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Abstract 
This paper implements the statistical modelling of the dependence structure 
of currency exchange rates using the concept of copulas. The GARCH-EVT- 
Copula model is applied to estimate the portfolio Value-at-Risk (VaR) of cur-
rency exchange rates. First the univariate ARMA-GARCH model is used to 
filter the return series. The generalized Pareto distribution is then fitted to 
model the tail distribution of standardized residuals. The dependence struc-
ture between transformed residuals is modeled using bivariate copulas. Finally 
the portfolio VaR is estimated based on Monte Carlo simulations on an 
equally weighted portfolio of four currency exchange rates. The empirical re-
sults demonstrate that the Student’s t copula provide the most appropriate re-
presentation of the dependence structure of the currency exchange rates. The 
backtesting results also demonstrate that the semi-parametric approach pro-
vide accurate estimates of portfolio risk on the basis of statistical coverage 
tests compared to benchmark copula models. 
 

Keywords 
Backtesting, Copulas, Currency Exchange Rate, Dependence Modelling,  
GARCH-EVT-Copula Model, Portfolio Risk, Value-at-Risk 

 

1. Introduction 

The currency exchange market plays an important role in evaluating the per-
formance of the country’s economy and the stability of its financial system. In 
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the recent past, the financial markets worldwide have experienced exponential 
growth coupled with significant extreme price movements such as the global fi-
nancial crisis, currency crisis, and extreme default losses. The ever increasing 
uncertainties in the financial markets have motivated practitioners, researchers 
and academicians to develop new and improve existing methodologies applied 
in financial risk measurement. For a given asset or portfolio of financial assets, 
probability and time horizon, VaR is defined as the worst expected loss due to 
change in value of the asset or portfolio of financial assets at a given confidence 
level over a specific time horizon (typically a day or 10 days) under the assump-
tion of normal market conditions and no transaction costs in the assets.  

The complexity in modeling VaR lies in making the appropriate assumption 
about the distribution of financial returns, which typically exhibits the stylized 
characteristics such as; non-normality, volatility clustering, fat tails, leptokurto-
sis and asymmetric conditional volatility. Engle and Manganelli (2004) [1] noted 
that the main difference among VaR models is how they deal with the difficulty 
of reliably describing the tail distribution of returns of an asset or portfolio. 
However, the main challenge lies in choosing an appropriate distribution of re-
turns to capture the time varying conditional volatility of future return series. 
The popularity of VaR as a risk measure can be attributed to its theoretical and 
computational simplicity, flexibility and its ability to summarize into a single 
value several components of risk at firm level that can be easily communicated 
to the management for decision making.  

However, for a portfolio consisting of multiple assets, estimating the VaR for 
each asset within the portfolio is not sufficient to capture the portfolio risk since 
VaR doesn’t satisfy the sub-additive condition [2]. Therefore, there is need to 
evaluate the portfolio risk in a multivariate setting to account for the diversifica-
tion benefits. While many researchers have conscientiously focused on univa-
riate VaR forecasting, the multivariate case has challenges due to the complexity 
of modeling joint multivariate distributions. Conventionally, portfolio VaR es-
timation methods often assume that portfolio returns follow the multivariate 
normal or Student’s t distributions. However, the stylized characteristics of fi-
nancial time series data confirm that the return distributions are heavy tailed 
and exhibit excess kurtosis, hence cannot be modeled using multivariate normal 
distribution. 

Modelling portfolio VaR is also significantly affected by the tail distribution of 
returns. By applying the extreme value theory (EVT) to characterize the tail dis-
tributions of the return series the accuracy the portfolio VaR can be improved 
significantly. EVT assumes that the return series are independently and identi-
cally distributed but this is not always the case. In order to apply the EVT to the 
return series the two-step approach by McNeil and Frey (2000) [3] is applied to 
generated the i.i.d. observations. First the GARCH model is fitted to the return 
series and then EVT is applied to the standardized residuals.  

