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Abstract 
A central interaction of bodies which at short distances is stronger than New-
tonian is considered. It is shown that the escape velocity from a body is essen-
tially more than the escape velocity given by Newton’s theory. The connection 
of the new central interaction with the gravitational radius of a black hole is 
found. It is shown that the gravitational radius of a black hole may be arbitra-
rily large. 
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1. Introduction 

The construction of the theory of movement of the solar planet system was a 
triumph of science in the middle ages, especially in Astronomy and Mechanics. 
The confrontation between the supporters of Ptolemaic geocentric system and 
heliocentric system of Aristarchus-Copernicus lasting for centuries ended with 
the victory of the latter. In the third-century B.C. the representative of the Py-
thagorean School of Greece Aristarchus of Samos has advanced heliocentric sys-
tem of the planetary motion, but it was rejected by the ancient astronomers as 
baseless in their opinion. Further, from all the systems of the world, created in 
antiquity for the explanation of the planetary motion, the most famous one was 
geocentric system of Ptolemy who lived in Alexandria in the II century A.D. 
From the observations of the starry sky the ancients concluded that it moves 
around our Earth, which is motionless and is in the center of the Universe. In 
Ptolemy system everything is explained with the help of circumferences and cir-
cular motions. Yet, this system which had existed for more than thousand years, 
turned out to be very complicated and often was in contradiction with the data 
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of astronomical observations which had become intensive after the invention of 
a telescope by Galileo Galilei. Eighteen centuries after Aristarchus in XVI cen-
tury Copernicus revived the heliocentric model and unlike Aristarchus who had 
only given the general idea developed the details of the heliocentric system and 
bases of the calculations of planetary positions. Yet, Copernicus went on relying 
on Ptolemy method of the circular orbits and he failed to build a comprehensive 
theory. A radical change in the victory of the heliocentric system in the begin-
ning of the XVII century was made by Johann Kepler who, using the wonderful 
catalogue of the data of the exclusively exact observations about the planets mo-
tion, especially the data about Mars, made up by Tycho Brahe, formulated his 
three famous laws on the motion of the planets. According to Kepler’s first law 
any planet moves around the Sun in an elliptical orbit with the Sun in one of the 
foci of an ellipse (with this Ptolemy model of motion was neglected). According 
to the second law any planet moves in the orbit with constant sectorial velocity. 
Kepler’s third law establishes connection between the big semi-axis (a) of the el-
lipse and the period (T) by which the planet completes a full turnover  

( )( )( )2 3 24πT a G M m= + , G is the gravitational constant. 
Kepler’s laws are empiric. Several decades later Newton brought out Kepler’s 

laws and formulated the famous law of Universal Gravitation. According to 
Newton’s law the force of Universal Gravitation is central, each mass m is at-
tracted by another mass M in the Universe with force, inversely proportional to 
the quadrate of distance between the masses, and is directed along the line, con-
necting the centers of the masses. Newton did much more, proving that the orbit 
of the bodies, moving around the Sun may be any of the curves of the conic sec-
tions family (circle, ellipse, parabola, hyperbola). In the next decades and centu-
ries Newton’s law of Universal Gravitation received a lot of convincing and vivid 
confirmations. Applying this law William Hershel discovered the planet Uranus 
in 1781, in 1840-s Adams in England and Le Verrier in France discovered the 
planet Neptune. 

In the XVIII century Halley’s Comet and lots of small planet-asteroids were 
discovered. Yet, in spite of the great success some phenomena were difficult to 
explain by Newton’s law. In 1859 Le Verrier discovered some discrepancy of the 
orbit of the nearest to the Sun planet Merkuri in the perihelion with the results 
of the observations. Not finding any convincing explanation of this fact, in 1895 
Simon Newcomb expressed an opinion that possibly Newton’s law of inverse 
squares was not performed precisely at small distances. In 1917 the fact con-
nected with the anomaly of the orbit of Merkuri was explained on the base of 
Einstein’s general theory of relativity (GTR) and the contradiction seemed run 
out. But in 1965 it was proved by R.Dicke and M.Goldenberg that the Sun is not 
round and its polar diameter is 35 km less than equatorial one which permitted 
to explain the residual displacement of Merkuri’s perihelion almost by 10%. 

