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Abstract 
Complex three-order cumulant has different definition forms. Different forms 
conclude different information. For studying the effection of frequency in the 
coupled signals to fault diagnosis, the differential method to the three order 
cumulants of coupled signals is adopted. By using the differential of complex 

three order cumulants before and after respectively, then their 11
2

 dimen-

sional spectrum is calculated, and the results are used to fault diagnosis. The 
experimental results show that, the increase frequency item in three order 
cumulants after differentiated impacts on the results of fault diagnosis and the 
degree of effection is relative to the differential times. And the correct rate of 
fault diagnosis can be raised by changing the differential times of three order 
cumulants. 
 

Keywords 

Three Order Cumulants, Differential, Coupled, 11
2

 Dimensional Spectrum, 

Fault Diagnosis 

 

1. Introduction 

The High-order statistics method which has very good inhibition for various 
noises is gradually becoming a new hot spot in signal processing. It is not only 
nonsensitive to additive noise of auto-correlation, and also is nonsensitive to 
non-Gauss colored noise. So it plays an important role in non-Gaussian, non-linear, 
non-minimum phase, non-stationary, Gaussian colored noise processing. 

At present, the study of High-order cumulants has been very popular in me-
chanical fault diagnosis. For instance, Shao Ren-ping and others have applied 
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bispectrum to gear damage detection [1] [2] [3], and Huang Yijian and others 
have applied trispectrum to fault diagnosis of speed regulating valve [4] [5], 
which has obtained better effects. 

The applications of high-order spectrum above are in the range of real num-
ber signal, W. R. Raghuveer and Chinese scholars such as Wang Shuxun have 
made an intensive study of high order cumulants of complex signal in the 
amount of coupling properties, and explicitly pointed out the different definition 
forms of coupling characteristics of all kinds of complex high order cumulantes 

[6] [7] [8]. The literatures [9] and [10] use the coupling properties for the fault 
diagnosis of hydraulic valve. On this basis, the paper adopts the method of diffe-
rential of three-order complex cumulant, in order to change the proportion of 
the frequency information in the amplitude of the coupled three-order cumulant.  

Because 11
2

 dimension spectrum can well response signals’ coupling, if 11
2

 

dimension spectrum differentiated is applied to the fault diagnosis, the perfor-
mance of three-order cumulant before or after it is differentiated can be studied. 
The experiments are carried out on many types of fault, and most results im-
prove with the increase of differential times in a certain degree. 

2. Three Order Cumulant and Its Differential Properties 
2.1. Real Three Order Cumulant and Its Differential Properties 

Let ( ){ }x n  be a real, discrete, zero-mean and k-order stationary random 

process, its three order cumulant can be defined as: 

( ) ( ) ( ) ( ){ }3 1 2 1 2,xc E x n x n x nτ τ τ τ= + +               (1) 

where 1 2τ τ τ= = , then its 11
2

 dimensional spectrum is defined as the Fourier 

transform, i.e.: 

3( ) ( , ) j
xB c e ωτ

τ

ω τ τ
∞

−

=−∞

= ∑  

Let x(n) in expression (1) be coupling signal, i.e.: ( ) ( )
3

1
cosi i i

i
x n A nω φ

=

= +∑ , 

where 3 2 1φ φ φ= +  and 3 1 2ω ω ω= + , so X(n) is a coupling signal, its three-order 
cumulant is 

( ) ( ) ( ) ( ){ }

( ) ( )

( ) ( )
( ) ( )

3 1 2 1 2

1 2 3
1 2 2 1 3 1 1 2

1 1 2 2 3 1 2 2

1 1 3 2 2 1 3 2

,

cos cos
4

cos cos

cos cos

xc E x n x n x n

A A A

τ τ τ τ

ωτ ω τ ω τ ωτ

ωτ ω τ ω τ ω τ

ωτ ω τ ω τ ω τ

= + +

= ⋅ + + −

+ + + −

+ − + − 

       (2) 

where its diagonal three-order cumulant is: 

( ) ( ) ( ) ( )1 2 3
3 1 2 3, cos cos cos

2x
A A Ac τ τ ωτ ω τ ω τ = ⋅ + +          (3) 
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For x(n) Differential after: 

( )
3

1

πd d cos
2i i i i

i
x n n A nω ω φ

=

 = + + 
 

∑  

where its three-order cumulant becomes: 

