
American Journal of Operations Research, 2018, 8, 312-322 
http://www.scirp.org/journal/ajor 

ISSN Online: 2160-8849 
ISSN Print: 2160-8830 

 

DOI: 10.4236/ajor.2018.84018  Jul. 18, 2018 312 American Journal of Operations Research 
 

 
 
 

Computationally Efficient Problem 
Reformulations for Capacitated  
Lot Sizing Problem 

Renduchintala Raghavendra Kumar Sharma, Priyank Sinha, Mananjay Kumar Verma 

Industrial and Management Engineering Department, IIT Kanpur, Kanpur, India 

 
 
 

Abstract 
In this article, we propose novel reformulations for capacitated lot sizing 
problem. These reformulations are the result of reducing the number of va-
riables (by eliminating the backorder variable) or increasing the number of 
constraints (time capacity constraints) in the standard problem formulation. 
These reformulations are expected to reduce the computational time com-
plexity of the problem. Their computational efficiency is evaluated later in this 
article through numerical analysis on randomly generated problems. 
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1. Introduction 

Lot sizing problem aims to optimally utilize the available production resources 
while meeting the demand targets. It is classified as medium-term planning in 
production planning taxonomy. Lot sizing problem formulation depends upon 
the layout and the operating constraints in the production system. In the manu-
facturing industry, we come across many types of production systems. These 
production systems further give rise to different types of lot sizing problems 
(with different constraints and operating conditions) and their solution metho-
dologies. Hence there is a rich literature on lot sizing problem and their solution 
methods. In this article, we restrict our discussion to general dynamic mul-
ti-level capacitated lot sizing problem.  

This problem was first proposed by Billington et al. [1]. It addresses the fol-
lowing scenario: a finite planning horizon is given and is divided into discrete 
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time periods. There is a dynamic demand for items which needs to be satisfied 
for each time period while honoring the production capacity constraints. Prob-
lem aims to develop a production plan over all time periods while minimizing 
the total cost comprising of setup cost, inventory cost, and backordering cost.  

A capacitated lot sizing problem is a well-known NP-hard problem. If the ca-
pacity constraints of the problem are relaxed, then the problem can be solved in 
polynomial time [2]. Many model formulations have been proposed to develop 
an efficient numerical solution. These formulations differ with each other due to 
variables and constraints used. Formulations given in this article belongs to in-
ventory and lot-size (I & L) formulations category, which are among the most 
popular in the literature due to their computational efficiency. These formula-
tions use production quantity and inventory levels as the variables. Relaxation of 
each constraint in the standard I&L model affects the problem structure and 
hence its numerical complexity. Relaxation of capacity constraints decomposes 
CLSP into single-level lot sizing problem popularly known as Wagner-Whitin 
problem [2]. Further, some popular extensions to the standard problem have 
been suggested in the literature, to address certain practical issues. For example, 
Dillenberger et al. [3] have extended the problem to incorporate setup carryover. 
A setup cost and setup time are not incurred if the same item is being produced 
in the next time period, carried forward by the previous period. Our formulation 
incorporates binary variable for setup to address these issues. Binary setup vari-
able to address the carryover of setup to the next period was earlier used by 
Hasse [4], and Surie and Stadtler [5].  

We next discuss certain problem reformulations from the literature which are 
computationally efficient. CLSP can be formulated to assign each production 
quantity to a demand in a specific time period while minimizing the production 
cost. Shortest route formulation was proposed by Eppen and Martin [6] for a 
single level case. It was later extended by Tempelemier and Helber [7] for mul-
ti-level CLSP. Stadtler proposed an improvement in this formulation ([8] [9]), 
which decreases the number of non-negative coefficients. Rosling [10] intro-
duced a formulation based on Plant location problem analogy. This formulation 
was further extended by Maes et al. [11] for the capacitated case of a lot-sizing 
problem. Capacity constraints were included in the original formulation for this 
purpose. Equivalence of Shortest route and SPL formulation in terms of objec-
tive function was shown by Denizel et al. [12]. 

