 2, ,jcC j m= =  , where n and m denote the number of samples 
in testing set and the number of trained single classifiers, respectively; 

2) For each classifier jc  in C: 
a) Use jc  to make predictions for each is  in S to obtain a set of probabilities 

{ }| 1, 2, ,j ijP p i n= =  , where ijp  represents the probability of is  being posi-
tive generated by jc ; 

b) Sort all is  according to their ijp  in ascending order, and then obtain a set 
of ranks { }| 1, 2, ,j ijR r i n= =  , where ijr  denotes the rank of is  in all or-
dered test samples given by jc ; 
3) End For 
4) Calculate the root-mean-square deviation (RMSD) of each set of two jR  as 

the metric of pairwise diversity  

( )2

1

n
ip iqi

pq

r r
D

n
=

−
=
∑

; 

5) Choose the k single classifiers jc  with highest RMSDs as the base models for 
constructing the ensemble. 

The function of Re-labeler is to design a new training set for training the me-
ta-level model. The aim is to identify the proper base model for a given instance. 
A training set consists of two parts: feature vectors and labels. The former de-
scribes the characteristics of data instances, while the latter indicates the class of 
instances in a class space. Accordingly, the algorithm for relabeling is designed 
as follows: 

Algorithm 2: Relabeling Training Set for Meta Model 
1) Given a training set { }| 1, 2, ,iS s i n= =   obtained from pre-processor and a 

group of base classifiers { }| 1, 2, ,jB b j m= =   determined by base model 
selector; 

2) For each base classifier jb  in B: 
a) Use jb  to make predictions for each is  in S to obtain a set of probabilities 

{ }| 1, 2, ,j ijP p i n= =  , where ijp  represents the probability of is  being posi-
tive generated by jb ; 
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b) Sort all is  according to their ijp  in ascent order, and then obtain a set of 
ranks { }| 1, 2, ,j ijR r i n= =  , where ijr  denotes the rank of is  in all ordered 
samples given by jb ; 
3) End For 
4) For each training sample is  in S: 
5) If is  is positive: relabel is  as jb  which generates the largest ijr ; 
6) Else 
7) If is  is negative: relabel is  as jb  which generates the smallest ijr ; 
8) End If 
9) End For 
10) Return the relabeled training set 

The training set derived from Algorithm 2 represents the proper base model 
for each instance, and then it is further used for training meta-level model, so 
that the meta-level model can be used to predict the appropriate base models for 
unknown instances. 

4. Experiment and Results 
4.1. Datasets and Experiment Environment 

The first dataset used in our experiment is the Repeat Buyer Prediction (RBP) 
dataset, obtained from a machine learning competition, which was held by In-
ternational Joint Conference on Artificial Intelligence (IJCAI) and Alibaba 
Group in 2015 [5]. The repeat buyer dataset consists of the behavior log of ano-
nymized users accumulated during the 6 months before and on the “Double 11” 
day, with labels indicating whether a customer is a repeat buyer of a merchant or 
not. The dataset is 1.92 GB in total and stored as three comma-separated values 
(CSV) files: user behavior logs (Table 1), user profile information (Table 2), and 
training and testing (Table 3). 

The Censure Income Prediction (CIP) data was extracted from the census bu-
reau database. It is popularly used in research area for validating and evaluating 
binary classification algorithms and methods, as it does not require feature en-
gineering and it is relatively convenient to use as a control data. There are 6 con-
tinuous attributes and 8 categorical attributes in the raw data. Table 4 lists the 
definitions of each data field. Note that the fields in data type of string are all ca-
tegorical, therefore they need to be transformed to proper formats during 
pre-processing for further operations.  

All the developments and experiments are conducted on a customized com-
pute engine from Google Cloud Platform (Google cloud computing, hosting ser-
vices & APIs, 2016), Ubuntu 16.04 LTS operating system with 6 cores (2.3 GHz) 
virtualized from Haswell processors, 32 GB memory and 128 GB SSD. 

4.2. The Procedure 

The datasets are separately preprocessed using Pandas. In the case of the RBP 
dataset, firstly, the data stored in three separate tables are merged and to avoid  
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Table 1. User behavior Logs in RBP. 

