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Abstract 
In this paper, we study the inertial manifolds for a class of the Kirchhoff-type 
equations with strongly damped terms and source terms. The inertial mani-
fold is a finite dimensional invariant smooth manifold that contains the global 
attractor, attracting the solution orbits by the exponential rate. Under appro-
priate assumptions, we firstly exert the Hadamard’s graph transformation 
method to structure a graph norm of a Lipschitz continuous function, and 
then we prove the existence of the inertial manifold by showing that the spec-
tral gap condition is true. 
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1. Introduction 

In this paper, we concerned the equation: 
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 (1.1) 

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω , 1β >  is a 
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constant and ( )( )1,2if x i =  is a given source term. Moreover,  

( )22 mM u v∇ + ∇  is a scalar function. Then the assumptions on M and
( ),ig u v  will be specified later. 
Nowadays, the study on the complexity of the space-time of high dimensional 

and infinite dimensional dynamical systems has gradually become the focus of 
nonlinear scientific research. In recent years, the inertial manifold has been 
found in the researches of the long time behavior of the solution and the attrac-
tor structure. The inertial manifold is a tool to describe the interaction between 
the low frequency components and the high frequency components [1]. When 
the flow has an inertial manifold, its high frequency description depends on the 
low frequency, and it contains attractors and exponentially attracts solution of 
the track, which realizes that the infinite dimensional dynamical system is re-
duced to a finite dimensional dynamical systems of the finite dimensional inva-
riable Lipschitz manifold. Therefore, the inertial manifold is a powerful tool to 
study the long-time behavior of nonlinear dissipative systems and expose the 
real or seemingly chaotic structure of nonlinear dynamics. 

In addition, the study of inertial manifold is of great significance. The central 
idea of the methods that people use to solve practical problems such as Galerkin 
method, Cellular automaton and Coupled map, are to discuss the infinite di-
mensional problem into a finite dimensional problem. So, the inertial manifold 
is of great significance to the development of nonlinear science. 

In 1988, the concept of inertial manifold was first proposed in the study of in-
finite dimensional dynamical system by R. Temam, C. Foias and Sell G.R. [2]. 
They considered the equation as following: 

( ) ( ), 0tu Au B u u C u f+ + + − = .                   (1.2) 

where Au is a linear unbounded self-adjoint operator on H with domain ( )D A
dense in H. 

In 2010, Guoguang Lin and Jingzhu Wu [3] studied the existence of the iner-
tial manifold of Boussinesq equation: 
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      (1.3) 

where ( )2 20,π , 0, 2R t αΩ = ∈ > > . 
In 2016, Ling Chen, Wei Wang and Guoguang Lin [4] established the expo-

nential attractors and inertial manifolds of the higher-order Kirchhoff-type equ-
ation: 

( ) ( )( ) ( ) ( )
2m mm

tt tu u u u g u f xφ+ −∆ + ∇ −∆ + = .          (1.4) 

There are many researches on inertial manifolds for nonlinear wave equations 
(see [5] [6]). Concerning the inertial manifold, many difficulties are solved. So 
we take advantage of Hadamard’s graph transformation method in this paper. 

The paper is arranged as follows. In Section 2, some assumptions, notations 
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and lemmas are stated. In Section 3, the existence of the inertial manifold is es-
tablished. 

2. Preliminaries 

For convenience, we first introduce the following notations: 

( ) ( ) ( ) ( ) ( ) ( )2 2 1 1
0 0 0 0 0 0 0,m m mX H H H H X H H= Ω × Ω × Ω × Ω = Ω × Ω , 

( )1,2,ic i = 
 denotes different positive constants, ( ),⋅ ⋅  and ⋅  are the inner 

product and norm of ( )2L Ω , m−⋅  is the norm of ( )mH − Ω . 
Next, we give some assumptions and definition needed in the proof of our re-

sults. 

( ) ( ) ( ) ( )1
1 , , 1, 2iA g u v C i∈ Ω = . 