Apart from reformulation, additional inequalities can be added to the problem 
formulation to tighten the bound while reducing the search space. Important 
researches in this category are discussed next. Barany et al. [13] included lot siz-
ing and inventory variables for the single level uncapacitated lot-sizing problem. 
Additional valid constraints are included in the formulation to tighten the con-
vex bound of the uncapacitated lot-sizing problem. Pochet and Wolsey [14]; and 
Clark and Armentano [15] extended the work of Barany [13] for the multi-level 
case. Miller et al. [16] have proposed additional valid inequalities for the capaci-
tated case of a lot-sizing problem. Further Surie and Stadtler [5] have proposed 
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valid inequalities for multi-level capacitated lot sizing problem with set up carry 
over. Setup carryover constraints are redefined to achieve a computational ad-
vantage in this formulation. 

Research in this article is based on the appropriate reformulation of the stan-
dard capacitated lot sizing problem. We state the standard problem formulation 
and then derive three reformulations of the problem by eliminating the backor-
dering variable or/and adding two capacity constraints. Efficacies of these for-
mulations in terms of reduced computational complexity are demonstrated 
through numerical analysis of random problems on GAMS.  

2. Research Methodology 

As stated in the previous section, we intend to evaluate the improvement in 
computational efficiency of the model when the number of decision variables are 
decreased, or constraints are added to tighten the bound of the solution space. 
Model A1 is the reference standard model, which is tinkered to develop model 
A2, A3, and A4 accordingly. In model A2 (proposed later), we have eliminated 
the backordering variable; hence it is expected to be computationally efficient 
when compared with model A1. Similarly, we have added two extra constraints 
(Equation (27), Equation (28)) in our standard model (A1) which is referred to 
as model A3. Further, we eliminate backordering variable while adding two con-
straints in model A1 and refer it to model A4. Hence model A4 is expected to 
perform best among all. Efficacy of each model is evaluated by performing 
paired t-test of the computational time of random problem instances on A1, A2, 
A3, and A4. Branch and bound method is used in GAMS for solving random 
problem optimally by these models. Finally it is concluded in section 6 that most 
computationally efficient formulation should be used solving capacitated lot 
sizing problem. 

3. Problem Formulation/Reformulation 
Table 1. Notations used in the model. 

Indices used 

T Set of time periods. 

t Particular time period such that t T∈ . 

I Set of products to be produced. 

i Particular product such that i I∈ . 

Constants 

itCP  Unit cost of producing i in the period t. 

itCS  Unit cost of setup for the item i in the period t. 

itCINV  Unit cost of holding inventory of item i for period 1. 

itCBO  Unit cost of backordering item i demanded during the period t. 

itCAP  Capacity available to produce item i during the period t. 
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Continued 

tCAPT  Capacity available in time units in the period t. 

itD  Demand for the item i during the period t. 

itPT  Time required for processing the item i. 

iST  Time required for setting up the production for the item i. 

Definition of Variables 

itXP  Number of items i to be produced in the period t. 

itXINV  Number of items i carried as inventory to be produced during the period t. 

itXBO  Number of item i that will be backordered from the period t. 

itYS  Binary setup variable. 

3.1. Model A1 

[ ]
1 1

Minimize * * * *
I T

it it it it it it it it
i t

Z CP XP CS YS CINV XINV CBO XBO
= =

= + + +∑∑  (1) 

Subject to:  

, 1 , 1 ,it i t it it it i tXP XINV XBO D XINV XBO i I t T− −+ + = + + ∀ ∈ ∈      (2) 

( )
1

* *
I

it it i it t
i

PT XP ST YS CAPT t T
=

+ ≤ ∀ ∈∑              (3) 

( )
1

* *
I

it it i it t
i

PT D ST YS CAPT t T
=

+ ≤ ∀ ∈∑              (4) 

,it it itXP CAP YS i I t T≤ ∀ ∈ ∈                   (5) 

1 1

T T

it it
t t

XP D i I
= =

≥ ∀ ∈∑ ∑                      (6) 

0 0iXINV i I= ∀ ∈                        (7) 

0iTXINV i I= ∀ ∈                        (8) 

0 0iXBO i I= ∀ ∈                        (9) 

0iTXBO i I= ∀ ∈                        (10) 

{ }0,1 ,itYS i I t T∈ ∀ ∈ ∈                     (11) 

, , 0 ,it it itXINV XP XBO i I t T≥ ∀ ∈ ∈               (12) 

3.2. Model A2 

[ ]
1 1

1 1
1

1 1

1 1 1 1

Minimize * * *

*

I T

it it it it it it
i t

t tT I

it it it it
t i t t

Z CP XP CS YS CINV XINV

CBO D XINV XP

= =

= = = =

= + +

 
+ + − 

 

∑∑

∑∑ ∑ ∑
   (13) 

