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Abstract 
Generative Models have been shown to be extremely useful in learning fea-
tures from unlabeled data. In particular, variational autoencoders are capable 
of modeling highly complex natural distributions such as images, while ex-
tracting natural and human-understandable features without labels. In this 
paper we combine two highly useful classes of models, variational ladder au-
toencoders, and MMD variational autoencoders, to model face images. In 
particular, we show that we can disentangle highly meaningful and interpret-
able features. Furthermore, we are able to perform arithmetic operations on 
faces and modify faces to add or remove high level features. 
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1. Introduction 

Generative Models have been highly successful in a wide variety of tasks by ge-
nerating new observations from an existing probability density function. These 
models have been highly successful in various tasks such as semi-supervised 
learning, missing data imputation, and generation of novel data samples. 

Variational Autoencoder is a very important class of models in Generative 
Models [1] [2]. These models map a prior on latent variables to conditional dis-
tributions on the input space. Training by maximum likelihood is intractable, so 
a parametric approximate inference distribution is jointly trained, and surpri-
singly, jointly training the generative model for maximum likelihood, and the 
inference distribution to approximate the true posterior is tractable, through a 
“reparameterization trick” [1]. These models have been highly successful in 
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modeling complex natural distributions such as natural images. In addition it 
has been observed that these models can make use of the latent space in a mea-
ningful manner. For example, it can learn to map different regions of the latent 
variable space into different object classes. 

Ladder Variational Autoencoders [3] have been recently proposed to further 
augment this ability. In particular, it is able to disentangle high level and low 
level features. It utilizes the assumption that high level features require deeper 
networks to model, so that latent variables that are connected with the input 
with deep neural networks learn complicated, high level features while low level 
features are represented by low level variables. 

It has also been observed that the evidence lower bound (ELBO) used in tradi-
tional variational autoencoders suffers from uninformative latent feature prob-
lem [4] where these models tend to under-use the latent variables. Multiple me-
thods have been proposed to alleviate this [4] [5]. In particular, [5] showed that 
this problem can be avoided altogether if an MMD loss is used instead of the KL 
divergence in the original ELBO variational autoencoders. 

In this paper we combine these ideas to build a variational ladder autoencoder 
with MMD loss instead of KL divergence, and utilize this model to analyze of 
structure and hidden features of human faces. As an application we use this 
model to perform “arithmetic” operations on faces. For example, we can per-
form arithmetic operations such as: men with pale skin − men with dark skin + 
women with dark skin = women with pale skin. The way we do this is by per-
forming arithmetic operations in the feature space, and transform the results 
back into image space. This can be potentially useful in games and virtual reality 
where arbitrary features can be added to a face through the above process of 
analogy. This further demonstrates the effectiveness of our model in learning 
highly meaningful latent features. 

2. Model Definition 
2.1. Generative Modeling and Variational Autoencoders 

Generative models seek to model a distribution pdata (x) in some input space X. 
The model is usually a parameterized family of distribution pθ(x) trained by 
maximum likelihood 

( ) ( )max Epdata logx p xθ θ    

Intuitively this encourages the model distribution to place probability mass 
where pdata is more likely. 

Variational autoencoder (Kingma & Welling, 2013; Jimenez Rezende et al., 
2014) is an important class of generative models. It models a probability distri-
bution by a prior p(z) on a latent space Z, and a conditional distribution p(x|z) 
on. Usually p(z) is a fixed simple distribution such as white Gaussian N(0, I), 
and p(x|z) is parameterized by a deep network with parameters θ, so we denote 
it as pθ(x|z). The model distribution is defined by 
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( ) ( ) ( )
z

p x p x z p z dzθ θ= ∫  

However maximum likelihood training is intractable because ( )p xθ  re-
quires an integration which is very difficult to compute. The solution is by joint-
ly defining an inference distribution ( )q z xϕ  parameterized by φ to approx-
imate ( )p z xθ . Jointly training both criteria give the following optimization 
function, called the evidence lower bound (ELBO) 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

LELBO KL KL pdata

             KL  log

q z x p z x x p x

q z x p z Eq z x p z x

ϕ θ θ

ϕ ϕ θ

= − −

 = − +  
 

where KL denotes the Kullback-Leibler divergence. Intuitively this model 
achieves its goal by first applying an “encoder” ( )q z xϕ  to the input, then 
“decode” the generated latent code by ( )p x zθ  and compare the generated re-
sults with the original data x using the cost function ( )log p z xθ . 