( ) ( ) ( )
2 0 1

1
4

kA m M s m
β µ

ε
−

≤ ≤ ≤ ≤ . 

Definition 2.1. [7] Let :A X X→  be an operator and assume that
( ),bF C X X∈  satisfies the Lipschitz condition 

( ) ( ) , ,F XX
F U F V l U V U V X− ≤ − ∈ .            (2.1) 

The operator A is called satisfy the spectral gap condition relative to F, if the 
point spectrum of the operator A can be divided into two parts 1σ  and 2σ , of 
which 1σ  is finite, and such that, if 

{ } { }1 1 2 2sup Re , inf Reλ λ σ λ λ σΛ = ∈ Λ = ∈ ,      (2.2) 

and 

{ }, 1, 2i j j iX span w iλ σ= ∈ = .                (2.3) 

Then 

2 1 4 FlΛ −Λ > ,                        (2.4) 

and the orthogonal decomposition 1 2X X X= ⊕  holds with continuous or-
thogonal projections 1 1 2 2: , :P X X P X X→ → . 

Lemma 2.1. [8] Let the eigenvalues , 1j jµ± ≥  be arranged in nondecreasing 
order. For all m N∀ ∈ , there exists N m≥  such that Nµ

−  and 1Nµ
−
+  are con-

secutive. 

3. The Inertial Manifold 

Equation (1.1) is equivalent to the following one order evolution equation: 

( )tU AU F U+ = ,                     (3.1) 

where ( )T, , , , ,t tU u v p q X p u q v= ∈ = = , 
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( ) ( ) ( ) ( ){ } ( ) ( )2 2 1
0 0 0 0, m mD A u v H H H H= ∈ Ω × Ω × Ω × Ω . 

We consider the usual graph norm in X, as follows 

( ) ( )( ) ( )( ) ( ) ( )1 1 1 1, , , , ,m m
XU V M s u u M s v v p p q q= ∇ ∇ + ∇ ∇ + + , (3.3) 

where ( ) ( )T T
1 1 1 1 1 1 1 1, , , , , , , , , , ,U u v p q V u v p q X u v p q= = ∈  respectively represent 

the conjugation of 1 1 1 1, , ,u v p q . Evidently, the operator A is monotone, for 
( )U D A∈ , we obtain 
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So, ( ), XAU U  is a nonnegative and real number. 
In order to determine the eigenvalues of A, we consider the eigenvalues equa-

tion: 

( )T, , , ,AU U U u v p q Xλ= = ∈ .               (3.5) 

That is 
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Substitute (3.6), (3.7) into (3.8), (3.9), we obtain 
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Replacing ,u v  with ,k ku v , taking ,u v  inner product with the Equations 
(3.9), (3.10), and adding them together, we have 

( ) ( )( ) ( )2 22 2 2 2 0k m m
k k k k k k k ku v M s u v u vλ λ β+ + ∇ + ∇ − ∇ + ∇ = . (3.11) 

(3.11) is regard as a quadratic equation with one unknown about kλ , so we get 

( )2 2 4
2

k k k
k

M sβµ β µ µ
λ± ± −

= ,                (3.12) 

for 1k∀ ≥ , we have 

2 2 1k ku v+ = , 
22 m

k k ku v µ∇ + ∇ = , 
2 21 1m

k k
k

u v
µ

− −∇ + ∇ = .  (3.13)  

and kµ  is non-derogatory. If ( )4
1

k

M s
β

µ
≥ + , because of 1β > , then
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( )2 4

k

M s
β

µ
≥ , we can get the eigenvalues of A are all positive and real numbers.  

The corresponding eigenfunction is as follows 

( ), , ,k k k k k k kU u v u vλ λ± ± ±= − − .                  (3.14) 

Lemma 3.1. ( )0 0: , 1, 2ig X X i→ =  is uniformly bounded and globally Lip-
schitz continuous. 