Data Field Data Type Definition 

user_id integer A unique id for the shopper 

merchant_id integer A unique id for the merchant 

item_id integer A unique id for the item 

brand_id float A unique id for the brand of the item 

cat_id integer A unique id for the category of the item 

time_stamp integer Date the action took place (format: mmdd) 

action_type integer 
Type of the action, which is enumerated as the set {0, 1, 2, 3}, where 0 
represents click, 1 is for add-to-cart, 2 denotes purchase and 3 is for 

add-to-favorite 

 
Table 2. User profile information in RBP. 

Data Field Data Type Definition 

user_id integer A unique id for the shopper 

gender float 
Gender of the shopper: 0 for female, 1 for male, 2 and NULL 

for unknown 

age_range float 
Age range of the shopper: 1 for less than 18, 2 for [18, 24], 3 
for [25, 29], 4 for [30, 34], 5 for [35, 39]; 6 for [40, 49], 7 and 

8 for more than 49, 0 and NULL for unknown 

 
Table 3. Training and Testing Data in RBP. 

Data Field Data Type Definition 

user_id integer A unique id for the shopper 

merchant_id integer A unique id for the merchant 

label integer 
A binary label {0, 1} indicating whether a shopper is a repeat buyer 

of a merchant, where 1 represents repeat buyer and 0 is for 
non-repeat buyer 

 
Table 4. Data fields in CIP 

Data field Data type Definition 

age integer The age of an anonymous person 

workclass string The work class of an anonymous person 

fnlwgt integer 
Independent estimates of the civilian non-institutional 

population of the US 

education string The highest degree of an anonymous person 

education_num integer Number of years an anonymous person is under education 

marital_status string The marital status of an anonymous person 

occupation string The occupation of an anonymous person 

relationship string The role of an anonymous person in a family 

race string The race of an anonymous person 
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Continued 

sex string The gender of an anonymous person 

capital_gain integer The capital gain of an anonymous person 

capital_loss integer The capital loss of an anonymous person 

hours_per_week integer The working hours of an anonymous person per week 

Native_country string The native country of an anonymous person 

Labels string 
Indicates whether an anonymous person makes over 

$50K/yr 

 
producing redundant rows, the three tables are merged by inner join. Then fea-
ture engineering is applied. After pre-processing, single models are trained using 
logistic regression, gradient boosting machine, AdaBoost, random forests and 
factorization machine. Then the trained models are tested on the testing set for 
evaluations. The final ensemble model was constructed based on the trained sin-
gle models which are summarized as follows: determine base models for com-
bining; relabel the training set and learn the meta-level model; and use me-
ta-level model to combine the selected base models.  

With the base models determined, the training set that had been used for 
training single models was relabeled, so that a meta-level classifier can be trained 
on this relabeled training set, and it is capable of recognizing the proper base 
model for each testing instance. Similar to calculating the pairwise diversities, 
the new labels are also determined based on ranking and base models are applied 
on the training set rather than the testing set. For simplicity, it is assumed that 
the number of base models is two, and the two base models are logistic regres-
sion and GBM (lr and xgb). Therefore, the new class space consists of two class 
labels (lr and xgb), and the trained meta-level model is a binary classifier. 

The last step of the ensemble model construction is utilizing the trained me-
ta-level model to combine the base models. Figure 5 demonstrates the principle 
of the combination. The meta-level model works as a “consultant” for the un-
known instances, it recommends a proper base model for each unknown in-
stance, and then the recommended base model makes the prediction for this 
unknown instance. By applying this method, all the base models are integrated 
to make predictions for unknown instances. 

4.3. Experiment Design 

The experiments are designed using AUC and F1 score to evaluate the perfor-
mance and overhead that is introduced to the system in terms of time consump-
tion. In addition, both single models and ensemble models are taken into ac-
count for the evaluation. For each single model, the changes in performance are 
traced as its parameters vary. Multiple parameters are selected for each single 
model, and only one of them is tuned each time with other parameters un-
changed. The combination of a set of parameters leading to a relatively best per-
formance for each single model is considered as the best parameters for the single  
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Figure 5. The working principle of the ensemble model. 
 
model. Then single models with best parameters are compared horizontally. 