It put under hesitation the compliance of GTR with the results of the observa-
tions ([1] [2] [3]). The various variants of central forces, under which the solu-
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tion of the motion equation is brought to the quadratures, are discussed by Ja-
kobi, Bertran, Darbu, Alfen [4]. Yet, they haven’t described at least one really 
existing motion [4]. The basic types of really existing nowadays in the nature 
and Atomic Physics forces are noted in [1] [5]. The second characteristic of the 
current situation is connected with the question of existence of “Dark Bodies” 
(in the modern terminology “Black Holes”). In 1783 English amateur astrono-
mer John Mitchell, at a later date one of the founders of Seismology, and in 1795 
well-known French Mathematician and Mechanician Laplass, independently of 
each other on the base of Newton’s law of gravitation expressed an opinion that 
in nature bodies for which the necessary velocity for overcoming their gravita-
tion exceeds the speed of light should exist (c). That is why such bodies should 
be “dark”. Bodies like that are invisible and they can be discovered indirectly by 
the gravitational influence on other bodies. Mitchell and Laplace derived the ra-
dius of “the black body” rg (gravitational radius) at its given mass, using the idea 
of the second cosmic (escape) velocity 22gr GM c= . After building GTR Mit-
chell and Laplass discussions were subjected to the critics in the sense that at 
close to the speed of light velocities the formulae of classical Mechanics are not 
applicable, though on both theories one and the same value for the gravitational 
radius is obtained. And the opponents of GTR claim that it is not applicable, as 
long as the solution of the equations of this theory contains a singularity unac-
ceptable when discovering natural phenomena. 

The facts, brought above, determine the relevance of the question raised by 
Newcomb, namely: if there is such a central interaction which at small distances 
differs from Newtonian one (it is stronger), and coincides with it at big dis-
tances. Below we shall give a positive answer to the posed question. 

2. On More Powerful Central Interaction of Bodies 

Let us consider a version of central interaction of bodies, which at short dis-
tances describes more powerful interaction, comparing with Newtonian gravita-
tional one, and practically coincides with it at comparatively big distances. Let us 
have bodies with masses m, M. Put the beginning of the polar coordinates ( ,r θ ) 
in the center of the body with mass M. The central force of the interaction will 
be given in the form of 

2

e ,
k r

GmM
r

= −
rF
r

                           (1) 

or 

2

e .
k r

F GmM
r

= −                              (2) 

where G is the gravitational constant in Newton’s law of gravitation  
( ( )11 3 26.67 10 m kg sG −= × ⋅ ). Index k will characterize the power (intensity) of 
the gravity center. At 0k =  the interaction (1) coincides with Newtonian one 
(coefficient GmM is chosen for it). And if 0k > , it will be more powerful than 
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Newtonian interaction. It is obvious that k has dimensionality of the length. We 
shall speak about its possible values a little bit later. The interaction (1), in 
somewhat different notations, was previously considered by us [6]. 

As long as the processes, taking place in the universe, as a rule, are periodical, 
we shall below prove the possibility of the periodical solution existence under 
the interaction as well Formula (1). 

The field made by force F , given in Formula (1) is potential with potential 

ek rGmMU const
k

= − + ,                       (3) 

which is essentially stronger than the potential of Newton field (U GmM r= − ). 
As force F  is central, the trajectory of the material point is plane curve and the 
law of the squares takes place: 

2 d
d

r C
t
θ
= ,                               (4) 

where C is equal to the initial velocity moment relatively to the center of gravity. 
Taking into account (4), the velocity of the trajectory point is determined by 
formulae 

( ) ( )
2

22 2 d 1
1

d
r

v C r
θ

   = +    
.                    (5) 

Using the theorem on kinetic energy ( )2d 2 dmv F r= , we have 

2 2 ek rGMv h
k

= +                            (6) 

where the constant of integration h is determined from the initial condition at 

0 0,r r v v= = . 
Denote 1 rψ = , then 

2
2 2 2d

d
v C ψ

ψ
θ

  = +     
                       (7) 

and from (6), (7) it follows 
2

2
2

d 2 1e
d

kGM h
k C

ψψ
ψ

θ
   = + −   
   

.                   (8) 

