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1. Introduction and Preliminaries

Special matrix functions appear in connection with statistics [1], Lie groups
theory [2], mathematical physics, theoretical physics, group representation
theory, and orthogonal matrix polynomials are closely related [3] [4] [5]. In [6]
[7] [8], the hypergeometric matrix function has been introduced as a matrix
power series, an integral representation and the hypergeometric matrix
differential equation. In [9]-[18], extension to the matrix function framework of

the classical families of p-Kummers matrix function and Humbert matrix
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function have been proposed. The third author has earlier studied the p and
g-Horn’s H,, pl(m,n)-Kummer matrix functions of two complex variables
under differential operators [19] [20]. The reason of interest for this family of
hypergeometric matrix functions is due to their intrinsic mathematical
importance. The main purpose of this paper is to study some properties of the
Horn matrix function of two complex variables H,(A4,4',B,B';C;z, w) which
is a matrix extension of Horn scalar function [21] [22] [23] [24].

Throughout this paper, for a matrix Ain C™", its spectrum o(4) denotes
the set of all the eigenvalues of A. If 4 is a matrix in C"*, its two-norm
denoted by ||4| and defined by

1
where, for a vector yeC", ||y||2 = (yTy)2 is the Euclidean norm of y.
Let us denote o(A4) and y(A) the real numbers [25]
a(A)= max{Re(z) ize o-(A)},

. (1)
y(4)= mm{Re(z) ze o-(A)}.

If f(z) and g(z) are holomorphic functions of the complex variable z
which are defined in an open set Q of the complex plane and A is a matrix in
C™ such that o(4)cQ, then the properties of the matrix functional
calculus [26], it follows that

S(4)g(4)=g(4) 1 (4). (2)

Hence, if Bin CY" is a matrix for which o-(B) cQ alsoandif AB=BA,
then

S(4)g(B)=g(B) s (4). (3)

The reciprocal gamma function denoted by I''(z)= is an entire

1
r(z)
function of the complex variable z Then for any matrix Ain C"*", the image of
I'!(z) actingon Adenotedby I''(A4) isa well-defined matrix. Furthermore,
if

A+nl is an invertible matrix for all integer #>0 (4)

then T (A) is an invertible matrix, its inverse coincides with Ffl(A) and

from [6], one gets the formula
(4), =A(A+1)-(A+(n-1)I)=T(A+nI)T"'(4); nz1; (4),=1. (5
Jédar and Cortés have proved in [25], that
r(4)=lim(n-1)1[(4),] n". (6)

Taking into account the Schur decomposition of any square complex matrix A,
by [7] it follows that
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and

k
("A"r; an
"nA"Sna(A)Z—; nx1. (7)

The hypergeometric matrix function is defined by the matrix power series in

the form

(4),(8),[(0),]"

n!

(8)

M

,F(4,B;C;z) =

Il
o

n

If n is large enough, then for Cin C™" such that C+nl is an invertible
matrix for all integer n>0, then we will mention to the following relation

already established in Jédar and Cortés [7] in the form

“(C+n1)1”s#; n>|c. (9)
Let us denote
=l ffen]-fere-nn we a0
and
||AB||<||A||||B||
|| (11)

|(4) ), (181),

One of them is the Horn matrix functions of two complex variables (see [27])

0 A B BI
G,(A4,B,B’;z,w) = z( )in (B), (B),,., vy

a0 m!n!

s (ALA,BLB).,

G,(A4,4,B,B;z,w)=

b
1m0 m!n!

G, (A Az w) z Mzmwn’

m,n=0 m'n'

1

e (4),,(4),.,(B),1©),]

H (A4,4,B;C;z,w)= Y z"w",
a0 m!n!
-1
x (A4 A) (B) (B C
H2 (A, A,, B, BI, C, z, W) — Z ( )m—n ( )m ( )n ( )n |:( )m:' men’

0 m!n!

1

i) § WO

0 m!n!
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. (4),,,(8),[(#),]T©.]"

H4(A,B;B"C;Z,W)= Z g W
m,n=0 e
-1
= (A B C
I_I5 (A’B’ C, Z, W) — Z ( )2m+n ( )nfm [( )n:| men’
m,n=0 m'n'

(4)s s (B () i

m!'n!

Hg(A,B,C;z,w) = i
m,n=0

1

i i) 5 WaeaOLAL[OLT

a0 m!'n!