Four machine learning algorithms (Logistic Regression, AdaBoost, Xgboost 
and Random Forests) are selected to train single models, and the list of tuned 
parameters for these various single models is highlighted as follows: 
• C: Inverse of regularization strength is used to prevent the model from over-

fitting. Smaller values specify stronger regularization; 
• max_iter: the maximum number of iterations for Logistic Regression; 
• n_estimator: the number of constructed decision trees for the tree-based 

models (AdaBoost, Xgboost, Random Forests); 
• learning_rate: a rate indicating the learning rate of loss function solver; 
• max_depth: the maximum tree depth of the constructed decision tree for the 

tree-based models. 

4.4. Results and Analysis 

This section presents the experimental results, which include the evaluation and 
analysis of each of the four selected single models (Logistic Regression, Ada-
Boost, Xgboost, and Random Forests) and a comparison of multiple ensemble 
methods. Note that in this paper, for simplicity only two single models are se-
lected as base models for combining. Three methods of base model selection are 
evaluated and compared, and they are listed as follows: 
• RMSD (Root-mean-square derivation) diversity-based: the two single 

models with highest pairwise RMSD of all are selected as the base models for 
combining; 

• ZOL (Zero-one loss) diversity-based: the two single models with highest 
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pairwise ZOL of all are selected as the base models for combining; 
• Performance-based: the two single models with highest performance (AUC 

and F1 score) of all are selected as the base models for combining. 
In addition, three other ensemble methods are adopted in the paper for com-

parison with the proposed ensemble method, and they are listed as follows: 
• Averaging: final predictions are obtained from averaging the outputs of the 

two base models; 
• Stacking with Logistic Regression as the Meta model: Logistic Regression 

is used as the Meta model. In this case there is a holdout validation dataset 
for base models, and the training set for meta model consists of the outputs 
of the two base models on the validation set (as features) and the original la-
bels (as label); 

• Stacking with Xgboost as the Meta model: same with previous one except 
for Xgboost as Meta model. 

Figure 6 shows the result of the AdaBoost performance for the RBP dataset, 
from which no direct connection was found between the value of AUC and F1 
score. A higher AUC score does not necessarily correspond to a higher F1 score. 
For the RBP dataset, as the value of n_estimator grows, both AUC and F1 score 
increased at first and then decreased, but with the different inflection point. 

Figure 7 shows the result of AdaBoost performance in CIP dataset, from 
which the data suggested that a larger n_estimator leads to a higher AUC score. 
However, as n_estimator grows, the growth of AUC slowed and remained nearly 
constant. On the other hand, a larger learning rate also leads to a better perfor-
mance for both AUC and F1 score on CIP. 

Figure 8 shows the performance of Logistic Regression on RBP dataset. A rel-
atively smaller C (stronger regularization) indicates a very strict penalty on the 
error instance when learning the classifier. It is observed that a smaller C has 
benefits for both AUC and F1 score on RBP. On the other hand, as max_iter in-
creases, a growth in performance is observed to certain extent. For CIP, (see 
Figure 9), it is observed that C contributed less to the overall performance, and 
the impact is relatively random. In addition, since the number of instances is not 
big in CIP dataset and the number of features is also limited, the model com-
pletely converges within 100 iterations. Thus, when max_iter further increases, 
almost no effect is observed to both AUC and F1 score. 

The Figure 10 and Figure 11 show the performance of Xgboost on RBP and 
CIP, respectively. For both RBP and CIP, a relatively lower learning rate is pre-
ferred. Both n_estimator and max_depth represent the complexity of a model, in 
which max_depth indicates the maximum allowable depth of each tree. Nor-
mally, a model with relatively lower complexity could benefit AUC. On the other 
hand, a model with relatively higher complexity could increase F1 score. Espe-
cially in CIP, as shown in Figure 11, a higher max_depth could increase both 
AUC and F1 score. 

Figure 12 and Figure 13 present the performance of Random Forest in RBP  
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Figure 6. AdaBoost performances in RBP. 

 

 
Figure 7. AdaBoost performances in CIP. 

 

 
Figure 8. Logistic regression performances in RBP. 

 

 
Figure 9. Logistics regression performances in CIP. 
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Figure 10. Xgboost performances in RBP. 

 

 
Figure 11. Xgboost performances in CIP. 