( ) 1 2 3 1 2 3
3 1 2 1 2 2 1 3 1 1 2

1 1 2 2 3 1 2 2

1 1 3 2 2 1 3 2

π π, cos cos
4 2 2

π πcos cos
2 2
π πcos cos
2 2

x
A A Ac ωω ω

τ τ ωτ ω τ ω τ ωτ

ωτ ω τ ω τ ω τ

ωτ ω τ ω τ ω τ

    = ⋅ + + + − +       
   + + + + − +   
   

   + − + + − +      

 

For x(n) k time’s differential after its three-order cumulant is: 

( ) 1 2 3 1 2 3
3 1 2 1 2 2 1 3 1 1 2

1 1 2 2 3 1 2 2

1 1 3 2 2 1 3 2

π π, cos cos
4 2 2

π πcos cos
2 2
π πcos cos
2 2

k k k

x
A A A k kc

k k

k k

ω ω ω
τ τ ωτ ω τ ω τ ωτ

ωτ ω τ ω τ ω τ

ωτ ω τ ω τ ω τ

    = ⋅ + + + − +       
   + + + + − +   
   

   + − + + − +      

 

its diagonal three-order cumulant is: 

( ) 1 2 3 1 2 3
3 1 2 3

π π π, cos cos cos
4 2 2 2

k k k

x
A A A k k kc ω ω ω

τ τ ωτ ω τ ω τ
      = ⋅ + + + + +            

 

(4) 

Because of the three order cumulant of formula (3) can be considered as a 
function of τ, so that it can directly be differentiated by τ, the result is: 

( ) 1 2 3
3 1 1 2 2 3 3

π π π, cos cos cos
2 2 2 2x

A A Ac τ τ ω ωτ ω ω τ ω ω τ
      = ⋅ + + + + +            

 

after k times differentiation, its diagonal three-order cumulant is: 

( ) 1 2 3
3 1 1 2 2 3 3

π π π, cos cos cos
2 2 2 2

k k k
x

A A A k k kc τ τ ω ωτ ω ω τ ω ω τ
      = ⋅ + + + + +            

 

(5) 

2.2. Complex Number Three-Order Cumulant and Differential  
Properties 

In Equation (1), assume that x(n) is a Complex signal, which is  

( ) ( )( )
3

1
expi i i

i
x n A j nω φ

=

= +∑ , 

where 3 2 1φ φ φ= +  and 3 1 2ω ω ω= + , so X(n) is a coupling signal. According to 
literature (7), x(n) takes its conjugate or not, its third-order cumulant will have 
different definitions, different definitions will contain different types of coupl-
ing information, seeing Table 1. In Table 1, whatever the definition, ampli-
tude of third order cumulant does not contain frequency information, taking 
into account the important role of frequency information in fault diagnosis, let 
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( ) ( )d dy n x n n= , then in Table 2, cumulant of y(n) is shown in Table 1, let 

1 2τ τ τ= = , three-order cumulant diagonal slice ( )3 ,xc τ τ  can be got, and 11
2

 

dimension spectrum is defined as follows:  

( ) ( )3 , e j
xB c ωτ

τ
ω τ τ

∞
−

=−∞

= ∑                     (6). 

As can be seen from the comparison of Table 1 and Table 2, after first time 
differential, the amplitude of three order cumulant changes from 1 2 3A A A  into 

1 2 3 1 2 3A A Aωω ω  in two different modes of definition. Through the same analysis, 
when differentiated two times, the amplitude of y(n)’s three-order cumulant be-
comes 2 2 2

1 2 3 1 2 3A A Aω ω ω . So, let ( ) ( )d dk kz n x n n= , the amplitude of z(n)’s 
three-order cumulant becomes 1 2 3 1 2 3

k k kA A Aω ω ω  in Table 3. In summary, with 
the increase of differential times, the effect of frequencies in coupling signals to 
the amplitude of third-order cumulant becomes greater, and the effect is the  
 

Table 1. Three order cumulant of x(n). 