Moreover, the non-linear dependence structure that exists between tails of as-
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set returns can be modeled using copulas. Sklar (1959) [4] introduced the con-
cept of copulas in modeling the dependence structure between random variables. 
An increasing number of contributions in the development of copula theory and 
applications in several fields of research have appeared in literature. However, 
the motivation for increased interest by researchers to apply copulas is the dis-
covery of the notation of copulas that is applicable in several applied fields. Em-
brechts et al. (1999) [5] pioneered the application of copulas in financial research. 
McNeil et al. (2005) [6] and Denuit et al. (2006) [7] applied copula methods 
from a risk management perspective while Cherubini et al. (2004) [8] and Che-
rubini et al. (2012) [9] applied copulas from a mathematical finance perspective. 
Nelsen (2006) [10] and Joe (1997) [11] introduced the standard references for 
copula theory, providing comprehensive introductions to copulas and depen-
dence modeling, while emphasizing the statistical foundations. 

Recent studies have ascertained the superiority of copula-based models that 
capture the tail dependence and accurately estimate portfolio VaR, since they 
offer much more flexibility in constructing a suitable joint distribution when 
dealing with financial data which exhibits non-normality. Rockinger and Jon-
deau (2006) [12] introduced the Copula-GARCH combination to model the de-
pendence structure between stock markets. Wang et al. (2010) [13] applied the 
GARCH-EVT copula to study the portfolio risk of currency exchange rates. 
Ahmed Ghorbel and Trabelsi (2014) [14] proposed a method for estimating the 
energy portfolio VaR based on the combinations of AR (FI)-GARCH-GPD-copula 
model. Others include Tang et al. (2015) [15] utilized the GARCH-EVT-copula 
model to estimate the portfolio risk of natural gas portfolios and Huang et al. (2014) 
[16] utilized the GARCH-EVT-copula-CVaR models in portfolio optimization. 

The main objective of this paper is to implement the statistical modelling of 
the dependence structure of currency exchange rates using bivariate copulas and 
then estimate one-day-ahead Value-at-Risk via Monte Carlo simulations of an 
equally weighted currency exchange portfolio using GARCH-EVT-Copula ap-
proach. The GARCH-EVT-Copula modelling framework integrates the 
asymmetric GJR-GARCH models for modelling heteroscedasticity in return 
distributions, extreme value theory for modelling tail distributions, and selected 
bivariate copulas for modelling the dependence structure for all the exchange 
rates. Monte Carlo based simulation is then performed to compute portfolio 
VaR based on the GARCH-EVT-Copula model. Finally, statistical backtesting 
techniques are employed to ascertain and analyze the performance of the 
GARCH-EVT-Copula model.  

The rest of the paper is organized as follows. Section 2 briefly reviews the co-
pulas. Section 3 describes the two-step estimation approach for modelling the 
marginal distributions of the currency return series. Section 4 implements the 
portfolio VaR forecasting using GARCH-EVT-copula model. The empirical and 
backtesting results are presented in Sections 5. Finally, Section 6 gives the con-
clusion. 
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2. Copulas 

Copulas are important tool for modelling the dependence structure between 
random variables. Since the seminal paper of Sklar [4] the concept of copulas has 
become popular in statistical modelling. Copulas combine, link or couple univa-
riate marginal distributions to a multivariate joint distribution. The theory of 
copula is based on the Sklar’s theorem, which states that a multivariate 
distribution can be separated into its d marginal distributions and a 
d-dimensional copula, which completely characterizes the dependence between 
the variables. A d-dimensional copula is a multivariate distribution function 
( )1, , dC u u defined on the unit cube [ ]0,  1 d , with uniform marginal 

distributions that satisfies the following properties; [10] 

[ ] ( ): 0,1 0,1 ;dC →     

C is grounded and d-increasing 
C has margins iC  which satisfy ( ) ( )1, ,1, ,1, ,1iC u u u= =   for all 

[0,1].u∈  
Let ( )1, , dF x x  be a continuous d-variate cumulative distribution function 

with univariate margins ( )iF x , by Sklar’s theorem there exists a copula 
function C, which maps [ ] [ ]: 0,  1 0,  1dC →  such that 

( ) ( ) ( )( )11 1, , , ,  
dd X X dF x x C F x F x= 

              
(1) 

holds for any ( )1, , .d
dx x R∈   

For continuous marginals 1, , dF F  the copula C is unique and is defined as: 

( ) ( ) ( )( )1 1
1 1 1 1, , , ,d dC x x F F x F x− −=  .              (2) 

In addition, if F is absolutely continuous then the copula density is given by 

( ) ( )1
1

1

, ,
, ,

, ,

d
d

d
d

C u u
c u u

u u
∂

=
∂ ∂





                    
(3) 

For purposes of dependence structure modelling, many copula classes have 
been developed in literature e.g. elliptical, Archimedean and extreme-value co-
pulas. In this paper, the following elliptical and Archimedean copulas are consi-
dered; Gaussian copula, Student-t copula, Clayton copula, Frank copula, Gum-
bel copula and Joe copula. 

