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Abstract 
Rayleigh distribution (RD) has wide applications in many real life situations 
especially life testing, reliability analysis, medicines etc. In this paper a new 
weighted Rayleigh distribution named area-biased Rayleigh distribution 
(ARD) is introduced. Some mathematical properties of the (ARD) including 
cumulative distribution function, moments, skewness, kurtosis, median, 
mode, entropy, reliability measures as survival function and hazard function 
have been derived. Parameter of the ARD is estimated by method of moments 
(MOM), maximum likelihood (ML), and Bayesian. Properties of the estima-
tors are developed. It is proved that the ML estimator attains the Cramer Rao 
lower bound. Applications of the ARD provided for some life time data sets. 
Kolmogorov Smirnov (K-S) test statistics is applied to check the good fit of 
the model. 
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1. Introduction 

In many real life fields such as medication, engineering and business, among 
others, modeling and examine lifetime data are crucial. Numerous lifetime dis-
tributions have been used to model lifetime data sets [1]. The quality of the pro-
cedures used in a statistical analysis depends heavily on the assumed probability 
model or distributions. Because of this, a number of standard probability distri-
butions along with relevant statistical methodologies are presented in literature. 
But, there still remain several problems where the real data set does not follow 
any of the classical or standard probability models. In this article we present a 
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new form of the Rayleigh distribution called the area-biased Rayleigh distribu-
tion. Rayleigh [2] derived Rayleigh distribution from the ambit of noise resultant 
from many vital sources. The Rayleigh distribution has a variety of applications 
including life testing, reliability analysis, applied statistics and clinical studies. 
The beginning and other characteristic of this distribution can be found in Sid-
diqui [3], and Hirano [4]. Howlader [5] demonstrated the importance of this 
distribution in communication engineering. Lalitha and Mishra [6] presented 
modified maximum likelihood estimation for scaler parameter of Rayleigh dis-
tribution. Abd Elfattah et al. [7] Studied the effect of different methods of sam-
pling schemes on the estimation of parameter for Rayleigh distribution. Further 
importance of Rayleigh distribution can be observed from Merovci [8] trans-
muted Rayleigh distribution, Das and Roy [9] length biased form of the 
Weighted Generalized Rayleigh distribution, Hoffman and Karst [10] properties 
of the Rayleigh distribution and applications of Rayleigh distribution to the 
analysis of the responses of marine vehicles to wave excitation. 

A random variable X is said to have the Rayleigh distribution (RD) with pa-
rameter σ if its probability density function is given by 

( ) 2 22
2 e , 0; 0.xxf x xσ σ

σ
−= > >                (1) 

while the cumulative distribution function of the Rayleigh distribution  

( ) 2 221 e xF x σ−= −                      (2) 

where σ denote the scale parameter. 

1
πMean
2

µ σ′= =                      (3) 

2
22µ σ′ =                          (4) 

One of the generalized Rayleigh distribution is given by  

( )
( ) ( )

2
1

2 22

2 e
2

xp , 0; 0
22

N
N

xf x x
N

x σ
σσ

−  
= − > > 

 Γ
       (5) 

Pdf in Equation (5) is also named as chi-squared distribution with N degree of 
freedom and scale parameter σ. 

The concept of weighted distributions was initially introduced by Fisher [11] 
to the study of effect of methods of ascertainment upon estimation of frequen-
cies. On the other hand, Rao [12] presented a unified theory of weighted distri-
butions. Rao [12] identified various real life situations that can be modeled by 
weighted distributions, where the observations cannot be arise from the original 
distributions. These situations may occur due to non-observable of some events 
or damage caused to the original observation ensuing in a reduced value, or 
arises in practice when observations from a sample are recorded with unequal 
probabilities. 

Weighted distributions had been frequently used in research related to relia-
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bility, bio-medicine, meta-analysis, econometrics, survival analysis, renewal processes, 
physics, ecology and branching processes can be observed in Patil and Ord [13], 
Patil and Rao [14], Gupta and Keating [15].  