Definition 
mode 

Definition of three-order cumulant Three-order cumulant Diagonal of three-order cumulant 

Definition 1 ( ) ( ) ( ){ }1 2E x n x n x nτ τ+ +  0 0 

Definition 2 ( ) ( ) ( ){ }1 2E x n x n x nτ τ∗ + +  ( ) ( )1 2 3 1 1 2 2 2 1 1 2exp expA A A j jωτ ω τ ω τ ωτ+ + +    ( )1 2 3 32 expA A A j ω τ    

Definition 3 ( ) ( ) ( ){ }1 2E x n x n x nτ τ∗ ∗+ +  ( ) ( )1 2 3 3 1 1 2 3 1 2 2exp expA A A j jω τ ωτ ω τ ω τ− + −    ( ) ( )1 2 3 2 1exp expA A A j jω τ ωτ+    

 
Table 2. Three-order cumulant of y(n). 

Definition  
mode 

Definition of three-order cumulant Three-order cumulant Diagonal of three-order cumulant 

Definition 1 ( ) ( ) ( ){ }1 2E y n y n y nτ τ+ +  0 0 

Definition 2 ( ) ( ) ( ){ }1 2E y n y n y nτ τ∗ + +  
( )

( )
1 2 3 1 2 3 1 1 2 2

2 1 1 2

exp π 2

exp π 2

A A A j

j

ωω ω ωτ ω τ

ω τ ωτ

+ +
+ + + 

 ( )1 2 3 1 2 3 32 exp π 2A A A jωω ω ω τ +    

Definition 3 ( ) ( ) ( ){ }1 2E y n y n y nτ τ∗ ∗+ +  
( )

( )
1 2 3 1 2 3 3 1 1 2

3 1 2 2

exp π 2

exp π 2

A A A j

j

ωω ω ω τ ωτ

ω τ ω τ

− −
+ − − 

 
( )

( )
1 2 3 1 2 3 2

1

exp π 2

exp π 2

A A A j

j

ωω ω ω τ

ωτ

−
+ − 

 

 
Table 3. Three order cumulant of z(n). 

Definition 
mode 

Definition of three-order cumulant Three-order cumulant Diagonal of three-order cumulant 

Definition 1 ( ) ( ) ( ){ }1 2E z n z n z nτ τ+ +  0 0 

Definition 2 ( ) ( ) ( ){ }1 2E z n z n z nτ τ∗ + +  
( )

( )
1 2 3 1 2 3 1 1 2 2

2 1 1 2

exp π 2

exp π 2

k k kA A A j k

j k

ω ω ω ωτ ω τ

ω τ ωτ

+ +
+ + + 

 ( )1 2 3 1 2 3 32 exp π 2k k kA A A j kω ω ω ω τ +    

Definition 3 ( ) ( ) ( ){ }1 2E z n z n z nτ τ∗ ∗+ +  
( )

( )
1 2 3 1 2 3 3 1 1 2

3 1 2 2

exp π 2

exp π 2

k k kA A A j k

j k

ω ω ω ω τ ωτ

ω τ ω τ

− −
+ − − 

 
( )

( )
1 2 3 1 2 3 2

1

exp π 2

exp π 2

k k kA A A j k

j k

ω ω ω ω τ

ωτ

−
+ − 
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same in all above three definition ways. So do the affection to 11
2

 dimension, 

shown in Tables 1-3. 
Through the above analysis, whatever the signal is either real or complex sig-

nal, the affect of the frequencies in coupling signals amplifies with the increases 
of diffenential times in fault diagnosis, and this paper will make use of this cha-
racteristic in speed control valve’s fault diagnosis.  

3. Volume Dimension 
According to document [11], the box cover algorithm is used to calculate the 

capacity dimensions of 11
2

 dimension spectrum. The method to calculate the 

similarity ratio is to let the object to be measured filled with boxes, the number 
of boxes needed to fulfill the object is counted, then it is used to calculate the 
object’s capacity dimension, the box size decreases from 0.1 to 0.002. If a ruler 
with a length of r is used to measure a line segment with a length of L, the ratio 
of L to r is N. For an object with Dc dimension:  

( ) ( )1 1lim
c cD D

N r N r
r r

   ∝ → =   
   

 

After taking logarithm, capacity dimension is obtained: 

( )log
lim

1log
c

N r
D

r

 
 
 =

  
    

 

4. Data Acquisition 

The mechanical vibration component studied in the experiment is speed control 
valve. Vibration signals are collected from this valve in normal state and different 
fault states successively. In the experiment, 5 kinds of faults are set up artifically. In 
every state, datum in each state collected depending on working oil pressure (1 - 5 
MPa) is divided into 5 groups. 5 kinds of artifical faults are as follows: 

Fault one: spring in back of throttle valve deformed; 
Fault two: spring added with foreign objects; 
Fault three: cylinder iron core pulled out in back of throttle valve; 
Fault four: cylinder iron core replaced with a gasket; 
Fault five: combined fault two and fault four. 
The number of each group of datum used in the experiment is 1024 (Figure 1). 