The determination of the trajectory in the Polar system ( ,r θ ) is brought to 
the calculation of the integral 

0 0 2
2

dd
2 1ekGM h

k C

ψθ

θ ψ ψ

ψ
θ

ψ
= ±

 + − 
 

∫ ∫                 (9) 

For the clarification of the trajectory form decompose function ( ekψ ) into 
Maclaurin series and confine ourselves with the first three summands for now 

2 21e 1
2

k k kψ ψ ψ≈ + +                        (10) 

According to (8) we shall have 
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( )
2

22
1 2 1

d
d

k kψ
δ ψ

θ
   = − −    

,                   (11) 

1 12 2
1

1 ,GMk GMk
C C

δ
δ

= − =                       (12) 

( ) ( )2 2
2 1 12 2 2

1 1

1 12k k GM kh GM GM kh
kC kC

δ
δ δ

= + + = + +    

We shall consider 1 0δ > , for only in this case the solution will be periodical 
and the trajectory will be conic section. Putting in the designations  

1 2k kψ ρ− = , Equation (11) will have the form of 

( )
2

2
1

d 1
d
ρ

δ ρ
θ

  = − 
 

,                        (13) 

from where it follows 

( )1 0cosρ δ θ θ= −                         (14) 

Returning to the initial designations, we shall have 

( )1 2 1 0cosk kψ δ θ θ= + − ,                     (15) 

( ) ( )
1

2 1 1 0

1
1 cos

kr
k k δ θ θ

=
+ −

, 

i.e., the trajectory is conic section with parameters 
2

1

1 Cp k
k GM

= = − ,                         (16) 

2
2

1

1 1 2k C hk
k MGk MG

ε
  = = + − +  

  
. 

3. On Possible Orbits of Bodies under the New Central  
Interaction (1) 

As 1 0δ > , then ( )2 1 0C MGk − > . In order to get an elliptic orbit, it is neces-
sary that ( )2 0hk MG+ < , i.e. 

2h GM k< − .                           (17) 

The trajectory will be an ellipse if 
2

1 1 2 0C hk
MGk MG

  − < − + <  
  

                    (18) 

from where it follows 
2

2

21MG C GMh
k kC MGk

 
− + < < − − 

.                   (19) 

The semi-axis of the ellipse is determined by formulae 

2 2
,

1 1

p pa b
ε ε

= =
− −

.                     (20) 

https://doi.org/10.4236/ijaa.2018.82014


L. Aghalovyan 
 

 

DOI: 10.4236/ijaa.2018.82014 196 International Journal of Astronomy and Astrophysics 
 

At 
2

21MG Ch
k C MGk

 
= − + − 

,                    (21) 

the trajectory is a circle, at 2h GM k= −  it is a parabola, and at 2h GM k> −  
it is a hyperbola. The constant of integration h, as usual, is determined from the 
initial condition: at 0 0,r r v v= = . According to (6) 

02
0

2 ek rGMh v
k

= − ,                        (22) 

and condition (17) will be written in the form of 
0

2 2
0 *

0 0

2 e 1k rGMv v
r k r

 −
< = 

 
.                      (23) 

Therefore, at 0 *v v<  the trajectory is an ellipse, at 0 *v v=  it is a parabola, 
and at 0 *v v>  it is a hyperbola. 2 2

0 * 0 *0lim 2k v GM r v→ = = , *0 02v GM r=  is 
the second cosmic (escape) velocity by Newton theory, i.e. the initial velocity 
under which the body overcomes the gravitation of the body with mass M. And 
if 0k > , according to (23) * *0v v> , i.e. the second cosmic (escape) velocity un-
der the interaction (1) is greater than the classic one which was to be expected. 

Note, as well that the preservation in Maclaurin series of the functions ekψ

more components than in (10) brings to the calculation of the elliptic integrals 
and non-essential amendments to the parameters of trajectory. 