Gaussian copula 
The bivariate Gaussian (or normal) copula is the function 

( ) ( ) ( )( )

( )
( )( )

( )

1 1
1 2

1 1
1 2 1 2

2 2

1/2 22

, ,

1 2exp d d ,
2 12π 1

u u

C u u u u

x xy y x y

ρ

ρ
ρρ

− −

− −

Φ Φ

−∞ −∞

= Φ Φ Φ

 − + = −
 −−  

∫ ∫
    (4) 

where ρΦ is the standard bivariate normal distribution function with linear 
correlation coefficient ρ  between the two random variables X and Y, 1−Φ  is 
the inverse of the standard bivariate normal distribution function. The Gaussian 
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copula has zero tail dependence. 
Student-t copula 
The Student-t copula (or t-copula) is defined analogous to the Gaussian co-

pula using a Student-t distribution. The bivariate Student-t copula with ν de-
grees of freedom is the function 

( ) ( ) ( )( )

( )
( )( )

( )

( )
1 1

1 2

1 1
1 2 , 1 2

2
22 2

1/2 22

, ; , ,

1 2 exp 1 d d ,
12π 1

v
t u t u

C u u t t u t u

x xy y x y
ν ν

ν ρ ν νρ ν

ρ
ν ρρ

− −

− −

+
−

−∞ −∞

=

 − + = +
 −−  

∫ ∫
 (5) 

where ,tν ρ  is the bivariate Student’s t distribution with ν degrees of freedom, 
1tν
−

 is the inverse function of Student’s t-distribution, and ρ  is the Pearson’s 
correlation coefficient between the random variables X and Y for 2ν > . The 
t-copula allows for some flexibility in covariance structure and exhibits symme-
tric tail dependence. 

Clayton copula 
The Clayton copula is an asymmetric Archimedean copula and also a 

left-tailed extreme value copula that exhibits strong left (lower) tail dependence 
compared to the right (upper) tail. The generator function of the copula is
( ) ( )1 1u u θϕ

θ
−= − , hence ( ) ( ) 1/1 1u u θϕ θ −− = + , it is completely monotonic if the 

permissible parameter range is ( )0,θ ∈ ∞ .The bivariate Clayton copula is the 
function: 

( ) ( ){ }1/

1 2 1 2, ; max 1 ,0 ,C u u u u
θθ θθ

−− −= + −
              (6) 

where θ  is the copula parameter value, the lower tail dependence is 1/2L
θλ −=

and the upper tail dependence is zero, i.e., 0Uλ = . As the copula parameter θ  
tends to infinity, the dependence becomes maximal while the limiting case 

0θ =  is be interpreted as the 2-dimensional independence copula [3]. 
Frank copula 
The Frank copula is a symmetric Archimedean copula. The generator func-

tion is given by ( ) ( )
( )

exp 1
ln

exp 1
u

u
θ

ϕ
θ

 − −
−   − − 

, hence 

( ) ( ) ( )( )( )1 1 ln 1 exp exp 1t uϕ θ
θ

− = + − − − , it is completely monotonic if

( )0,θ = ∞ . The bivariate Frank copula is the function:  

( )
( )( ) ( )( )

( )
1 2

1 2

exp 1 exp 11, ln 1
exp 1

u u
C u u

θ θ
θ θ

 − − − −
= − +  − − 

        (7) 

where ( ) ( ), 0 0,θ ∈ −∞ ∪ +∞ , both the upper tail and lower tail dependencies 
are equal to zero, i.e., 0U Lλ λ= = . The independence copula is attained when 

0θ =  whereas as θ →∞  maximal dependence is achieved. 
Gumbel copula 
The Gumbel copula also known as Gumbel-Hougaard copula family intro-
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duced in Hougaard (1986) [17] is both an asymmetric Archimedean copula and 
an extreme value copula that exhibits stronger dependence in the upper tail than 
in the lower tail. The Gumbel copula generator function is given by
( ) ( )( )lnu u

