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Abstract 
During the last few decades, many statistical physicists have devoted research 
efforts to the study of the problem of earthquakes. The purpose of this work is 
to apply methods of Statistical Physics and network systems based on “neu-
rons” in the study of seismological events. Data from the Advanced National 
Seismic System (ANSS) of Southern California were used to verify the rela-
tionship between time differences between consecutive seismic events with 
magnitudes greater than 3.0, 3.5, 4.0 and 4.5 through the modeling of neural 
networks. The problem we are analyzing is time differences between seismo-
logical events and how these data can be adopted as a time series with non li-
near characteristic. We are therefore using the multilayer perceptron neural 
network system with a backpropagation learning algorithm, because its cha-
racteristics allow for the analysis of non-linear data in order to obtain statis-
tical results regarding the probabilistic forecast of tremor occurrence. 
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1. Introduction 

Earthquakes, one of nature’s many different phenomena, are the cause of huge 
catastrophes in their places of occurrence. Such catastrophes are characterized 
by the physical destruction of cities (houses, buildings, urban roads, etc.) and 
consequently large numbers of human victims. The extent of the damage affects 
thousands of people and many cities around where the tremor occurred, reach-
ing thousands of square kilometers. Interestingly, neural networks have been 
shown to be useful when applied in different areas such as recognition of word 
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patterns [1], speech recognition [2], among others. 
Much research is being done today in Seismology to better understand the 

dynamics of earthquakes, such as: the study of volcanic activity as a precursor of 
tremors [3]; a better understanding of the Earth’s structure and activities occur-
ring in internal layers of the Earth, such as the relationship of geological faults 
with earthquakes [4]; the observation of the effects of tsunamis caused by earth-
quakes [5]; analysis of the malfunctions that a tremor can cause for better pre-
vention [6]; to name a few. 

Several prediction-related works have been carried out throughout history 
with the aim of relating earthquakes to their probability of occurrence [7]. It has 
been demonstrated that earthquakes can be artificially triggered by the injection 
of fluids, and in addition that many earthquakes in California and Nevada occur 
at depths accessible by drill. It was [8] found that tremors include several pre-
monitory events such as crust movements as well as anomalous changes in phe-
nomena affecting for example slope, fluid pressure, electric and magnetic fields, 
radon emission and even the number of small tremors that could result in 
stronger tremors, while in [9] it was verified the distribution of time intervals 
between successive tremors as a predictor, and in [10] it was studied the rela-
tionship of complex network systems to the position of a quake and the model-
ing of earthquakes related to real data [11].  

Considering the relationship between earthquakes and neural networks we 
have some work related to the modeling of neural networks oriented to the 
understanding of earthquakes [12], which analyzes in a neural network proba-
bilistic for prediction of earthquakes based on the parameters of the law of 
Gutenberg-Richter, [13] that analyzes the possibility of predicting earthquakes 
in location and time by introducing eight different seismological indicators, [14] 
that realizes predictions of earthquakes in the northeast of the red sea based on 
neural networks, [15], who performs earthquake prediction in Chile, relating 
data from the neural network input with Bath and Omori-Utsu’s parameters as-
sociated with high seismic activity.  

However, the prediction of earthquakes continues to be difficult, and much 
effort will certainly be devoted to solving this problem. For this paper, in order 
to estimate the possibility of a quake occurrence and time differences between 
events, the seismological data for analysis was taken from the Advanced Nation-
al Seismic System (ANSS) catalog in Southern California. 

The rest of the paper is organized as follows: in Section 2 we describe the 
study area; Section 3 describes the database used and the way in which the data 
were prepared; in Section 4, we present the type of network we use and in Sec-
tion 5, the learning process. In Section 6, the results are described and, finally, 
Section 7 presents the conclusions. 

2. Study Area 

Figure 1 demonstrates the region in which the earthquake occurred from 1932  
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Figure 1. Map of California illustrating details of the faults system under study taken from usgs database  
(https://data.usgs.gov/datacatalog/ in Nov/2017). 
 

to 2013, the data for which was taken from the Advanced National Seismic Sys-
tem (ANSS) catalog in Southern California. The choice of this region is related 
to the fact that the San Andreas Fault is a major cause of tremors and to the 
amount of existing tremor data available measured at the site. The San Andreas 
fault system in the region of San Francisco is a complex of faults and part of an 
isolated system where the Pacific plate meets the North American plate [16]. In 
April/19061 the magnitude was 7.8 which was one of the largest tremors in the 
region.  