Proof. ( ) ( )1 1 0, , ,u v u v X∀ ∈ , by ( )1A , we have 

( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )( )

0

1
0 0

11 20 0

13 0 0

1 1

1 1

1 1

1 1

, ,

, ,

,

m

m

m

i i X

iu ivH H

i iH H

i H H

g u v g u v

g v u u g u v v

c u u c v v

c u u v v

ξ η
Ω Ω

Ω Ω

Ω Ω

−

≤ − + −

≤ − + −

≤ − + −

        (3.15) 

where 

{ } ( ) ( )
3 1 2 1 1 2 1max , , 1 , 1i i ic c c u u v vξ θ η θ= = + − = + − . 

Let 
3i il c= , then il  is Lipschitz coefficient of ( ),ig u v . 

Theorem 3.1. il  is Lipschitz constant of ( ),ig u v , when ( )4
1

k

M s
β

µ
≥ + , set 

1N N∈ , such that 1N N≥ , we obtain 

( ) ( )
( )1 1 1

1 1

1 1 41 4 1
2 2 1 4

N N
lm

m
µ µ β µ

β µ
+

 − − − − ≥ + 
  − −

,  (3.16) 

where { }1 2max ,l l l= . By ( )2A  and Lemma 3.1, the operator A satisfies the 
spectral gap condition of (2.4). 

Proof. when ( )4
1

k

M s
β

µ
≥ + , the eigenvalues of A are all positive and real  

numbers, meanwhile { }
1k k

λ−

≥
 and { }

1k k
λ+

≥
 are increasing order. 

Next, we divided the whole process of proof into four steps. 
Step 1 By Lemma 2.1, since { }kλ

±  is nondecreasing order, so there exists N, 
such that Nλ

−  and 1Nλ
−
+  are continuous. Then the eigenvalues of A are separate 

as 

{ }{ } { }{ }1 2, max , , , min ,j k j k N j k j N j kσ λ λ λ λ λ σ λ λ λ λ λ λ− + − + − − ± − − + ±= ≤ = ≤ ≤ . (3.17) 

Step 2 The corresponding X is decomposed into 

{ } { }1 1 2 2, , , , ,j k j k j k j kX span U U X span U Uλ λ σ λ λ σ− + − + − ± − ±= ∈ = ∈ .   (3.18) 

We aim at madding two orthogonal subspaces of X and verifying the spectral 
gap condition (2.4) is true when 1 2 1,N Nλ λ− −

+Λ = Λ = . Therefore, we further de-
compose 2 c RX X X= ⊕ , where 

{ } { },c j j N j R k N kX span U X span Uλ λ λ λ λ− − − + ± − ±= ≤ < = < .   (3.19) 

Set 1N cX X X= ⊕ , in order to verify the 1X  and 2X  are orthogonal, we 
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need to introduce two functions : NX RΦ → , : RX RΨ → . 
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( ) ( ) ( )( )
( ) ( ) ( )

1 1
1 1 1 1

1 1
1 1 1

1 1 1

, , 4 , , ,

+4 , , 4 ,

, , 4 , ,

m m

m m m m m m

U V u u M s u u p u p u

p p v v M s v v

q v q v q q

β

β

− −

− −

− − − −

Φ = ∇ ∇ − + ∇ ∇ + ∇ ∇

∇ ∇ + ∇ ∇ −

+ ∇ ∇ + ∇ ∇ + ∇ ∇

 (3.20) 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 1
1 1 1

1 1
1 1 1

1 1

, 2 , , ,

, +2 , ,

, , ,

m m m m

m m m m

U V u u p u p u

p p v v q v

q v q q

β β β

β β β

β β

− −

− − −

− − −

Ψ = ∇ ∇ − ∇ ∇ − ∇ ∇

+ ∇ ∇ ∇ ∇ − ∇ ∇
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  (3.21) 

where ,U V X∈  are defined before. 
Let ( ), , , NU u v p q X= ∈ , by ( )2A , then 
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 (3.22) 

Since for 
( )

1

1
,

4
kk m

β µ−
∀ ≤ , therefore ( ), 0U UΦ ≥ , for NU X∀ ∈ , then  

Φ  is positive definite. 
Similarly, for RU X∈ , we have 
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 (3.23) 