θ
ϕ = − , hence ( ) ( )1 1/expu u θϕ− = − , it is completely monotonic if 

1θ > . The bivariate Gumbel copula is the function: 

( ) ( ) ( )( )1/

1 2 1 2, exp log logC u u u u
θθ θ = − − + − 

 
           (8) 

where [1, )θ ∈ ∞ . When 1θ =  the variables ( )1 2,u u  are independent and 
when θ →∞  we obtain perfect positive dependence between the variables. For 

1θ >  the Gumbel copula exhibits upper tail dependence.  
Joe copula 
The Joe copula is a member of the Archimedean copula and has the generator 

function ( ) ( )( )log 1 1u u θϕ = − − − , hence ( ) ( )( )1/1 1 1 expu u
θ

ϕ− = − − − . The bi-

variate Joe copula is the function: 

( ) ( ) ( ) ( ) ( ) [ )
1/

1 2 1 2 1 2, 1 1 1 1 1 , 1,C u u u u u u
θθ θ θ θ θ = − − + − − − − ∈ ∞     (9) 

The concept of tail dependence measures the joint probability of extreme 
events that can occur in the upper-right tail or lower-left tail, or both tails of a 
bivariate distribution. Let X and Y be continuous random variables with distri-
bution functions F and G respectively. The upper tail dependence coefficient 

Uλ  is the limit (if it exists) of the conditional probability that Y is greater than 
the q-th quantile of G given that X is greater than the q-th quantile of F as q ap-
proaches 1, i.e.,  

( ) ( )( ) ( )1 1

1 1

1 2 ,
lim lim

1U Y X
C

P Y G X F
α α

α α α
λ α α

α− −

− −

→ →

− +
= > > =

−      
(10) 

and the lower tail dependence coefficient Lλ   

( ) ( )( ) ( )1 1

0 0

,
lim limL Y X

C
P Y G X F

α α

α α
λ α α

α+ +

− −

→ →
= ≤ ≤ =         (11) 

The tail dependence measures dependence between extreme values and only 
depends upon the underlying copula, and not the marginal distributions. 

The parametric estimation of copulas is usually implemented using the two 
steps IFM (inference function for margins) approach by Joe and Xu (1996) [18]. 
The IFM approach estimates the parameters of the marginal distributions sepa-
rately from the copula parameters. In the first step, the marginal distributions 
parameters are estimated via maximum likelihood estimation (MLE): 

( )
1

2

1 , 1
1 1

ˆ arg max log ;
T

i i t
t i

f x
θ

θ θ
= =

= ∑∑                 (12) 

The parameter estimates for the marginal distributions 1̂θ  obtained from 
step 1, are used to estimate the copula parameters 2̂θ  in the second step using 
maximum likelihood: 

 

DOI: 10.4236/jmf.2018.82029 462 Journal of Mathematical Finance 
 

https://doi.org/10.4236/jmf.2018.82029


C. O. Omari et al. 
 

( ) ( )( )
2

2 1 1, 2 2, 2 2
1

ˆ ˆarg max log , ; ,
T

t t
t

c F x F x
θ

θ θ θ
=

= ∑            (13) 

The resulting IFM estimator is ( )1 2
ˆ ˆ ˆ,θ θ θ= . Under certain regulatory condi-

tions, Patton (2006b) [19] demonstrates that the IFM estimator is reliable and 
verifies the property of asymptotically normality.  

The goodness of fit may be accessed through some goodness of fit (GOF) tests, 
usually based on some selection criteria. The selection of the most appropriate 
copula is based on the following information criterion, specifically the Akaike’s 
Information Criterion (AIC), and the Bayesian Information Criterion (BIC) that 
compare the values of the optimized likelihood function are utilized: 
• The Akaike information criterion (AIC) by Akaike (1974) [20] is defined as: 

( )2 2lnAIC k L= − Θ


                    
 (14) 

where k denote the number of unknown parameters, ( )ln L Θ


 is the 
log-likelihood function and Θ



 the set of unknown copula parameters to be es-
timated for the fitted copula function. However, the more parameters in the co-
pula function tend to result in a higher value of the likelihood function. Conse-
quently to compensate for parsimony in the copula specification the BIC criteria 
is utilized.  
• the Bayesian information criterion (BIC) by Schwarz (1978) [21] is defined as 

( ) ( )ln 2 lnBIC k n L= − Θ


                   (15) 

where ( )L Θ


 is the optimized value of the log likelihood (LL) function, n is the 
number of observations in the sample and k is the number of unknown parame-
ters to be estimated. For either AIC or BIC, one would select the copula model 
that yields the smallest values of the criterion.  