3. Data Preparation 

Using neural networks for a better analysis of the seismological data, the ANSS 
Catalog was modified and only the time differences between the seismological 
events in decimal time were considered. Figure 2 shows the table of seismic 
events and the time differences. 

4. Multi-Layered Neural Networks 

The multilayer perceptron network has played an important role in solving 
complex non-linear characteristic problems, such as, voice recognition [17], im-

 

 

1http://earthquake.usgs.gov/earthquakes/events/1906calif/18april/ in Dez/2017. 
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age [18] and time series prediction [19] [20], to name but a few. The multilayer 
networks are composed of three main parts: the input layer which contains input 
sensory units; the middle layer (or hidden layer) which can be more than one 
layer; and the output layer. All layers, not counting the input layer, are made up 
of neurons. Figure 3 represents the structure of a multilayer network that forms 
the multilayer perceptron (MLP) structure (4-3-2). 

The algorithm called error retro propagation, or just retro propagation, is 
widely used in multilayer neural networks containing one or more hidden layers. 
The algorithm consists of two steps: propagation and backpropagation [21]. A 
set of standards is applied to the neural network and the input signal is propa-
gated in each neuron of the hidden layers, thus reaching the output layer where 
the outputs of the network are generated in each neuron of this layer. The syn-
aptic weights that interconnect the network layers, from the input layer, through 
the hidden or intermediate layer and reaching the output layer, are fixed in this 
first interaction. The example in Figure 3 shows how this interaction occurs in 
an MLP neural network (4-3-2). 

In retro propagation, all the synaptic weights are adjusted from the output 
layer to the input layer, through the generation of what is called the error signal, 
which is based on the difference between the output generated from the network 
and the desired output. This signal is propagated back through the network from  

 

 
Figure 2. Scheme of time differences. 

 

 
Figure 3. Illustration of a multilayer neural network structure. Xi are input data, Ni are 
intermediate layer neurons, and Si are neurons of the output layer. The connections be-
tween the layers are made by the weights. 
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the output layer to the hidden layer and the respective weights that interconnect 
these layers are adjusted so that the response generated by the network ap-
proximates the desired response. Figure 4 shows how backpropagation is per-
formed. 

5. Learning Algorithm 

The learning type of the network is supervised and its input and output values 
can be binary or continuous (limited by computer precision). Its propagation 
rule in each neuron is shown in Equation (1) 

1

k

j ij i j
i

net yω θ
=

= ⋅ +∑                       (1) 

The learning of backpropagation is based on the updating of the synaptic 
weights of the network by minimizing the mean squared error using the Des-
cending Gradient method [21]. Thus, the updating of the weight ijω  with re-
spect to the input i of the neuron j is shown in Equation (2). 

ij
ij

E
ω η

ω
∂

∆ = − ⋅
∂

                        (2) 

where ijω∆  is the weight variation of the input i in the neuron j, η is the learn-
ing rate and E is the sum of the mean square error which is defined in Equation 
(3) as being the sum of the mean square error of all patterns inserted into the 
neural network [22]. 

( )2

1

1
2

k
p p

i i
p i

E d y
=

= −∑∑                      (3) 

where, p is the number of patterns introduced into the network, k is the number 
of neurons that are in the network output, d is the desired output of the network 
and yi is the output obtained by the network for a certain standard introduced to 
the neural network. For each standard, the average quadratic error can be mini-
mized, also generally leading to the minimization of the total mean quadratic 
error. Thus, the error can be defined by Equation (4). 

 

 
Figure 4. Illustration of the backpropagation of the error signals in the neural network. ei 
represents the error signal obtained between the desired output and the output of the 
network and which will be propagated in the network to adjust the weights.  
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In minimizing the mean square error, we determine the error gradient in rela-

tion to the weight 
ij

E
ω

 ∂
  ∂ 

. 

To continue the calculation of the gradient of the mean square error, we have 
two possibilities: the calculation of the error in the output layer and the indirect 
calculation of the error in the hidden layer based on errors of the output layer. 

5.1. Calculation of the Error in the Output Layer 

Figure 5 demonstrates the output neuron j, fed by the activations of the neurons 
of the previous layer. The inner activation of neuron j is given according to Equ-
ation (5). 