 

 
Figure 12. Random forest performances in RBP. 

 

 
Figure 13. Random forest performances in CIP. 
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and CIP datasets. It is observed that the increase in n_estimator helps improve 
AUC. On the contrary, higher F1 scores were obtained with low n_estimator 
values. The increasing value of max_depth has positive impact on both AUC and 
F1 score for both datasets. Note that there is relatively large fluctuation in per-
formance regarding Random Forests in the case of AUC. 

In summary, both the AUC and F1 score results obtained from Xgboost are 
better than that of other methods and AdaBoost does not perform well on F1 
score. On the other hand, it is worth mentioning that the performance of the 
Random Forest on RBP is not stable. The variance of both AUC and F1 score is 
relatively high when the model is trained with the same parameter values several 
times by Random Forest. The general performance of Random Forest is also 
lower than that of those three other models, especially for RBP. These results in-
dicate that Random Forest may not be appropriate for the high complexity data-
sets. 

4.5. Overhead 

Time consumption is considered as a typical overhead regarding any engineer-
ing problem. In this paper, time spent in both learning and predicting is eva-
luated as index for all models. The Figure 14 and Figure 15 show the overhead 
for AdaBoost in RBP and CIP datasets. It can be observed that increasing 
n_estimators leads to a noticeable increase in overhead. On the other hand, in-
creased learning rate seems to contribute less to the computational overhead. 

Figure 16 and Figure 17 present the overhead in Logistic Regression. There is 
little effect by C. This is reasonable as C indicates the degree of penalty rather 
 

 
Figure 14. AdaBoost overhead in RBP. 
 

 
Figure 15. AdaBoost overhead in CIP. 
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Figure 16. Logistic regression overhead in RBP. 

 

 
Figure 17. Logistic regression overhead in CIP. 
 

than the learning rate. When the data size becomes bigger and the complexity is 
higher, then in RBP, max_iter becomes the important determining factor for 
learning time. Different from tree-based methods, the complexity of the Logistic 
Regression model does not increase as the two parameters (C and max_iter) vary. 
Hence, the prediction time was seldom affected, and it always maintains a stable 
state. 

The Figure 18 and Figure 19 show the overhead of Xgboost on RBP and CIP. 
Overall, the increase in learning rate, n_estimator and max_depth may lead to a 
slight increase in overhead over time. However, there is an exception in CIP. The 
growth of learning rate can lead to a decrease of overhead. Since the magnitude 
was too small (<10 ms), this impact is negligible. 

4.6. Best Performance Single Models and Analysis of Ensemble  
Model 

The Figure 20 and Figure 21 show the overhead for Random Forest in RBP and 
CIP. It is observed that both n_estimator and max_depth can affect learning 
time to a large extent, while max_depth has little impact on predicting time, and 
the effect is relatively random. 
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Figure 18. Xgboost overhead in RBP. 

 

 
Figure 19. Xgboost overhead in CIP. 

 

 
Figure 20. Random forest overhead in RBP. 

 

 
Figure 21. Random forest overhead in CIP. 
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In summary, the learning time of Logistic Regression can be extremely high 
on the datasets in large size and high complexity datasets. The same effect for 
AdaBoost but better than Logistic Regression. However, the prediction time of 
Logistic Regression is stable. The complexity of the model has effects for all 
three tree-based models on both learning time and predicting time. On the 
other hand, the overall overhead introduced by Xgboost is low, and a better 
scalability is observed for Xgboost. In addition, all these four single models in-
troduce much less overhead when working on the smaller and simpler dataset 
(CIP). 

The Figure 22 and Figure 23 show the performance comparison among dif-
ferent ensemble methods for both RBP and CIP dataset. As shown in the figures, 
the differences among the single models are larger for RBP than that of CIP. The 
main reason is likely to do with the data size and the complexity of data. In 
summary, Xgboost performs the best for both AUC and F1 score on both RBP 
and CIP. All the four single models can deliver a considerable performance for 
both AUC and F1 score on CIP. 

To determine the base models for combining, pairwise diversities are meas-
ured using two methods: RMSD and ZOL. The diversities in RBP and CIP are 
presented in Table 5 and Table 6 respectively. The base models with the largest 
pairwise diversity value are selected for combination in the ensemble method. 
Also, in this paper, since only 2 single models are selected as base models for 
combining, the Meta model is learnt as a binary classifier. 