3. Modelling of Marginal Distributions 

In this paper, the two-step estimation approach is adopted in modelling the mar-
ginal distribution of the return series. In the first step the ARMA-GJR-GARCH mod-
els are fitted to all the currency exchange returns series to model the marginal 
distributions of each return series to capture the stylized characteristics exhibited 
by financial time series data. The ARMA model filters the serial autocorrelation 
while the GJR-GARCH [22] model compensates for the asymmetric volatility 
clustering in the data through the leverage term. The specification of the ARMA 
(m, n)-GJR-GARCH (p, q) model can be expressed as 

1 1

m n

t i t i j t j t
i j

r c rϕ θ ε ε− −
= =

= + + +∑ ∑
                 

(16) 

t t tzε σ=                           (17) 

( )2 2 2 2

1 1

p q

t i t i i t i t i j t j
i j

Iσ ω α ε γ ε β σ− − − −
= =

= + + +∑ ∑
             

(18) 

where 1 1, 0, 0, 0, 0m
i i j ii ϕ ω α β γ

=
< > ≥ ≥ ≥∑ , and t iI −  is the indicator function 
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that takes values 1 when 0t iε − ≤  and zero otherwise. The persistence functions 

of the model is given as
1 1 1

p q p

i i i
i j i
α β γ κ

= = =

+ +∑ ∑ ∑ , where κ  denotes the expected  

value of the standardized residuals. The Equations ((16) and (18)) are the mean 
equation and variance equations respectively; Equation (17) illustrates the resi-
duals tε  that consists of standard variance tσ  and standardized residuals tz ; 
the leverage coefficient iγ  is normally applied to negative residuals resulting in 
additional weight for negative changes. In addition, the standardized residuals 
follow the Student’s t distribution that captures the fat-tailed distribution usually 
associated with financial time series data. 

In the second step of marginal distribution estimation, the standardized resi-
duals are fitted with a semi-parametric CDF, using a kernel density estimation 
method (with a Gaussian density as kernel function) for the interior part of the 
distribution and a generalized Pareto distribution (GPD) for both tails.  

The distribution function of the generalized Pareto distribution (GPD) is giv-
en by 

 ( )

1/

,

1 1 , 0

1 exp , 0

y
G y

y

ξ

ξ σ

ξ ξ
σ

ξ
σ

−  − + ≠    = 
  − − =   

               (19) 

where σ  is the scale parameter and the parameter ξ  is associated to the 
shape of the distribution. When 0ξ > , we obtain the Fréchet distributions, 
when 0ξ = , the Weibull distributions and finally when 0ξ <  the Gumbel dis-
tributions respectively. Financial returns frequently follow heavy-tailed distribu-
tions and therefore only the Fréchet distributions are suitable for modeling fi-
nancial returns data.  

The selection of the threshold value u is an important step in estimating the 
parameters of the GPD using POT. McNeil and Frey (2000) [3] suggest that the 
threshold value should be high enough to approximate the conditional excess 
distribution by the GPD. However, with a higher threshold level there are fewer 
observations that remain for estimating the parameters. Consequently, the va-
riance of the parameter estimates increases. In the empirical analysis the McNeil 
and Frey (2000) [3] approach is adopted to choose the exceedances. Carol (2008) 
[23] suggest that, provided that the sample data is sufficiently large (at least 2000 
observations) there will always be enough log returns in the 10% tail to obtain a 
reasonably accurate estimate of the GPD scale and tail parameters. Thus, the 
GPD is used to estimate the marginal distributions in the lower and upper tails 
by setting the threshold levels to be approximately 10% of the data points for 
both the lower and upper tails and the Gaussian kernel density estimator in the 
interior part of the innovations distribution. The cumulative distribution func-
tion for the tail of the distribution is given by 
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( ) ( )