1

v

j ij i
i

net yω
=

= ⋅∑                         (5) 

where v is the total number of inputs applied to the neuron j, its respective acti-
vation being given by Equation (6) 

( )j jy f net=                          (6) 

In addition, we define, according to Equation (7), the error je , the difference 
being of values between the desired output and the output generated by the 
network, 

j j je d y= −                           (7) 

Through Equation (7), Equation (4) is represented in the following way 

( )2

1

1
2

k

j
i

E e
=

= ∑                         (8) 

Therefore, using Equation (8), we calculate the gradient of the mean square 
error with respect to weight: 

j j

ij j j ij

y netE E
y netω ω

∂ ∂∂ ∂
= ⋅ ⋅

∂ ∂ ∂ ∂
                     (9) 

 

 
Figure 5. Output neuron j. The inputs are the activations of the neurons of the previous 
layer connected to the output. yj represents the output generated by the network and dj 
represents the desired output of neuron j. 
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The term ( )jE y∂ ∂  will have a differential value in the calculation of the er-
ror gradient. When considering the output layer, this calculation will be very 
simple, because the desired outputs for the neural network are known. For the 
hidden layer neuron, this term will be calculated indirectly through the back-
propagation of the output error across the network, which we will cover in the 
next section. 

Thus, for the output neuron, Equation (9) is represented as follows: 

j j j

ij j j j ij

e y netE E
e y netω ω

∂ ∂ ∂∂ ∂
= ⋅ ⋅ ⋅

∂ ∂ ∂ ∂ ∂
                  (10) 

By calculating the derivatives of Equation (10) we get: 

( )j j i
ij

E e f net y
ω
∂ ′= − ⋅ ⋅
∂

                    (11) 

Equation (11) represents the derivative of the mean square error with respect 
to the synaptic weight ijω  of neuron j of the output layer. In this way, we define 
the local gradient jδ  according to Equation (12) 

( )j j
j j j

j j j

e yE e f net
e y net

δ
∂ ∂∂ ′= − ⋅ ⋅ = ⋅

∂ ∂ ∂
               (12) 

Thus, the update of the weights of the neurons of the output layer are given by 
Equation (13) 

( ) ( )ij ij ij ij ij j j j i
ij

E d y f net yω ω ω ω η ω η
ω

 ∂ ′= + ∆ = + − ⋅ = + ⋅ − ⋅ ⋅  ∂ 
    (13) 

where η represents the learning rate of the neural network. 

5.2. Calculation of the Error in the Hidden Layer 

When we consider the neuron j as a neuron of the hidden layer, there is no de-
sired output for this neuron and its respective error signal must be calculated 
based on all the error signals of all the neurons connected to this unhidden neu-
ron. Figure 6 shows the hidden layer neuron j, fed by the neurons of the output 
layer. 

From Equation (12), we can redefine the local gradient ( )jδ  for the hidden 
layer neuron j 

( )j
j j

i j j

yE E f net
y net y

δ
∂∂ ∂ ′= − ⋅ = − ⋅

∂ ∂ ∂
               (14) 

For the neuron k shown in Figure 6 of the output layer, 
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∈

= ∑                        (15) 

from Equation (15), we get the value of 
i

E
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 ∂
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Figure 6. Hidden neuron j. The inputs are the activations of the neurons of the previous 
layer connected to the hidden neuron, being this neuron connected to the output neurons. 
δk represents the local gradient of the output neurons. When we have only one hidden 
layer, the inputs of these neurons are the data input. 

 
By extending Equation (16) a little more, we obtain Equation (17) 

k k
k

ki k i

e netE e
y net y

∂ ∂∂
= ⋅ ⋅

∂ ∂ ∂∑                    (17) 

The output neuron error k and its respective derivative are given by Equation 
(18) and Equation (19). 

( )k k ke d f net= −                        (18) 

( )k
k

k

e f net
net
∂ ′= −
∂

                      (19) 

In addition, as seen in Figure 6, we can verify that the internal activation level 
of the neuron k and its respective derivative are given by Equation (20) and Eq-
uation (21). 

k jk j
j

net yω=∑                        (20) 
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Thus, from the results of the derivatives in Equation (17), we get 

( )k k jk k jk
k ki

E e f net
y

ω δ ω
∂ ′= − ⋅ ⋅ = − ⋅
∂ ∑ ∑              (22) 

The term ( )k ke f net′⋅  in Equation (22) was defined as kδ  as well as in Eq-
uation (12), by only changing the index j to index k. 