5. Spectrum 
In order to identify fault, according to formula (2), the 21 groups of experiment 

datum in normal state and fault state are used. All of their 11
2

 dimension spec-

trum are drawn, and three of them are shown in Figure 2, and the Volume di-

mensions of these 11
2

 dimension spectrum are calculated, as shown in Table 4. 
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In Figure 2, X axis is circular frequency and the unit is π; the vertical axis 

represents the magnitude of normalized 11
2

 dimensional spectrum, dimen-

sionless.  

Then the 11
2

 dimensional spectrum of the same above-mentioned three groups 

of datum when differentiated 1, 4 and 8 times are shown in Figures 3-5. Because 

the 11
2

 dimension spectrum affected by the frequency components, as shown 

above, with the increase of the differential times, spectrum peak of each data 
become more and more concentrated, more and more acute. This should be the 
result of frequency components affecting in three order cumulants with the in-

crease of differential times, the 11
2

 dimension spectrum peak distribution of 

location, density and strength have become more and more obviously distinctive 
between two groups of datum in normal state and fault state. 
 

 

Figure 1. Speed control valve. 
 

 
(a)                           (b)                       (c) 

Figure 2. 11
2

 dimension spectrum of primary datum in definition 2. (a) Normal state; 

(b) Fault 1 state (3 MPa); (c) Fault 1 state (5 MPa). 
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(a)                           (b)                       (c) 

Figure 3. 11
2

 dimension spectrum of datum differeniated in definition 2. (a) Normal 

state; (b) Fault 1 state (3 MPa); (c) Fault 1 state (5 MPa). 
 

 
(a)                           (b)                       (c) 

Figure 4. 11
2

 dimension spectrum of datum after differeniated 4 times in definition 2. 

(a) Normal state; (b) Fault 1 state (3 MPa); (c) Fault 1 state (5 MPa). 
 

 
(a)                           (b)                       (c) 

Figure 5. 11
2

 dimension spectrum of datum after differeniated 8 times in definition 2. 

(a) Normal state; (b) Fault 1 state (3 MPa); (c) Fault 1 state (5 MPa). 
 

Table 4. Capacity value of 11
2

 dimension in both normal state and fault 1 state after 

differentiated 8 times. 

Normal 
state 

1.1910 1.1747 1.1796 1.1716 1.2193 1.1820 1.1178 … 

Fault 1 
state 

1.1513 1.2631 1.1052 1.1516 1.1470 1.1299 1.1636 … 
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6. The Experimental Results 
In order to effectively distinguish faults, fractal theory is used as a tool to calcu-

late the capacity dimensions of complex signals’ 11
2

 dimension spectrum, and 

all the datum which include above three different definition forms both in nor-
mal and fault state are calculated, the complex signals are obtained from original 
signals through Hilbert transform [12]. 