2. Radius Regularity of Horn Matrix Function

The Horn matrix function H,(4,4',B,B";C;z,w) of two complex variables
will be written in the form
H,(A4,4,B,B";C;z,w)

1

2 (4),.,(4),(8),(8),[(0),] , . < (12)
:m’znz:o — [ :| 2w :méoUm’n (z,w)
A) (4) (B).(8) [(0). T
where U, (z, )—( Jura (4 ( )'"(' ), [( )m] z"w" in addition A4, A3 B,
m!n!

B’and C are positive stable matrices and commutative matrices in C"*" such
that C+ml is an invertible matrix for all integers m>0.

For simplicity, we can write the H,(4,4',B,B’;C;z,w) intheform H,,
H,(A+1,4,B,B';C;z,w) intheform H,(A*I), H,(A4,A'+1,B,B;C;z,w)
in the form H,(A'+),"*,and H,(A4,4,B,B;C+1I;z,w) intheform
H,(C%).

Now we begin the study of the conditions so that Horn matrix functions
H,(A4,A4',B,B’;C;z,w) converges for |z|=1, |w|=1.

By hypothesis

7(C)>a(A)+a(A)+a(B)+a(B) (13)
thus there exists a positive number J such that

7(C)—a(A)-a(4A)—a(B)-a(B')=45. (14)

From (7), (14), theorem 1 of [25] and taking into account that
a(-C)=-y(C), it follows that

(0.4, [
(),

(m—l)!

—1 1
m!n!
niB(B)n niB

(8),
(1)t || (n=1): H =
—1)!||.
||

1+6 146

lim m™n
m+n—»o0
< lim mén‘) "

m+n—0 “ m-—n— 1 “

?
|

<Pl
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For positive numbers p and n, we can write

m=yn. (16)
Using (6), (17) in (16), we have
tim o [ () (e (&) (3] (©)
) , el —cp|(en=n =11z =1)
ey e Bl B e 2= 2=
< | =1)" el e Cf (4 ||||r B)Ir &)ir(c)

5

1 k
I I Lt Y
lim -0

e (-t | & k!

(-l i ol ol @l ey oo,

by the comparison theorem of numerical series of positive numbers one concludes

the absolute convergence of series (12).
By (5), (6) and the lemma 2 of [25], one gets

(4),[(),]
=T(A4'+mI)T(C)T (4T (C+ml) (17)
=T (4) (C-A)T(C) [ (1-0) " .

1

From (12) and (17), we get

Y I CIRCRCIN (N

m,n=0 m!n! (18)

=T (A4) (C-A)E(C) [ (1=0) " Ry (A, B.B =z, w)dt

where

Fy(4,B,B—;z,w)= 3 oy

where 4’ and C are matrices in the space CY" of the square complex
matrices of the same order N, satisfying the following conditions
AC=cCcq (19)

and

A,C and C—A' are positive stable matrices. (20)

This is an integral form of the Horn matrix function.

3. Recurrence Matrix Relations

Some recurrence matrix relations are carried out on the Horn matrix function.

In this connection the following contiguous functions relations follows, directly
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by increasing or decreasing one in original relation
-1

. (4+1),,(4),(8),(8),[(0),]

, (A+)= Z m!n! 1)

m,n=0

=4" i (A+(m—n)1)Um’n (z,w).

m,n=0
Similarly

Hy(A=)= 3 (A=1)(A+(m=n-1)1)"U,, (z:w),

m,n=0

Hy(A+)= 3 A (A +mI)U,, (z.w),

m,n=0

Hy(£-)= 3 (4~ 1)(4'+(m-1)1) U, (zw).

m,n=0

H,(B+)= Y B (B+nl)U,, (zw).

m,n=0

H,(B-)= i (B=1)(B+(n-1)1)"U,, (zw),

m,n=0

H,(B'+)= ;OB” (B'+nl)U,, (z,w),
1, (=)= % (B=1)(B'+(n=1)1)"U,,, (),

o (22)
H,(C+)= ). C(C+m[)71 U,.(zw),

m,n=0

Hy(C-)= 3 (C=1) (C+(m=)I)U,, ()

m,n=0
The same way, we can get some examples of contiguous functions relations
directly
H,(A+,A'+)=A7"4"" Y (A+(m=n)I)(A'+mI)U,, , (z,w),

m,n=0

H,(A+,B+)=B"4" i (4+(m—n)I)(B+nI)U,,(z.,w),

m,n=0

H,(d'+C+)= i CA™' (A" +ml)(C+ m1)71 U,,(z,w), (23)

m,n=0

H,y(B+;C+)= Y CB™ (B+nl)(C+mI)' U, (z,w).

m,n=0

H,(B'-C-)= i (C=1)"(B'~1)(B'+(n-1)1) (C+(m=-1)1)U,,, (z,w).

m,n=0

Note that A+=A4+] and A-=A4-1 ---.