1/

1/

1

1 1

L
i

L
i

R
i

R
i

L
u L Li i

i i iL
i

L R
i i i i i i

R
u R Ri i

i i iR
i

N u z
z u

n

F z z u z u

N z u
z u

n

ξ

ξ

ξ
β

ϕ

ξ
β

−

−

  − + <   = < <

  −
− + >  

  

        (20) 

where ,L R
i iu u  are the lower and upper threshold values respectively, ( )izϕ  is 

the empirical distribution on the interval ,L R
i iu u   , is the number of iz  and 

L
iu

N  is the number of innovations whose value is smaller than L
iu  and L

iu
N  is 

the number of innovations whose value is bigger than R
iu .  

4. Forecasting VaR and Backtesting 
4.1. Value-at-Risk (VaR) 

Value-at-Risk (VaR) is the commonly used risk measure by both the regulators 
and practitioners to estimate risk especially in financial risk management. It is 
defined as a quantile of the profit or loss (P&L) distribution of the asset or port-
folio of financial assets. It is also defined as the maximum loss due to change in 
asset or portfolio value at a given confidence level and a specific time duration 
(typically a day or 10 days) under the assumption of normal market conditions 
and no transactions in the assets.  

Given the confidence level denoted as ( )0,1q∈ , and the loss of the asset 
portfolio denoted as L, the VaR of a given portfolio is the smallest number 1 
such that the probability of the portfolio loss L exceeds 1 is no larger than 1 − q. 
Mathematically, the VaR of a given portfolio of assets at time t with level 
q-quantile is defined as 

( ) ( ){ } ( ){ }inf : 1 inf : ,q LVaR L l P L l q l F l q= ∈ℜ > ≤ − = ∈ℜ ≥     (21) 

where ( )LF l  is the cumulative distribution function of the return distribution.  
In this paper the Monte Carlo simulation approach is used to forecast the 

one-day-ahead portfolio VaR based on the fitted copula model to the currency 
exchange rates. The estimation procedure applied to forecast the one-day-ahead 
VaR of the equally weighted portfolio using GARCH-EVT-Copula model is as 
follows: 

Step 1: Fit the univariate ARMA-GJR-GARCH model with appropriate error 
distribution for the marginal time series to each currency exchange return series 
to obtain standardized residuals computed as: 

( ) 1 1 2 2
1 2

1 2

, , , , , ,t k t k t k t k t t
t k t k t

t k t k t

r r r
z z z

µ µ µ
σ σ σ

− + − + − + − +
− + − +

− + − +

 − − −
=  
 

      (22) 

Step 2: Fit the generalized Pareto distribution (GPD) to all the standardized 
residual series by setting the threshold value u to be approximately 10% of the 
data points for both the upper and lower tails and Gaussian kernel method for 
the interior of the distribution. The generated standardized residuals are then 
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transformed into standard uniform (0, 1) variates using the probability-integral 
transformation (PIT) and are assumed to be i.i.d observations. 

Step 3: Fit the most appropriate copula for each pair of transformed data se-
ries, and estimate the parameter(s) using the Inference Function for Margins 
(IFM) estimation method.  

Step 4: Use the estimated copula parameters to simulate N (N = 5000 in our 
case) times to generate N random numbers and transform them to the original 
scales of the log returns using the inverse quantile function of the marginal dis-
tributions. 

Step 5: Finally, compute the VaR of the equally weighted portfolio by taking the 
sample quantile at the given significance level of the portfolio return forecasts. 

The number of simulations N select is significant in terms of determining the 
accuracy of the VaR forecasts when applying the above procedure. The larger the 
number of simulations, the more accurate the estimated VaR forecasts are. This 
procedure can be repeated on a daily basis using rolling windows. This means 
that the copula and the ARMA-GJR-GARCH margins are re-estimated for each 
window.  

4.2. Backtesting 

Backtesting is a statistical method that is used to systematically compare the ac-
curacy of the forecast portfolio VaR with the actual profit (loss) of the particular 
portfolio at a given significance level and specified time interval. In this paper, 
three backtesting procedures are implemented to evaluate the performance of 
the GARCH-EVT-copula model in forecasting portfolio VaR. The backtesting 
procedures include the percentage of VaR exceptions, the Kupiec’s uncondition-
al coverage test and Christoffersen’s conditional coverage test.  