Subject to:  
1 1

1 1
1 1

0 ,
t t

it it it
t t

D XINV XP i I t T
= =

+ − ≥ ∀ ∈ ∈∑ ∑           (14) 
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( )
1

* *
I

it it i it t
i

PT XP ST YS CAPT t T
=

+ ≤ ∀ ∈∑           (15) 

,it it itXP CAP YS i I t T≤ ∀ ∈ ∈                 (16) 

1 1

T T

it it
t t

XP D i I
= =

≥ ∀ ∈∑ ∑                   (17) 

0 0iXINV i I= ∀ ∈                     (18) 

0iTXINV i I= ∀ ∈                     (19) 

{ }0,1 ,itYS i I t T∈ ∀ ∈ ∈                   (20) 

, 0 ,it itXINV XP i I t T≥ ∀ ∈ ∈                 (21) 

3.3. Model A3 

[ ]
1 1

Minimize * * * *
I T

it it it it it it it it
i t

Z CP XP CS YS CINV XINV CBO XBO
= =

= + + +∑∑ (22) 

Subject to:  

, 1 , 1 ,it i t it it it i tXP XINV XBO D XINV XBO i I t T− −+ + = + + ∀ ∈ ∈   (23) 

( )
1

* *
I

it it i it t
i

PT XP ST YS CAPT t T
=

+ ≤ ∀ ∈∑            (24)  

( )
1

* *
I

it it i it t
i

PT D ST YS CAPT t T
=

+ ≤ ∀ ∈∑             (25) 

,it it itXP CAP YS i I t T≤ ∀ ∈ ∈                  (26) 

( )
1 1 1

* *
I T T

it it i it t
i t t

PT D ST YS CAPT
= = =

+ ≤∑∑ ∑              (27) 

( )
1 1 1

* *
I T T

it it i it t
i t t

PT XP ST YS CAPT
= = =

+ ≤∑∑ ∑             (28) 

1 1

T T

it it
t t

XP D i I
= =

≥ ∀ ∈∑ ∑                   (29) 

0 0iXINV i I= ∀ ∈                     (30) 

0iTXINV i I= ∀ ∈                     (31) 

0 0iXBO i I= ∀ ∈                     (32) 

0iTXBO i I= ∀ ∈                     (33) 

{ }0,1 ,itYS i I t T∈ ∀ ∈ ∈                   (34) 
, , 0 ,it it itXINV XP XBO i I t T≥ ∀ ∈ ∈             (35) 

3.4. Model A4 

[ ]
1 1

1 1
1

1 1

1 1 1 1

Minimize * * *

*

I T

it it it it it it
i t

t tT I

it it it it
t i t t

Z CP XP CS YS CINV XINV

CBO D XINV XP

= =

= = = =

= + +

 
+ + − 

 

∑∑

∑∑ ∑ ∑
  (36) 
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Subject to:  
1 1

1 1
1 1

0 ,
t t

it it it
t t

D XINV XP i I t T
= =

+ − ≥ ∀ ∈ ∈∑ ∑           (37) 

( )
1

* *
I

it it i it t
i

PT XP ST YS CAPT t T
=

+ ≤ ∀ ∈∑          (38) 

,it it itXP CAP YS i I t T≤ ∀ ∈ ∈                  (39) 

( )
1 1 1

* *
I T T

it it i it t
i t t

PT D ST YS CAPT
= = =

+ ≤∑∑ ∑              (40) 

( )
1 1 1

* *
I T T

it it i it t
i t t

PT XP ST YS CAPT
= = =

+ ≤∑∑ ∑             (41) 

1 1

T T

it it
t t

XP D i I
= =

≥ ∀ ∈∑ ∑                    (42) 

0 0iXINV i I= ∀ ∈                     (43) 
0iTXINV i I= ∀ ∈                     (44) 

{ }0,1 ,itYS i I t T∈ ∀ ∈ ∈                   (45) 

, 0 ,it itXINV XP i I t T≥ ∀ ∈ ∈                 (46) 