4. The Horn Matrix Function under the Differential Operator

Consider the differential operator D as given in [28], takes the form

d +d,, mmnzl;
D= . (24)
1, otherwise.
101 Advances in Linear Algebra & Matrix Theory
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0 0
where dlzza— and d, =wa—. The contiguous function relations of the
z w

Horn matrix function under the differential operator D will be given as follows

(DI+A)H,
-1
A+(m+n)l)(A4 A") (B) (B C
g U@, (0.0.00[O] L
0 m!n!
= AH,(A+)+2d,H,,
(dI+A)H,=AH,(A+),
(d21+B)H2=BH2(B+), 26)
(dyI+B')H, = BH,(B'+),
(d1+C)H,=(C~1)H,(C-)+H,
and
(DI+C-I)H,=(C-1)H,(C-)+d,H,. (27)
From (25), (26) and (27), it follows at once that
(A-A'=B)H, = AH, (A+)+2d,H, - A'H, (4'+)~ BH, (B+),
(A—A'=B'YH, = AH, (A+)+2d,H, - A'H, (4'+)-B'H, (B'+), 08)

(A= B—-C—I)H, = AH,(A+)+2d,H, —(C~I)H, (C -)~ BH, (B+).
(A-B'-C-I)H, = AH,(A+)+2d,H,—(C-1)H,(C~)-B'H,(B'+).
From (26), (27) and (28), we get

(A'-C)H,=A'H,(4'+)-(C-I1)H,(C-)-H,,
(A-C+I)H,=A4H,(A+)-(C-1)H,(C-)+d,H,,
(B-B')H,=BH,(B+)-B'H,(B'+), (29)
(4'~C—B+B)H, = AH,(4+)~(C~1)H,(C-)-H,
—BH,(B+)+B'H,(B'+).
Operating with D on the Horn matrix function of two complex variables
yields
’ ’ -1 ’ -1
. (men)(4),, (4, (8),(8),[©),] T©)] .,

DH,= Y

m,n=1 m 'I’l'
=zAA'C"'H, (A+,A'+,B,B;C+;z,w) (30)
+w(A—1)" BB'H, (A, A',B+,B'+,C;z,w).

Operate with d, on the Horn matrix function, we obtain

1

= m(4), (4),(8),(8),[(),]
4 H, :120 min! = (31)
=244'[C] " H,(A+1,4' +1,B,B;C+1;z,w),
o S AL 0. B[] @]
m=2,n=0 m!n! (32)

=22(4),(4),[(C),] H,(A+21,4+21,B,BC+2I;z,w)
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and

-1

(4+1),,(4+0),8),(8), [0, T ., |

diH, =d,| A4[C]" i
m,n=0

m!n!
=d”H,+d H,
Le,
dPH, ~d,(d,~1)H, =0. (33)
Similarly, for d,, we have
d,H,=w(A—1)" BBH,(A~I1,4,B+1,B +I;C;z,w), (34)

-1

dPH, =w[(4-21),] (B),(B'), H,(A-21.4,B+21.B'+2I:C;z,w) (35)

and
2 _ _ -1 ' _ ' ’ (-
31, = [w(A=1) BB, (=LA B LB iG]
=d'H, +d,H,
Le,
dPH, ~d,(d, -1)H, =0. 37)

Hence the Horn matrix function H,(A4,4',B,B';C;z,w) is a solution of the
partial differential equations in the forms (33) and (37).
Now, we see that

dd,H, = zwA[(A-1)]" ABB'[(C)] H,(A,A'+1,B+1,B'+1;C+1I;z,w).(38)

From (32), (35) and (38), we have

oo, 5 WL ELELLELT

m+n<2 m ' n '

(il 20y 1a2) 3 " (), [(©.] .,

m+n>2 m!'n!