So, for ( ), , 0RU X U U∀ ∈ Ψ ≥ , the Ψ  is also positive definite. 
Next, we need to define a scale product in X 

( ) ( ), , ,N N R RX
U V P U P V P U P V= Φ +Ψ ,          (3.24) 

where NP  and RP  are projection: ,N RX X X X→ →  respectively, for con-
venience, we rewrite (3.24) as follows 

( ) ( ), , ,
X

U V U V U V= Φ +Ψ .               (3.25) 

We will proof that two subspaces X1 and X2 in (3.18) are orthogonal. In fact, 
we only need to show XN and XC are orthogonal, that is 

( ), 0 ,j j j N j cX
U U U X U X− + − += ∀ ∈ ∈ .         (3.26) 

By (3.20), (3.25), we have 
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− + + + +( )2
.

m−

(3.27) 

By (3.12), we can get ( ),j j j j j jM sλ λ βµ λ λ µ+ − − ++ = = , therefore 

( ), , 0j j j jX
U U U U− + − += Φ = .                 (3.28) 

Step 3 Further, we estimate the Lipschitz constant Fl  of ( )F U  (3.2). Ac-
cording to Lemma 3.1, 3 3:ig X X→  is Lipschitz continuous with Lipschitz 
constant il . Let ( ): 1, 2i iP X X i→ =  is orthogonal projection. From (3.22), 
(3.23) and (3.24), we have 

( ) ( )
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( ) ( )
( ) ( )

2
1 1 2 2

2 2 2 2
1 1 1 1 1 2 2

2 2 2 2
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     (3.29) 

Given ( ) ( )T T
1 1 1 1, , , , , , ,U u v p q V u v p q X= = ∈ , we have 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( )
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3 3
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1 4
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l U V
mβ

− = − + −

≤ − + − + − + −

≤ − + −

≤ −
− −

  (3.30) 

where { }1 2max ,l l l= . 
So, we obtain 

( ) 11 4
F

ll
mβ

≤
− −

.                   (3.31) 

Step 4 Now, we will show the spectral gap condition (2.4) holds. 
Since 1 2 1,N Nλ λ− −

+Λ = Λ = , then 

( ) ( ) ( )2 1 1 1
1 1 1
2 2N N N N Q N Q Nλ λ µ µ− −

+ +Λ −Λ = − = − + − + ,     (3.32) 

where ( ) ( )2 2 4N NQ N M sβ µ µ= − . 
Let 1 0N > , for 1N N∀ ≥ , then 

( ) ( ) ( )
2

1
1

1 1 1 1

41
1 4 1 4N

mQ N
m m

β
β µ µ β µ

= − −
− − − −  

, we can obtain 
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( ) ( ) ( ) ( )
( ) ( ) ( )( )

1 1

1 1 1 1 1

1 1 4

1 4 1

N N

N N

Q N Q N m

m Q N Q N

β µ µ

β µ µ µ

+

+

− + + − − −

= − − + −
      (3.33) 

From ( )2A , we can easily obtain 

( ) ( ) ( ) ( )( )1 1 1lim 1 1 4 0N NN
Q N Q N mβ µ µ µ+→∞

− + + − − − = . (3.34) 

Then, according to (3.16), (3.31), (3.32) and (3.34), we have 

( ) ( )2 1 1 1 1

1 1

1 1 1 4 1
2 2

4 4 .
( 1) 4

N N

F

m

l l
m

µ µ β µ

β µ

+
 Λ −Λ > − − − − − 
 

≥ ≥
− −

     (3.35) 

Therefore, Theorem 3.1 is true. 
Theorem 3.2. Under the condition of Theorem 3.1, the problem (1.1)-(1.5) 

exist an inertial manifold µ  in X, 

( ) ( ){ }1: :graph m m Xµ ζ ζ ζ= = + ∈ ,          (3.36) 

where 1 2,X X  defined in (3.18) and 1 2:m X X→  is a Lipschitz continuous 
function. 
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