Thus, by replacing Equation (22) in Equation (14), we obtain the expression 
of the local gradient jδ  for the hidden layer neuron j: 

( )j j k jk
k

f netδ δ ω′= ⋅ ⋅∑                     (23) 

With this, the update of the weights of the neurons of the hidden layer, are 
given by Equation (24) 
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( )ij ij ij i j ij i j k jk
kij

E y y f netω ω η ω η δ ω η δ ω
ω

 ∂ ′= + − ⋅ = + ⋅ ⋅ = + ⋅ ⋅ ⋅ ⋅  ∂ 
∑  (24) 

5.3. Learning Parameters 

The learning algorithm is performed by minimizing the mean square error as a 
function of the synaptic weights which generates a movement for an overall mi-
nimal error throughout the interactions. The main parameters that have direct 
intervention in the learning process of the network are the learning rate and the 
momentum term. 

The learning rate (η) is a constant parameter that varies at interval [0, 1] and 
influences the convergence of the learning process, orienting the change of the 
synaptic weights. A small learning rate generates a very slight change in weights, 
however, it requires a very long training time with the added possibility of the 
error dropping to a local minimum preventing it from leaving this point [22]. 

If the learning rate is very large, for example, near the maximum value that is 
1, there are larger changes in the weights, allowing for instabilities around the 
global minimum. A learning rate value that does not generate problems for error 
minimization should be large enough so as not to cause oscillations in minimi-
zation and should only result in faster learning [22]. 

An alternative that can be used to increase the learning rate without creating 
oscillations around the global minimum is found when we modify Equation (13) 
or Equation (24) and include the term momentum, which brings information of 
the past changes of the weights in the direction of update of the new weights. 
Equation (25) shows how the updating of the weights with the inclusion of the 
term momentum is modified. 

1t t
ij j i ijyω η δ α ω+∆ = ⋅ ⋅ + ⋅∆                    (25) 

where 1t
ijω +∆  and t

ijω∆  correspond to the variation of the network weights of 
an input or neuron i bound to the neuron j at time t + 1 and t respectively, η is 
the learning rate, and α is the momentum term [22]. 

6. Results 
6.1. Varying the Network Inputs 

In this analysis, in order to verify the relationship between the number of inputs 
of the network with the distribution of the data tested, we consider the input da-
ta as the time differences between all the seismological events occurring sequen-
tially, without filtering of the measured magnitude. Thus, through the network 
structure of Figure 7(a), the number of network inputs were varied, adjusting 
the 100 subsequent data and testing the next 100 data, as shown in Figure 7(b). 
In this manner, we made the variations for 10 inputs, 40 inputs, 60 inputs and 
100 inputs. 

From the results of the 100 trained data and 100 data tested (Figure 8(a)), we 
performed the distribution of the difference between the real values and the  
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(a)                                            (b) 

Figure 7. Schematic of neural network used and how training and actual data were performed. 
(a) Schematic of neural network used; (b) Training scheme and training of actual data. 

 

 
(a) 

 
(b) 

Figure 8. Scheme of the data trained and tested with histogram of the data tested. (a) 
Schematic of the trained data and tested; (b) Histogram of the difference between the data 
tested and the actual and estimated values. 
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values generated by the network and thus obtained better results for the confi-
guration of the network with 100 inputs, shown in Figure 8(b). As seen in this 
graph, the distribution of these data is around 50%, thus indicating a good gene-
ralization of the data. The training interval for these data was from 12/04/1932 to 
08/07/1932, and the test interval for these data was from 10/07/1932 to 
10/09/1932. 

6.2. Values Constant Input of the Network 

The structure represented by Figure 9(a), shows how the network training was 
performed with 100 input values to train the subsequent 100 entries represented 
in Figure 8(b). The difference of the previous analysis is that we move the 100 
data that would enter the network of 5, 10, 15, 20, 25 and 30 values, always 
training the subsequent 100 and testing the next values to a deadline. Therefore, 
with each interaction, we had ever smaller values tested after the training of the 
data. The objective of this verification was a better observation of the distribu-
tion of the data tested when shifting the data, as the number of data tested would 
be smaller.  