1): In definition two, the capacity dimensions of dotum’s 11
2

 dimension 

spectrum (a total of 21 data, the 10 groups of normal state, 11 groups of fault one) 
are calculated, as shown in Table 4. In order to effectively observe the results, 
they are drawn with Excel Data Point-fold Line Chart in Figure 6. The X-axis of 
Figure 6 represents the number of data, and the Y-axis represents the capacity 
dimension calculated, dimensionless. As can be seen from Figure 6, the capacity 
dimensions of signals in normal state and fault state are difficult to distinguish in 
the whole. Then so do the definition one and definition three, the results are al-
most the same as Figure 6. Furthermore, the same steps are performed to real 
signals (without Hilbert transform). The result is still the same. All the above 
experimental results prove that, only depending on traditional spectrum analysis, 
some faults are difficult to distinguish. Then the differential method is adopted, 
after repeating the above steps, the results are shown in Figure 7. As shown, the 
numerical values of capacity dimension in normal state and fault state are still 
difficult to separate in the whole. Continue to increase the differential times, 
Figure 8 shows the results of 4 times. As can be seen in Figure 8, the discerni-
bility degree of capacity dimensions gets better. In Figure 8, the fourth data of 
normal state points is designated as threshold, that is to say, if capacity dimen-
sion is greater than or equal to 1.1747, this group of data is judged as normal 
state, else judged as fault one state, According to this approach, the number 
misjudged in normal state is 1, and in fault one state is 5, the correct rate in total 
is 70%. When the differential times reach 8, the results are shown in Figure 9. 
The same method is adopted as Figure 8, the tenth data point of normal state is 
chosen as the threshold value, if capacity dimension is greater than or equal to 
1.1558, this group of data is judged as normal state, else judged as fault one state, 
the number misjudged in normal state is 1, and in fault one state is 2, the correct 
rate in total is 85%. If continuing to increase the differential times, its correct 
rate does not rise, or even declined. In the whole, diagnostic correct rate firstly 
increases with the increase of differential times, reach a maximum, then even 
drops. 

2): The same experiments are done in definition one, and when the differen-
tial times is 5, the diagnostic correct rate reaches the maximum value of about 
70%. The obtained results of definition three are better than that of definition 
one, but worse than that of definition two. 

7. Analysis of Experimental Results 

According to Literature (7) and (8), 11
2

 dimensional spectrum can reflect well 
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the signal frequency coupling features, and capacity dimension is used to calcu-
late the similar ratio of complex graphics. In this paper, normal data or fault data 

is considered as one group respectively, capacity dimension of 11
2

 dimensional 

spectrum which contains the coupling properties is used to judge the differences 
in self similarity between the above two groups of datum. For fault one state, the 
experimental results show that, according to definition two mode, the best effect 
is reached, but in definition one mode is not so. As can be seen in Tables 1-3, in 
definition one mode, both three order cumulant and its diagonal slice are 0, but 
in definition two, diagonal slice of cumulant is ( )1 2 3 1 2 3 32 exp π 2A A A jωω ω ω τ +  . 

And with the increase of differential times, the amplitude becomes 1 2 3 1 2 3
n n nA A Aω ω ω . 

Because diagnostic results get best after differentiated eight times, so it can be 
deduced that the frequency factors differented in amplitude do play a role in 
fault diagnosis. Fathomer, it can also be inferred that the frequencies difference 
must exist between normal state and fault one state, so with the increase of diffe-
rential times, the differences become more obvious. The same experiments are 
carried out on other types of fault, and most results improve with the increase of 
differential times in a certain degree, but for a few of the above faults, the correct 
rates only improve little, even reduce. Considering the above experimental results, 
it can be extrapolated that, because of the complexity of mechanical vibration 
signals, only one coupling theory cannot fully explain their characteristics. Even so, 
the differential method in this paper succeeds in a certain degree. Because diffe-
rential times are not limited, the methods provide an infinite choice of fault diag-
nosis. In Table 5, the highest correct rates comparison of three methods is listed. 

8. Conclusion  
The different definition forms of complex three order cumulants must contain  
 

 
Figure 6. Simulation result of primary datum both normal state and fault 1 state in de-
finition 2. 

 

 
Figure 7. Simulation result of datum differentiated both normal state and fault 1 state in 
definition 2. 
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Figure 8. Simulation result of datum differentiated 4 times both normal state and fault 1 
state in definition 2. 
 

 
Figure 9. Simulation result of datum differentiated 8 times both normal state and fault 1 
state in definition 2. 
 
Table 5. The highest correct rates comparison of three methods. 

Method Method in literature 10 Method in literature 13 Method in this paper 

highest correct rate 85% 80% 95% 

 

different coupling information, which is bound to react to the 11
2

 dimension 

spectrum derived from it. In the paper, differential operation is first performed 
on complex coupling signals, then the amplitude of three order cumulants de-
rived from these differentiated signals includes the frequency components in the 
primary coupling signals, and these components are enlarged with the increase 

of differential times, afterwards, 11
2

 spectrums are obtained. Fault diagnosis 

based on computing capacity dimension of 11
2

 spectrum is performed, the re-

sults show that the frequency components included in three order cumulants af-
ter differentiated help to improve fault diagnostic correct rate. 
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