In the case of RBP, Logistic Regression and Random Forests are selected as 
base models according to the RMSD diversity, while Logistic Regression and 
AdaBoost are selected according to the ZOL diversity. For CIP, logistic regres-
sion and Xgboost are selected based on RMSD diversity, while AdaBoost and 
random forests are selected in the case of the ZOL diversity. In addition, Ada-
Boost and Xgboost are also selected, since they generate the best performances 
among all the single models for both RBP and CIP. The time for calculating 
RMSD and ZOL is similar on both RBP and CIP. 
 
Table 5. Diversity between single models in RBP. 

Diversity lr & ab lr & xgb lr & rf ab & xgb ab & rf xgb & rf overhead 

RMSD 6719 5969 12827 3773 11,821 11,875 103 s 

ZOL 18,859 5921 15,086 18,292 3987 14,779 101 s 

 
Table 6. Diversity between single models in CIP. 

Diversity lr & ab lr & xgb lr & rf ab & xgb ab & rf xgb & rf overhead 

RMSD 896 1036 759 590 909 907 0.638 s 

ZOL 1458 808 876 1350 2024 944 0.619 s 
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Figure 22. Comparison of single model’s best performance on RBP. 

 

 
Figure 23. Comparison of single model’s best performance on CIP. 

 
This improvement also indicates that the proposed ensemble method has an 

exceptional ability of dealing with imbalanced datasets. Moreover, a higher 
pairwise diversity of combined base models can also lead to a further improve-
ment toward the performance of ensemble model. 

In the following using the results of the single model best performance 
(Figure 22 and Figure 23) as a base, the proposed ensemble method is com-
pared to Averaging, Stacking and the best base model on both RBP and CIP. 
Furthermore, a linear (Logistic Regression) and a non-linear (Xgboost) Meta 
models are both tested for Stacking. 

As can be seen in the Figure 24, the averaging of base models, which are se-
lected based on RMSD diversity, generates a little higher AUC performance re-
sult than the best base model (Logistic Regression). The model from the pro-
posed method based on RMSD diversity also achieves a slightly higher perfor-
mance than that of the best base model (but slightly lower than averaging). 
However, the other two methods, i.e., Stacking (lr) and Stacking (xgb), failed to 

https://doi.org/10.4236/ijis.2018.83003


X. Fan et al. 
 

 

DOI: 10.4236/ijis.2018.83003 69 International Journal of Intelligence Science 
 

further enhance AUC.  
As shown in Figure 25, compared to the best base model (Logistic Regression, 

AdaBoost, and Xgboost) the proposed method and averaging both have in-
creased F1 score for all the three base models. The combination of two single 
models with highest ZOL diversity leads to the highest improvement on F1 score, 
especially for the proposed method (18.5%). All Stacking methods fail to im-
prove the F1 score.  

The Figure 26 and Figure 27 show the comparisons between different en-
semble methods for CIP dataset. Similar to RBP, these ensemble methods do not 
help much in improving AUC score. The proposed method with different base 
model selections all contribute to increase F1 score. Compared to other ensemble 
methods, the proposed method performs better in combining base models using 
diversity. When utilizing the stacking method with linear Meta model, the com-
bination of two single models with highest ZOL diversity shows an obvious neg-
ative impact on AUC result. 
 

 
Figure 24. AUC comparison of different ensemble methods for RBP. 
 

 
Figure 25. F1 score comparison of different ensemble methods for RBP. 
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Figure 26. AUC comparison of different ensemble method for CIP. 
 

 
Figure 27. F1 score comparison of different ensemble method for CIP. 
 