The indicator function sometimes referred to as the “hit function” is adopted 
to determine whether the observed portfolio loss exceeds the estimated portfolio 
VaR. Let 1tI +  be the hit function of VaR exceptions that is denoted as: 

 
( )
( )

1
1

1

1 if

0   if
t

t
t

L VaR q
I

L VaR q
+

+
+

<= 
≥

                  (23) 

where 1
T

ttN I
=

= ∑  denotes the number of exceedences over a given time period 
when the actual loss exceeds the VaR forecast.  

Kupiec (1995) [24] proposed the unconditional coverage test for assessing the 
reliability of VaR forecast models based on the effectiveness of the VaR forecasts 
to test the difference between observed and forecasted VaR of the equally 
weighted portfolio profit and loss. Given that q is the quantile, the theory behind 
this method is to test whether q̂  is statistically different from q. The number of 
exceptions N is a sum of Bernoulli variable 1tI +  it follows a binomial probabili-
ty distribution: 

( ) ( )Pr 1 ,T NNT
N q q

N
− 

= − 
 

                   (24) 
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where ˆ Nq
T

= . The null hypothesis of the test is  

0 ˆ: NH q q
T

= =                         (25) 

Given the q-th quantile, the likelihood ratio (LR) statistic for the test of null 
hypothesis is defined as: 

( )2log 1 2log 1
T N N

T N N
uc

N NLR q q
T T

−
−      = − − −           

       (26) 

This statistic is asymptotically distributed as a chi-square distribution with 
one degree of freedom. However, Christoffersen (1998) [25] demonstrated that 
the unconditional coverage test only gives the essential condition to categorize a 
VaR model as satisfactory but it does not account for the possibility of clustering 
of violations, which can be as a result of volatility in the return series. 

Christoffersen (1998) [25] introduced the conditional coverage test, which 
jointly combines the independence test to recognize the presence of cluster in 
the series and the independence of exceedances to defeat the insufficiencies of 
Kupiec’s unconditional coverage test. The conditional coverage test is a complete 
test that addresses both the unconditional coverage property and independence 
property. The unconditional coverage property puts a restriction on the fre-
quency of VaR violations. The independence property or exception clustering 
places a restriction on the ways in which these violations may occur. The null 
hypothesis of LR independence test is asymptotically distributed as a chi-square 
distribution with one degree of freedom. Under the null hypothesis that the vi-
olations (exceptions) on any given day are independent and the average number 
of observed violations at any two diverse days have to be independently distri-
buted. The appropriate likelihood ratio test statistic is defined as: 

( ) ( ) ( )00 1001 11
0 0 1 12 log 1 1 2log 1

CC UC IND

n n T Nn n N

LR LR LR

q qπ π π π −

= +

   = − − − −  
   (27) 

where nij represent the number of days that i occured at time t followed by j, 
where i, j = 0, 1. Moreover, iπ denote the probability that the exception occurs  

at time t + 1 conditional on state i at time t with 01
0

00 01

n
n n

π =
+  

and 11
1

10 11

n
n n

π =
+

.  

The test statistic is asymptotically distributed as a chi-square distribution with 
two degrees of freedom.  

5. Data and Empirical Results 
5.1. Data Description 

The data set consists of four daily currency exchange rates of the US dollar 
(USD), UK Sterling pound (GBP), European Union euro (EUR) and South 
Africa rand (SAR) against the Kenyan shilling from November 2, 2004, to Feb-
ruary 26, 2018. The total observations are 3476 daily exchange rates for each 
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currency exchange rate, excluding public holidays and weekends obtained from 
the website of the CBK website. Each data set represents the daily average closing 
price of analyzed currencies. The daily currency exchange rates are converted 
into continuously compounded returns using the formula ( ), , 1,logt i t i t ir P P−=

 
where ,t iP  is the price at time t of i-th currency exchange rate series.  

Figure 1 present the plot of the returns series of all currency exchange rates 
and the plots illustrate the stylized feature of leptokurtosis that arises from a 
pattern of time-varying volatility clustering in the currency exchange market 
where periods of high (low) volatility are followed by periods of high (low) vola-
tility. The time-varying behaviour of currency exchange returns suggest the 
presence of stylized characteristics exhibited by financial time series data.  