Problem notations are tabulated in Table 1. Equation (1), Equation (13), Eq-
uation (22), and Equation (36) minimize the total production cost of the system 
in model A1, A2, A3, and A4 respectively. Equation (2), Equation (14), Equation 
(23), and Equation (37) are the state equations as they ensure that the total 
quantities in a particular time period is a function of total quantities carried 
forward from the preceding time period while satisfying demand. It must be 
noted that in model A2 and A4, the backorder variable has been eliminated from 
the model by appropriate substitution (backorder variable itXBO , has been 
eliminated by substituting it in terms of other decision variables from Equation 
(2). Its value has been substituted in the objective function Equation (13) in 
model A2 and objective function Equation (36) in model A4). These changes are 
reflected in Equation (23) and Equation (37). Reduction in number of variables 
improves the time complexity of the model. Equation (3), Equation (4), Equa-
tion (15), Equation (24), Equation (25), Equation (38), Equation (40), and Equa-
tion (41) are the time capacity constraints. They ensure that production of the 
items, and demand satisfied (through production) in a particular time period 
does not violate the production time available in that time period. Similarly, Eq-
uation (5), Equation (16), Equation (26), and Equation (39) are the production 
capacity constraints. These constraints ensures that capacity constraints in terms 
of production resources are not violated in any time period. Equation (27), Equ-
ation (28), Equation (40), and Equation (41) are the additional capacity con-
straints added in model A3, and A4 for tightening the bound and subsequently 
achieving computational advantage as discussed earlier. These constraints are 
derived from constraint Equation (24) and Equation (25) by extending the time 
capacity constraints over the entire time horizon T. It must be noted that Equa-
tion (24) and Equation (25) ensures the time capacity constraints are honored 
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only for individual time period. Equation (6), Equation (17), Equation (29), and 
Equation (42) ensures that demand is satisfied in each period. Equations (7)-(10), 
Equation (18), Equation (19), Equations (30)-(33), Equation (43), Equation (44) 
sets the initial and final conditions (boundary conditions) over the production 
horizon. Equation (11), Equation (12), Equation (20), Equation (21), Equation 
(34), Equation (35), Equation (45), Equation (46) are the binary and non-nega- 
tivity constraints for decision variables. 

4. Numerical Experiments 

40 problems each of size 5 × 5 and 6 × 6 are randomly generated in GAMS. 5 × 
5, 6 × 6 problems denotes the lot sizing problem to find an optimum production 
plan of 5 items over 5 time periods, and 6 items over 6 time periods respectively. 
Only feasible problems are retained for data analysis (6 × 6—29 problems, 5 × 
5—31 problems). Value of constants in these problems is randomly generated 
according to normal distribution (Table 2) and uniform distribution (Table 3).  
 
Table 2. Random data generation (Normal distribution). 

Constant Mean Standard Deviation 

Unit cost of set up 100 2 

Unit cost of Back Order 100 2 

Unit Cost of Production 200 2 

Unit Cost of Holding Inventory 200 2 

Capacity (Production resource) 30 2 

Demand 10 2 

Capacity (time) 400 2 

 
Table 3. Random data generation (Uniform Distribution). 

Constant Lower Limit Upper Limit 

Production time 1 5 

Set up time 2 4 

5. Data Analysis 

All the problems are implemented in GAMS. Solution to these sample problems 
are tabulated in Appendix. According to t-test performed on data, problem A3 
is computationally efficient to problem A1 with a statistical significance of 
0.009317 (p-value). Similarly A4 is better than A2 with a statistical significance 
of 0.003071 (p-value). Model A2 is computationally more efficient than model 
A1 with a statistical significance of 0.000695 (p-value). Model A4 is computa-
tionally more efficient than model A3 with a statistical significance of 0.00473 
(p-value).  

6. Conclusion 

In this article, we have demonstrated the effect of reducing the number of va-
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riables, increasing the number of constraints on the computational time of lot 
sizing problem through 4 models. We infer from our data analysis that model 
A4 is the most computationally efficient model, and hence is recommended to 
be used for solving capacitated lot sizing problem. 
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Appendix: Data Analysis Results 
(a) 