In summary, Averaging and Stacking methods perform slightly better in 
combining single models with best performance while the proposed method 
contributes more to increase F1 score, compared to the other three ensemble 
methods. For RBP, the largest improvement achieved by the proposed ensem-
ble method is around 18.5% on F1 score. This can be very valuable for solving 
practical engineering problems, as the improvement on F1 score means that 
the predictive system can help the merchants reach more real repeat buyers 
with the same cost of promotions. Moreover, this level of improvement is 
achieved using only the offline version training set. The competitors of the 
IJCAI, 2015 [5] competition had more data including the complete offline ver-
sion training set and another online version training set (which is five times 
the offline version). The highest AUC achieved by the champion of the com-
petition [30] is 0.712, while the best AUC for RBP achieved in this paper is 
0.718 and this could be higher with more training data. This is an improve-
ment of roughly 1.0%. 

https://doi.org/10.4236/ijis.2018.83003


X. Fan et al. 
 

 

DOI: 10.4236/ijis.2018.83003 71 International Journal of Intelligence Science 
 

4.7. Overhead of the Ensemble Methods  

The Table 7 and Table 8 show the computational overhead of the ensemble 
methods for both RBP and CIP datasets. It can be observed that the proposed 
ensemble method introduced higher overhead in both relabel and meta-level 
model training, but the time consumption is still within an acceptable range.  

5. Conclusions and Future Work 

In this paper, a novel ensemble method is proposed, which is capable of per-
forming adaptive selection of the best base model for each unknown instance. 
The base models are selected according to the pairwise diversities of all trained 
single models. Two metrics (RMSD and ZOL) are used as the measure of diver-
sity. In addition, a relabeled training set is used for learning a meta-level model, 
which can identify the proper base model for each unknown instance. The re-
labeling is performed according to the behaviors of the base models on the 
training set. Also, four algorithms (AdaBoost, Logistic Regression, Xgboost and 
Random Forest) were used for model selection and relabeling respectively. Fi-
nally, the proposed method is validated on RBP and CIP datasets, and the per-
formance of AUC and F1 score was compared with those of other two existing 
ensemble techniques (Averaging and Stacking). Our main focus is the RBP da-
taset so that we can compare the end results to the IJCAI repeat buyers 2015 
competition [5]. The highest AUC achieved by the champion of the competition 
[30] was 0.712, while the best AUC for RBP achieved in this paper is 0.718 and 
this could be higher with more training data. This is an improvement of roughly 
1.0%. This relatively small improvement is significant considering the arithmetic 
behind the calculation of AUC and the size of our training data.  

Additionally, the proposed ensemble method has an overall performance im-
provement in terms of F1 score, which is considered a more valuable metric in 
practice. There is a significant performance improvement of 18.5% in RBP data-
set when adopting the proposed ensemble method compared to the best base 
model. This improvement can lead to important benefit for merchant by helping 
them reach more repeat buyers with improved return on investment. This im-
provement also indicates that the proposed ensemble method has an exceptional 
ability of dealing with imbalanced datasets. Moreover, a higher pairwise diversity 
of combined base models can also lead to a further improvement toward the 
performance of ensemble model. 

The limitations in this work include the following. The meta-level model is 
trained as a binary classifier, thus, only two base models can be combined. A 
further improvement on performance of ensemble model can be achieved when 
combining more than two base models [32]. Also, only AUC and F1 score are 
used for evaluating the performance and only two types of diversity are meas-
ured for base model selection. Different measurements of diversity could result 
in different combination of base models, thus, more methods for measuring the 
pairwise diversity are needed [33]. 
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Table 7. Ensemble overhead in RBP. 

Base Model 
Proposed Method 

Stacking (lr) Stacking (xgb) 
Relabel Meta Model Training 

lr & rf 411 s 188 s 0.444 s 1.39 s 

lr & ab 341 s 188 s 0.418 s 1.43 s 

ab & xgb 388 s 190 s 0.488 s 1.29 s 

 
Table 8. Ensemble overhead in CIP. 

Base Model 
Proposed Method 

Stacking (lr) Stacking (xgb) 
Relabel Meta Model Training 

lr & xgb 33.8 s 3.45 s 0.278 s 0.323 s 

rf & ab 35.46 s 3.38 s 0.278 s 0.309 s 

ab & xgb 34.77 s 4.46 s 0.255 s 0.291 s 

 
Some potential directions for the future include the following. The combina-

tion of base models could be determined on the basis of predicted probabilities 
from the meta-level model. In this way, bias and variance could be eliminated to 
some extent. For imbalanced dataset, more effort could be apply to finding a so-
lution that increase the performance of meta-level model in minority positive 
instances, rather than overall performance.  
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