Suppose X is a non-negative random variable with its pdf ( );f x θ , θ  is a 
parameter, then ( );wf x θ  distribution is weighted version of ( );f x θ , and is 
defined as 

( ) ( ) ( )
( )

;
;w

w x f x
f x

E w x
θ

θ =
  

                  (6) 

where ( )w x  is an arbitrary non-negative function. For ( ) , 1 or 2w x xα α= =  
it is called size biased and area biased distributions respectively. The pdf of 
size-biased Rayleigh distribution is  

( ) 2 2
2

2

3

e , 0; 0
π
2

xxf x xσ σ
σ

−= > >              (7) 

2. Area Biased Rayleigh Distribution 

Using Equation (1) and Equation (6), pdf of the area biased Rayleigh distribu-
tion (ARD) is  

( ) 2 2
3

2
4 e , 0; 0.

2
xxf x xσ σ

σ
−= > >              (8) 

Rayleigh distribution in (1) and size-biased Rayleigh distribution in (7) are 
special cases of the generalized Rayleigh distribution in (6) for N = 2 and N = 3 
respectively. Moreover, the newly derived area-biased Rayleigh distribution is 
also a special case of generalized Rayleigh distribution given in (6) for N = 4.  

Cumulative distribution function (cdf) of the ARD  

( ) ( )
2

22, , where ,
2
xF x x xγ
σ

′ ′= =               (9) 

( )1
0

e d ,
x n tt t n xγ− − =∫  

is lower incomplete gamma function.  
 

 
Figure 1. Pdf graph for different values of σ. 
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Figure 2. Pdf graph for different values of σ. 

Moments and Shannon Entropy 

The rth moments of the ARD are  

( )( ) 221 2
,

4 2

r

r

r rr σ
µ

+
′  Γ 

 
=                 (10) 

For r = 1, 2, 3, 4 in Equation (10), the first four moments of the ARD are  

1
3 2πMean ,

4
σµ′= =                    (11) 

3
2

3
4

2 4
15 π4 , , 24 ,

2 2
σµ σ µ µ σ′ ′ ′= = =             (12) 

First four mean moments of the ARD are 

2
2

32 9πVariance
8

µ σ − = =  
 

                (13) 

( ) ( )4 23
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3 512 96π 81ππ 27π 84
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( )
( )
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( )

22

1 2 2

3 512 96π 81π4 27π 84
,

32 9π 32 9π
β β

+ −π −
= =

− −
          (15) 

As the expressions of 1 2&β β  in Equation (15) are independent of 2σ  so, 
applying value of π , 1 20.1646 & 3.0593β β→ → . So ARD is positively skewed 
and leptokurtic.  

Median of the ARD is 

( )
2

2
12, , where ,
2 2

mm mγ
σ

′ ′= =                (16) 

( )1
0

e d ,
x n tt t n xγ− − =∫  is lower incomplete gamma function.  
Mode of the ARD is 

mode 3,σ=                        (17) 

The Shannon entropy of the ARD is 

( ) ( )ln 1.77058H x σ= −                   (18) 
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3. Estimation of Parameters 

In this section parameter of ARD is estimated through method of moments 
(MOM) and maximum likelihood estimator (MLE).  

3.1. MOM 

Equating 1

n

i
i

x
x

n
==
∑

 and Equation (11) as 
3 2π

4
x σ
=  we get MOM estimator 

of σ 

4 .
3 2π

Xσ =                          (19) 

3.2. MLE 

The likelihood function of (8)  

( ) ( ) 2 2
3

22
4

1 1
e

2
i

n n
xi

i
i i

xL f x σσ σ
σ

−

= =

= =∏ ∏  

Applying natural logarithm as loge 

( )
2

4 31
21 1

log log2 log log
2

n
nn ii

i ii i

x
f x n n xσ σ

σ
=

= =
= − − − +∑∏ ∑      (20) 

Taking derivative of the Equation (20), we get 

( )2 2
2 2 4

1 1

d 2 1log ,
d 2

n n

i i
i i

nf x xσ
σ σ σ= =

= − +∏ ∑              (21) 

Equating (19) to zero and simplifying we get the MLE estimator of σ 
2

2 1ˆ
4

n
ii

X
n

σ == ∑                         (22) 

2
1ˆ

4

n
ii

X
n

σ == ∑                         (23) 

Theorem 3.1: If 1 2, , , nX X X  follows the ARD then MOM σ  of σ is un-
biased and have minimum variance.  