Figure 10(a) shows how the data was shifted for application of data input, 
training and data testing. The distribution of the difference data, the real values, 
the values generated by the network and the shifting of the input data from the 
network of 5 (Figure 10(b)), was the best of our results showing a frequency 
around 50 compared to the other displacements of data %, which may indicate a 
good generalization of the network training. 

6.3. Filtering the Magnitudes 

Since the previous data were made with all magnitude values and with the tests 
we also noticed that indicators of promising results were obtained due to the 
peak of the distribution being found around zero. We performed the same type 
of analysis, filtering the time differences of the data greater than 3.0, 3.5, 4.0 and 
4.5, also observing in the data below 4.0 that it was necessary to withdraw from 
the data the events which are “quarry blast” and “sonic boom” (sonic blasts). For  

 

     
(a)                                            (b) 

Figure 9. Scheme of the neural network used and how training and actual data were per-
formed. (a) Schematic of the neural network used; (b) Training scheme in the training of 
the real data. 
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(a) 

 
(b) 

Figure 10. Data Shift Scheme and Histogram of the values tested after the training. (a) 
Scheme of the displacement of 5; (b) Histogram of the difference between real and net-
work values for a 5 data shift. 

 
data of magnitudes greater than 3.0 we found a total of 19,984 data, for magni-
tudes greater than 3.5, 6809 given, for magnitudes greater than 4,0, 2240 and for 
magnitudes larger than 4.5, 714 given. 

In order to improve the results, we performed the criterion of stopping data 
training based on the convergence of the training error and the minimum error 
of prediction of the data. We had good results for magnitudes greater than 4.0 
and 4.5. The graph in Figure 11(b) shows the minimum prediction error of the 
data for magnitudes greater than 4.0 and due to this error we stop the training of 
the network that already had its error minimized (Figure 11(a)).  

The graph in Figure 12(a) shows the difference of the real data and the net-
work for 100 data that were trained and 100 data that were predicted, already a 
Figure 12(b) presents the data distribution.  

The graph in Figure 12(b) shows a 750 hour forecast interval of around 65%, 
this time the interval corresponding to a value almost twice as high as the aver-
age of 400 hours between the intervals tremors. 

The graph in Figure 13(b) shows the minimum prediction error of the data 
for magnitudes greater than 4.5. With this error we stop the training of the net-
work that already had its error minimized (Figure 13(a)).  

The graph in Figure 14(a) shows the difference of the real data and the net-
work for 100 data that were trained, and 100 data that were already predicted  
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(a) 

 
(b) 

Figure 11. Total network training error interrupted in the minimum error of the data 
forecast. (a) Scheme of the displacement of 5; (b) Total error of the prediction of the data. 

 

 
(a) 
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(b) 

Figure 12. Graph of training and prediction of data and distribution of forecast data. (a) 
Data distribution Data forecast; (b) Network training graph and. 

 

 
(a) 

 
(b) 

Figure 13. Total network training error interrupted at minimum data prediction error. (a) 
Total network training error; (b) Total data prediction error. 
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(a) 

 
(b) 

Figure 14. Graph of training and forecasting of data and distribution of forecast data. (a) 
Distribution of data and data forecast. Forecasting the network; (b) Graph of the network 
training.  

 
Figure 14(b) presents the distribution of the predicted data. 

The graph in Figure 14(b) shows a range of 2600 forecast hours around 65%. 
This time interval between tremors corresponds to a value almost two times 
greater than the average of 1505 hours.  

7. Conclusion 

The peaks around zero in the distribution using all values of magnitudes in our 
network, proved to be a good indicator of seismological prediction. When ap-
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plying this same procedure to data with magnitudes greater than 3.0, we had 
magnitudes greater than the range of 4.0 and 4.5. These are promising results 
when we introduce the training stop criterion at the moment in which the min-
imum error of forecast of the data reaches the global minimum. Therefore, we 
can verify that our model has a response to the data forecast. The prediction es-
timate was calculated roughly by the width of the bins of the histograms. A bet-
ter idea of the relationship between prediction interval and the mean time be-
tween events will be obtained by adjusting the data to some statistical distribu-
tion that allows quantitative calculation of the half-life of the distribution. This 
study is in course and will be published elsewhere. 
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