4. On Gravitational Radius of a Black Hole 

The body with mass M will be dark (invisible or “Black Hole”) if any body (par-
ticle) with mass m and initial velocity, even equal to the speed of light c, cannot 
overcome the field of gravitation of the mass M. A natural question rises—what 
is the gravitational radius Rg under the interaction (1). For the determination of 
the gravitational radius Rg in Formula (23) the initial conditions will be: at 

0 *,gr R v c= = . We have 

22 e 1 ,
gk R

g g

GM c
R k R

 −
=  

 
                        (24) 

Noting 0limk g gR r→ =  and passing in (24) to the limit at 0k →  we have 

22

g

GM c
r

=  or 2

2
g

GM r
c

=                      (25) 

i.e. radius rg is the well-known gravitational radius under Newton classic central 
interaction. 

Note gk Rγ = , then from (24) taking into account (25) it follows 

e 1
g gR r

γ

γ
−

=                             (26) 

or 
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e 1g

g

R
r

γ

γ
−

=                       (27) 

0lim 1g gR rγ→ =  at 0, g gR rγ > >  and from the graph of the function g gR r  
(see Figure 1) it follows that the gravitational radius Rg under the interaction (1) 
compared with Newtonian gravitational radius rg can be arbitrarily large. From 
Formulae (24), (26) it follows that parameter k is proportional to the gravita-
tional radius ( )g gR k Rγ= . Setting the value γ from graph (Figure 1) or by 
Formulae (27) g gR r  will be determined, i.e. the gravitational radius Rg itself. 
Then gk Rγ= . 

In Table 1 for some values γ the corresponding values g gR r  are brought. 
It is possible to do the opposite: to give the values g gR r  and from equation 

(27) or Figure 1 determine γ (Table 2), and hence the values k ( gk Rγ= ). 
 

 

Figure 1. The dependence between g gR r  and the intensity 

index of the gravitational field of a Black Hole gk Rγ = . 
 
Table 1. Тhe values of g gR r  corresponding to the given values of γ. 

γ 1 2 3 5 10 

g gR r  1.718 3.194 6.362 29.483 2202.546 

 50 100 200 1000 

 1.037 × 1020 2.689 × 1041 3.61 × 1084 1.97 × 10431 

 
Table 2. Тhe values of γ corresponding to the given values of g gR r . 

g gR r  1 2 3 5 10 

γ 0 1.256 1.904 2.66 3.615 

 50 100 200 500 1000 

 5.647 6.475 7.285 8.335 9.118 
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The results obtained above permit us to draw a conclusion that Black Hole 
(Dark Body) may exist with arbitrarily large gravitational radius Rg; gravitation 
of the Black Hole (Dark Body) is not submitted to the classical (Newtonian) law 
of gravitation, but is submitted to the essentially powerful central gravitation (1). 
A lot of Black Hole (Dark Body) may exist. The last fact has long been confirmed 
by the astronomers [7]-[14]. 

All the Black Hole (Dark Body) will differ in power of the created by them 
gravitational field, i.e. by the value of the index k of gravitational intensity. Using 
Formula (27) they can be renumbered according to the values increase of the 
index k. 

Thus, Black Hole creates near to itself a stronger central force field of attrac-
tion than Newtonian, and submit the law 

2

e
gR

r
GmM

r

γ

= −
rF
r

                      (28) 

The Newtonian theory of gravitation is also capable of describing Black Hole, 
if the law of central attraction is taken in the form (28). 

We also note that the “strong interaction”, known in nuclear physics, is also 
exponential, but with a different potential compared with the potential corres-
ponding to (28) [5]. 

5. Discussion and Conclusions 

A new version of the central interaction of bodies is established:  
2ek rF GmM r= −  which at short distances describes more powerful, compar-

ing with Newtonian one, gravitational interaction. Conditions, under which the 
movement trajectory is a conical section, are derived. It is shown that the Second 
cosmic (escape) velocity under the interaction (1) is much more than the Second 
cosmic (escape) velocity by Newton theory. The connection between the gravita-
tional radius Rg of the Black Hole and the gravitation intensity index “k” of the 
gravitation center is found. It is shown that the gravitational radius of the Black 
Hole may be arbitrarily big. A lot of Black Holes may exist. They all differ in the 
value of the gravitation intensity index “k”. The gravitation of the Black Hole 
(Dark Body) does not obey the classical (Newtonian) law of Gravitation, it obeys 
the law of the essentially powerful central gravitation (1) or (28). 
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