=1+44(C)] ' z+BB[(4-1)] ' w

+(4),(4),[(C), ] 22H,(4+21, 4 +21,B.BC+21:2,w) .
39
+zwd[(A-1)] A'BB'[C] " H,(A,A'+1,B+1,B' + I;C + I;z,w)

+[(4-21),T (B),(B), w'H,(A~21.4,B+21,B'+21;C;z,w).

The (D) -operator has been defined of two complex variables by Sayyed
[28] in the form

N

B(D)=1+Y D" (40)

k=1

where

DOI: 10.4236/alamt.2018.82009 103 Advances in Linear Algebra & Matrix Theory


https://doi.org/10.4236/alamt.2018.82009

M. S. Metwally et al.

o (N o (N o
NO | N-1 n N-2 2
e (1}2 Y e ow (2}2 Y o

D(N) = aN

ot w! m+nz2N

N
I otherwise.

where Nis a finite positive integer.
We have by mathematical induction the following general form of differential

operator B(D) to Horn matrix function in the form

Hy(A+(k=2j)1,A'+(k—j)I,B+jI,B'+ jI;C+(k—j)I;z,w)|.

5. Hadamard Product of Two Horn’s Matrix Functions

Let 4,4,B,,B and C, are commutative matricesin C"" such that
C,+ml are invertible matrices for all integers m>0, i=1,2.
The Hadamard product of two Horn’s matrix functions of two complex

variables is defined in the form
H; (4,4, 4, 4,B,,B,,B,B,;C,,Cy;2,w)
=H,(A4,A4,B,B;C;z,w)*H,(A4,,4,B,,B;;Cy;z,w)

g (), (40, (8), (BL[C). ] (4)., (4).(B). (B[] .,
m=0 (m!)2 (n!)2

= 3U;, (2w)

m,n=0

(42)

where

1

(), (4),(8),(8),[(C), ] (), (4),(8),(B),[(¢),] |
(m1)" (n)’

Now, we prove that the Hadamard product of two Horn’s matrix functions of

two complex variables convergence for all zand wwith |z|<1 and |w|<1.If n
is large enough, one can write n>||C,[|, then the following relation is satisfied

(7]
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l(c,+n1)"|- n(%u”:% (%+IJ1 sﬁ; n>lc)l @3
Denote
y,,(n):“(c,.)*'m\(ci+1)*‘“...H(c,.+(n_1)1)‘1“; n>0. (44)
Note that

IIA ).

|(4) (), =(141), -
l(5) | <(I0),-

Then by relation (43)-(45) for m large enough, such that m>|C,[, it follows

(45)

that
1. ||Um+1 n+l Z’ W)”
1m
m,n—>0 " Z, W ||

i [ (L)L) B ) (] ) 8] ) (32 +)

m,nmo‘ (m+1) (n+1( ||C||)( "Czu) ‘

=0 forall |z]<1 and |w|<1.

A o

Thus, the power matrix series (42) is convergent for all complex numbers
|zZ] <1 and |w|<1.
From relation (17) and the conditions (19) and (20), we can write
H; (4, 4,, 4, 4, B, B,, B, B,;C,,Cy; z,w)
i (4),,(4),,(8),(8),(B),(8), T (4T (C-4)T " (4) (G -4)
o (1) (nt)
(e () (1) s (G ()=
=T (4)T (4)T (G -4)T7(C, - 4,)T(C)I(G,)
[[[H (4. 4,.B,,B,. B, Byi— a5z, w) "™ 557 (1=0) " (1-5) % duds

(47)
where
H(A,A4,B,B,,B,B);—,—z,w)
_ 5 (A ()., (B), (B, (B0, (B), .,
o (m)’* (n!)’ '

Therefore, an integral representation for Hadamard product of two Horn’s

matrix functions is obtained.