S. No. 
A1 (6 × 6) A2 (6 × 6) A3 (6 × 6) A4 (6 × 6) 

Z-Value Time Z-Value Time Z-Value Time Z-Value Time 

1 80148 0.075 80148 0.063 80148 0.068 80148 0.068 

2 79344 0.079 79344 0.072 79344 0.069 79344 0.067 

3 75032 0.071 75032 0.076 75032 0.072 75032 0.072 

4 75696 0.068 75696 0.068 75696 0.063 75696 0.073 

5 73512 0.079 73512 0.071 73512 0.069 73512 0.07 

6 79140 0.075 79140 0.069 79140 0.066 79140 0.067 

7 71656 0.072 71656 0.075 71656 0.069 71656 0.064 

8 72909 0.077 72909 0.066 72909 0.066 72909 0.068 

9 75998 0.083 75998 0.07 75998 0.064 75998 0.071 

10 76860 0.078 76860 0.071 76860 0.063 76860 0.069 

11 71700 0.07 71700 0.076 71700 0.068 71700 0.066 

12 80075 0.066 80075 0.07 80075 0.065 80075 0.074 

13 82494 0.077 82494 0.072 82494 0.075 82494 0.069 

14 83838 0.07 83838 0.069 83838 0.073 83838 0.069 

15 71553 0.072 71553 0.072 71553 0.069 71553 0.067 

16 76673 0.08 76673 0.067 76673 0.07 76673 0.07 

17 75125 0.079 75125 0.064 75125 0.073 75125 0.069 

18 79013 0.071 79013 0.072 79013 0.067 79013 0.062 

19 74611 0.075 74611 0.07 74611 0.076 74611 0.076 

20 75663 0.066 75663 0.071 75663 0.069 75663 0.068 

21 74426 0.081 74426 0.071 74426 0.068 74426 0.065 

22 76040 0.077 76040 0.067 76040 0.062 76040 0.067 

23 72944 0.076 72944 0.074 72944 0.071 72944 0.074 

24 76918 0.082 76918 0.071 76918 0.064 76918 0.071 

25 76280 0.082 76280 0.067 76280 0.071 76280 0.065 

26 77867 0.075 77867 0.068 77867 0.069 77867 0.064 

27 79687 0.069 79687 0.064 79687 0.071 79687 0.068 

28 75051 0.07 75051 0.068 75051 0.068 75051 0.069 

29 73355 0.08 73355 0.07 73355 0.069 73355 0.071 
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(b) 

S. No. 
A1 (5 × 5) A2 (5 × 5) A3 (5 × 5) A4 (5 × 5) 

Z-Value Time Z-Value Time Z-Value Time Z-Value Time 

1 56134 0.081 56134 0.067 56134 0.071 56134 0.069 

2 55923 0.065 55923 0.072 55923 0.069 55923 0.077 

3 51525 0.068 51525 0.069 51525 0.064 51525 0.07 

4 52412 0.068 52412 0.07 52412 0.065 52412 0.076 

5 51263 0.068 51263 0.073 51263 0.071 51263 0.068 

6 54756 0.067 54756 0.077 54756 0.074 54756 0.073 

7 50142 0.072 50142 0.084 50142 0.07 50142 0.071 

8 49802 0.075 49802 0.083 49802 0.071 49802 0.069 

9 52143 0.068 52143 0.064 52143 0.064 52143 0.066 

10 52244 0.067 52244 0.078 52244 0.069 52244 0.077 

11 49810 0.066 49810 0.067 49810 0.06 49810 0.066 

12 54370 0.075 54370 0.07 54370 0.07 54370 0.073 

13 58850 0.081 58850 0.074 58850 0.069 58850 0.073 

14 59260 0.078 59260 0.071 59260 0.073 59260 0.063 

15 49578 0.068 49578 0.069 49578 0.072 49578 0.069 

16 49897 0.069 49897 0.07 49897 0.07 49897 0.067 

17 52789 0.078 52789 0.065 52789 0.07 52789 0.065 

18 52271 0.062 52271 0.07 52271 0.07 52271 0.075 

19 57789 0.07 57789 0.072 57789 0.068 57789 0.07 

20 50534 0.075 50534 0.078 50534 0.068 50534 0.065 

21 50269 0.075 50269 0.072 50269 0.071 50269 0.069 

22 52846 0.071 52846 0.073 52846 0.066 52846 0.068 

23 49286 0.082 49286 0.068 49286 0.066 49286 0.067 

24 53103 0.073 53103 0.082 53103 0.071 53103 0.065 

25 52386 0.072 52386 0.076 52386 0.078 52386 0.068 

26 55913 0.081 55913 0.069 55913 0.064 55913 0.069 

27 52320 0.07 52320 0.069 52320 0.071 52320 0.065 

28 51630 0.073 51630 0.084 51630 0.065 51630 0.068 

29 50493 0.07 50493 0.069 50493 0.073 50493 0.064 

30 50142 0.072 50142 0.084 50142 0.07 50142 0.071 

31 52789 0.078 52789 0.065 52789 0.07 52789 0.065 
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