Proof: Applying expectation on (19) and simplifying it we get 

( ) ( )4
3 2π

E E Xσ =  

( ) ,E σ σ=                          (24) 

So σ  is unbiased estimator of σ. Applying variance on (19), we get  

( ) 4
3 2π

XVar Varσ
 

=  
 

  

After some simplifications we get, 

( ) ( )2 32 9π
,

9π
Var

n
σ

σ
−

=                     (25) 

https://doi.org/10.4236/ojs.2018.83041


S. Bashir, M. Rasul 
 

 

DOI: 10.4236/ojs.2018.83041 645 Open Journal of Statistics 
 

As ( ), 0n Var σ→∞ → . So for large “n”, MOM σ  estimator of σ have 
minimum variance.  

Theorem 3.2: If 1 2, , , nX X X  follows the ARD then MLE 2σ̂  of 2σ  is 
unbiased and have minimum variance.  

Proof: Applying expectation on (22) and simplifying it we get 

( ) ( ) ( )2 2
2

2 1ˆ , where
4

n

i i
i i

E E X E X
n

σ µ
=

′= =∑  

( )2 2ˆE σ σ=                          (26) 

So 2σ̂  is unbiased estimator of 2σ  and σ̂  is biased estimator of σ. 
Now applying variance on (22), we get 

( )
2

2 1ˆ
4

n
ii

X
Var Var

n
σ =

 
 =
 
 

∑  

( )
4

2ˆ
2

Var
n

σσ =                         (27) 

As ( )2ˆ, 0n Var σ→∞ → . So for large “n”, MLE 2σ̂  estimator of 2σ  have 
minimum variance.  

3.3. Cramer Rao Lower Bound 

Theorem 3.3: Let ( )1 2, , , nX X X X=   be a random sample from a pdf 

( )2f x σ  in (8), where 𝜎𝜎 shape parameter, under regularity conditions on 

( )2f x σ  for an unbiased estimator ( )ˆ  x∅  of ( )2σ∅  i.e. ( )2 2ˆE σ σ=   
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Proof: Taking second derivative of (21), we get  
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Applying expectation on (27) and simplifying it 
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Substituting (30) and (31) in (28), we get 

( ) ( )
4

2 2
4

1 , where
2 2

Var Var
n n

σσ σ
σ

≥ =  

So the unbiased estimator 2σ̂  estimator of 2σ  attains the Cramer Lower 
Bound.  

4. Bayesian Estimation  

The posterior probability distribution function can be derived by using  

( ) ( ) ( )
( ) ( )

 
f x g

f x
f x g

σ σ
σ

σ σ
=
∫

                  (32) 

Using ARD ( )f x σ  in (8) and uniform prior ( ) 1,0 1g σ σ= < < , in (32) 
we get the posterior pdf of ARD as 
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Using (33) the Bayesian estimator of σ 

( ) ( )* dE x f xσ σ σ σ σ= = ∫  

( )

2
1

* 2 2 1
12
2

n
ii

n
n

x

σ
=

Γ −
 
 
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∑
                 (34) 

5. Reliability Measures  

The survival function of the ARD  

( ) ( )2,S x x′= Γ                       (35) 

where  
2

22
xx
σ

′ = , and ( ) 1e, dn t
x

n x t t
∞ − −=Γ ∫  

is upper incomplete gamma function.  
The hazard function of the ALD is 

( ) ( )
( )

3 2 2

4

exp 2
2 2,

x x
h x

x
σ

σ Γ

−

′
=                 (36) 

6. Applications  

In this section ARD is applied on two life time data sets and compared it with 
Lindley distribution (LD), Exponential distribution, quasi Lindley distribution 
(QLD), Rayleigh distribution (RD) and size-biased Rayleigh distribution (SRD) 
by using Kalmogorov Smirnov (K-S) Statistic. ARD is also compared for survival 
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function and hazard function with RD and SRD on both data 1 and only with 
SRD for data 2 as RD is not provided good fit for data 2.  

Data set 1: This data set represents the lifetime’s data relating to relief times 
(in minutes) of 20 patients receiving an analgesic and reported by Gross and 
Clark [16]: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 
2.3, 1.6, 2. 