Contiguous Functions Relation for Hadamard Product of Two
Horn’s Matrix Functions

For the Hadamard product of two Horn’s matrix functions
H, (4,4,,B,B,,B],B;;C,,C,;z,w), we can define the contiguous function

relations as follows
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0

Hi (44)=4" 3 (4+(m=m)I)U,, (z:w). (48)
H; (4)= 30 (4=1)(4+ (n=n=)1) U3, (220, (49)
Hi (4 4)=4" Z(A +ml)U?, (z,w), (50)
H; (4)= 3 (4=)(A+(m=1)1) U3, (20). (51)
H; (B +)= iOBI. (B.+nl)U:, (2.w). (52)
H; (B -)= 20(3,,—1)(3,+nl)’1 U, (zw), (53)
H; (B +)= iOBf‘( +nl)U; (z,w), (54)
H; (B -)= io(Bi'—I)(Bi'+nI)_ U (z.w), (55)
H; (C +)= io(c,. +1)(C+mI) UL, (2.w) (56)

and E
H:(C-)= ig(c,._z) (C+mI)U?, (z,w). (57)

For all integers k>1 and i=1,2 we deduce that

H* (4, +k)
=1il[(Ai+(r—l)1)_lm$Of1[(Ai+(m—n+(r—l)) VU (2), 9

1 (4 =4 =TT(4=r1) ST+ (mn=0)1) Uz (20 (59
(k) =TT =01 ST o (r=0)1) 3 (20, 60
H A=k =[T(4=r1) ST+ n=0)1) Uiz @)
(B k) =T 1(8,+ (1) S 1B+ (0= 0)1 )03, (20). @)
(8 =k)=T1( =) S8 +(=0)1) Vi), (6
Bk =T 1(8 (- =0)1) S T8+ (0 =0)1 )03 (20). 60
H* (Bl —kl) = ﬁ(gg_ﬂ);o]j(B;+(n N)'UL (), (65)
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k

H*(C+k)=TT(C +(r-1)1) i ﬁ(c H(m+(r=1))1) U, (zw) (66)

and
(G =T (G-t S TT(C () 1)U (2w). (@)

The Hadamard product of two Horn’s matrix functions is affected by the

differential operator D, so, for all i=1,2, we obtain that

(DI + 4 H;
=X (44 (m-n) 1)U, (20)+ X 200, (2w) (69)
m,n=0 m,n=0
=AH; (A4 +)+2d,H;,
(d11+A7',)H2* = z (A +m1)Umn( >W):AiIH2*(147',+)’ (69)
m,n=0
(41 +B)H; = 3. (B +nl)Uy, (=) = BH; (B +), 70
m,n=0
(d2[+Bi/)H; _ Z (Bi,‘f‘nI)U;,n (Z,W):BI’H; (Bi'+) (71)
m,n=0
and
(d1+C)H;
= Y (C+mI)U;, (z,w)
m,n=0 (72)
=S (G )1 () U ()
m,n=0 m,n=0

= (Ci _I)Hz* (Ci _)+H2*~
Next, let us operate with Don (5.1) on both sides, we obtain

DH; (A, 4,, A4, 4,B,,B,,B,B;;C,,Cy;z,w)= Y (m+n)Uy, , (z,w).  (73)

m,n=0
Hence, we can find that

2Hy (A, 4,4, 4,,B,B,,B,B};C,,Cpsz,w) = Y. (m +2mn+n* U, (z,w)

m,n=

5 A (0 (B (BL[E).. ] (), (4, (B (B[] L
= (m1)” (n)
+22(mn) (z w)

e § A (4. (B, (B, [(C)] (). (4, (B, (B[]
=0 (m!)2 (n!)2

- zm;(Al (m=n)1)(Ay +(m—n)T)(A/+mI)( A5 +m)(C,+ml)"

(G, +m1)_I Ur,(z,w)+2 Z (mn)U,, , (z,w)

m,n=0

ww Y (4 +(m-n-1)1)" (4 +(m=n-1)1)"

m,n=0

(B, +nl)(B,+nl)(B/+nl)(By+nl)U,  (z,w)
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=zA A AAC'C, Hy (A +, A+, A+, A+, B, B,, B/, B;; C,+,C, +;2,w)
+2d,d,H; (A, 4,,4,4y,B,,B,,B,B,;C,,Cy;z,w)
+w(4, ~1)" (4 —~1)" BB,BBH; (A~ 4,— B, By, B+, B, +;C,,Cy2,w).

6. Conclusion

The results are established in this study to express a clear idea that the use of
operational techniques provides a simple and straightforward method to get new
relations for Horn matrix functions. Therefore, these results are considered
original, variant, significant, interesting and capable to develop its study in the

future.
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Open Problem

The same class of new differential and integral operators can be used for the
Horn matrix functions. Hence, new results and further applications can be

obtained. Further applications will be discussed in a forthcoming paper.
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