2.2. Ladder Variational Autoencoder 

Ladder variational autoencoders [3] add additional structure into the latent code 
by adding multiple layers to the model. The model is shown in Figure 1. High 
level latent features are connected with the input through a deep network while 
low level features are connected through a shallow network. The intuition is that 
complicated features require deeper networks to model, so that high level latent 
variables will be used to model the high-level features, and vice versa. This 
makes it possible to disentangle simple and sophisticated features. 

2.3. MMD Regularization 

It has been observed that the ( ) ( )( )KL q z x p zϕ  term in ELBO criteria result 
in under-used latent features (Chen et al., 2016; Zhao et al., 2017a). A solution is 
to use the MMD (q(z), p(z)) instead, which is defined by 
 

 
Figure 1. Structure of VLAE (variational ladder autoencoder). Here circles are stochastic 
variables and diamonds are deterministic variables. 

https://doi.org/10.4236/iim.2018.104009


H. J. Xu 
 

 

DOI: 10.4236/iim.2018.104009 111 Intelligent Information Management 

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0 0 0 0

0

MMD , , , , ,

                               2 , , 0

q z p z Eq z q z k z z Ep z p z k z z

Ep z q z k z z

   = +   
−   

 

where k(z, z0) is a kernel function such as Gaussian. ( )
2 2
2, z zk z z e σ′− −′ =  Intui-

tively k(z, z0) measures the distance between z and z0, and Ep(z), q(z0) [k(z, z0)] 
measures the average distance between samples from distributions p(z) and 
q(z0). If two distributions are identical, then the average distance between sam-
ples from p, samples from q, and samples from p, q respectively, should all be 
identical, so MMD distance should be zero. This can be used to replace 

( ) ( )( )KL q z x p zϕ  in ELBO VAE to achieve better properties. 

2.4. MMD Variational Ladder Autoencoder 

We apply MMD regularization to Variational Ladder Autoencoders. In particu-
lar, we regularize all the latent features respectively 

( ) ( ) ( ) ( )( )
( ) ( )( )

0 0

1 1

LMMD VLAE log MMD ,

                            ,

Eq z x p x z p z q z

MMD p z q z

ϕ θ ϕ

ϕ

 − = − 

−
 

This combines the advantage of both models and learns meaningful hierar-
chical features. 

3. Experiments 

To verify the effective of our method we performed experiments on MNIST and 
CelebA [6]. We visualize the manifold learned for each dataset, and observe ex-
tremely rich disentangled features. 

Samples from MNIST are shown in Figure 2. We are able to disentangle visu-
al features such as digit width, inclination, digit identity, etc. For example, bottom 
layer represents style of the stroke, such as the width. Middle layer represents in-
clination while top layers mostly represent digit identity. 

Samples from CelebA are shown in Figure 3. We are able to disentangle fea-
tures such as lighting, hair style, face identity and pose. 

4. Arithmetic Operations on Faces 

We observed that by adding or subtracting values from latent code, we can modify  
 

 
Figure 2. Training results over MNIST after 1 hour on a GTX1080Ti. Each plot is ob-
tained by sampling one layer uniformly in the [−3, 3] range, and other layers randomly. 
Left: Represents stroke style and width. Middle: Represents digit inclination. Right: 
Represents digit identity. 
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Figure 3. Training results over CelebA after roughly 8 hours on a GTX1080Ti. Left: 
Represents lighting and white balance. Middle Left: Represents hair color, face color, and 
minor variations of facial feature. Middle Right: Represents face identity. Right: Represents 
pose and expression of the face. 
 

 
Figure 4. Faces of the fourth column are acquired by subtracting the second column from 
first column, then by adding the third column to the first column. 
 
certain properties of faces. In addition, we can blend multiple faces together by 
adding or subtracting latent codes from or to each other. 

We observed convincing results from these experiments (as shown in Figure 
4). The final result of fourth column has shown various arithmetical properties. 
For example, faces of colors and brightnesses on all images are explicitly represented 
by the arithmetic result: the forth images share similar colors and brightnesses 
with the first and the third images, while these properties differ from the second 
images. Moreover, more complicated features are also learned and applied, the 
most specific one being the facial expression. 
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5. Conclusions/Discussion 

In this paper we proposed MMD Variational Ladder Autoencoder and its appli-
cations on various tasks, especially on facial recognition and modification on the 
CelebA dataset. It is capable of disentangling various features of human face and 
also capable of modifying or blending different faces. 

Possible future works might include further discussion on the accuracy and 
readability of its latent code, its overfitting tendency, and its application on more 
unlabeled datasets. 
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