Data Set 2: This data set is the strength data of glass of the aircraft window 
reported by Fuller et al. [17]: 18.83, 20.8, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5, 
25.52, 25.8, 26.69, 26.77, 26.78, 27.05, 27.67, 29.9, 31.11, 33.2, 33.73, 33.76, 33.89, 
34.76, 35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29, 45.381. 

Form Table 1, it can be seen that the K-S value for ARD is lower than the 
other discussed models so ARD is providing better alternate for the above data 
sets. 

7. Discussion 

Form Figure 3 and Figure 4 it can be seen that  
1) The survival function graphs of the ARD are smoothly decreasing as com-

pare to RD and SRD.  
2) The hazard function graphs of the ARD are monotonically increasing in a 

smooth way as compare to RD and SRD. From Figure 4 it can be seen that the 
hazard rate of 20 patients receiving analgesic is monotonically increasing. Dur-
ing an initial period, the risk is low but subsequently increases that may indicate 
that the patients who are receiving this painkiller drug might be suffering from 
severe side effects of it. We may conclude that these 20 patients have risk that 
gradually increases with entire range of life, which may be a result of ineffective 
treatment.  

Form Figure 5 and Figure 6 it can be seen that  
1) The survival function graphs of the ARD are smoothly decreasing as com-

pare to SRD.  
2) The hazard function graphs of the ARD are monotonically increasing; it 

means that the instantaneous failure for the strength of aircraft window is in-
creasing. 
 
Table 1. Comparison of KS test between distributions Lindley, Exponential, QLD, SRD 
and ARD. 

 Model Estimation of parameters 
K-S  

Statistics 
P-value for 

K-S Statistics 

Data 1 

Lindley ˆ 0.816118θ =   0.34 

0.294 

Exponential ˆ 0.526316θ =   0.39 

Quasi Lindley ˆ 1.545110θ =  ˆ 0.483393α = −  0.20 

Rayleigh 2ˆ 1.702σ =   0.249 

Size-biased Rayleigh 2ˆ 1.135σ =   0.165 

Area-biased Rayleigh 2ˆ 0.851σ =   0.112 
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Continued 

Data 2 

Lindley ˆ 0.062988θ =   0.33 

0.240 

Exponential ˆ 0.032455θ =   0.43 

Quasi Lindley ˆ 0.103985θ =  ˆ 0.546267α = −  0.30 

Rayleigh 2ˆ 500.129σ =   0.287 

Size-biased Rayleigh 2ˆ 333.419σ =   0.209 

Area-biased Rayleigh 2ˆ 250.065σ =   0.157 

 

 
Figure 3. Survival function graph for relief time (in minutes) of 20 patients. 

 

 
Figure 4. Hazard function graph for relief time (in minutes) of 20 patients. 

8. Conclusion  

In this article a new weighted single parameter Rayleigh distribution named as 
area-biased Rayleigh distribution (ARD) is introduced. Various properties of the 
ARD have been derived. It can be seen from Figure 1, Figure 2 and coefficient 
of skewness and kurtosis that the ARD is positively skewed. Parameter is esti-
mated by the method of MOM, ML and Bayesian. The properties of the MOM 
and MLE have been proved. It is shown that the estimated parameter by MOM 
and MLE is unbiased and having minimum variance for large “n”. The ML  
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Figure 5. Survival graph of strength of glass of the aircraft window. 

 

 
Figure 6. Hazard graph of strength of glass of the aircraft window. 

 
estimator attains the Cramer Rao lower bound. Then the model is applied into 
two life time data sets. Kolmogorov Smirnov (K-S) test statistic is used to see the 
fit good on both data sets. The value of K-S for ARD is compared with some 
other well-known models named Lindley, Exponential, Quasi Lindley, 
Size-Biased Rayleigh and it is concluded that ARD is showing better fit on such 
kind of data sets as comparing to these models. At the end ARD, RD and SRD 
are used to show the graphical trend of the survival function and hazard func-
tion on both data sets. The survival function graph of SRD is decreasing more 
smoothly as comparing to other models. The hazard function graph of ARD for 
both data sets is increasing gradually. It means that the instantaneous failures are 
increasing. Overall it can be seen that ARD model can be a best alternative of the 
other well-known models and it is showing wide applications in the field of 
medical. 
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