The summary statistics of the daily currency exchange return series are pre-
sented in Table 1. For all exchange rates the values of the mean are close to zero 
and all the values of standard deviations are positive and considerably large 
confirming the high volatility illustrated by the return plots. The results for 
skewness indicate that the return series for the US dollar and EU euro are posi-
tively skewed while the return series for the GB pound and SA rand are nega-
tively skewed. The results for kurtosis indicate that all the return series exhibit 
excess kurtosis implying the return distributions have fat tails and exhibit lepto-
kurtosis. The Jarque-Bera (JB) test statistic values are significantly large com-
pared to their critical values confirming that the return series are non-normal. 
The Augmented Dickey Fuller (ADF) unit root test is used to determine whether 
the return series are stationary. The ADF test results confirm that all the return 
series can be assumed to be stationary, since the unit root null hypothesis is  

 

 
Figure 1. Daily currency prices and daily returns (period from November 02, 2004 to February 26, 2018). 
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Table 1. Summary descriptive statistics of currency exchange returns. 

 USD/KES GBP/KES EUR/KES SAR/KES 

No. of obs. 3475 3475 3475 3475 

Minimum −4.087857 −8.302552 −3.649587 −16.301456 

Maximum 5.489183 5.239101 6.396774 8.547573 

Mean 0.006479 −0.001462 0.005523 −0.011984 

Std.dev 0.476499 0.749164 0.753984 1.180185 

Skewness 0.514128 −0.272172 0.490784 −0.745638 

Kurtosis 18.927728 7.818734 5.147376 13.688960 

JB-test 
(p-value) 

52095.3486 
(0.0000) 

8908.5418 
(0.0000) 

3982.9444 
(0.0000) 

27492.5519 
(0.0000) 

ADF-test 
(p-value) 

−13.344 
(0.0000) 

−15.719 
(0.0000) 

−14.648 
(0.0000) 

−16.744 
(0.0000) 

LBQ (10) 1605.70 430.08 827.23 834.48 

LBQ (20) 2787.70 743.80 1498.50 956.46 

LM (10) 2304.55 393.80 450.10 240.55 

LM (20) 3982.24 815.78 802.78 444.28 

Correlations     

USD  0.5848 0.5907 0.3679 

GBP   0.7466 0.5248 

EUR    0.5545 

The table presents the summary statistics of the daily returns over the full sample period from No-
vember 2, 2004, to February 26, 2018 for the USD, GBP, EUR and ZAR. JB is the test statistic of the 
Jarque-Bera test form normality of the unconditional distribution of returns. ADF (k) is the statistic 
of the augmented Dickey-Fuller (1979) test for a unit root against a trend stationary alternative aug-
mented with k lagged difference terms. LBQ (k) is the statistic of the Ljung-Box (1978) portmanteau 
Q-test assessing the null hypothesis of no autocorrelations in the squared returns at k lags. LM (k) is 
Engle’s (1982) Lagrange multiplier statistics for testing the presence of ARCH effects on k lags. The 
critical values of Ljung-Box test and LM test are 18.307 (lag 10), 31.410 (lag 20) and, 67.5048 (lag 50) 
at 5%. The correlations report Pearson’s linear unconditional sample correlation between the daily 
returns over the full sample period. 

 
rejected at all levels of signifiance. The Ljung-Box test is used to test the presence 
serial autocorrelation in the squared returns data; the Ljung-Box Q-statistics re-
ported for all currencies are significantly high rejecting the null hypothesis of no 
serial autocorrelation through 20-lags at the 5% level of significance. Finally the 
ARCH-LM test rejects the null hypothesis of no ARCH effect, thus confirming 
the strong presence conditional heteroscedasticity is the data. This supports the 
need to apply an appropriate conditional heteroscedastic model to filter the he-
teroscedasticity in the currency exchange returns series. The correlations report 
Pearson’s linear unconditional sample correlations between the daily returns 
over the full sample period. The correlation coefficient figures are all positive for 
each pair of the currency exchange return series. The EUR-GBP has the highest 
correlation and the USD-ZAR has the lowest.  
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5.2. Results for the Marginal Distributions 

The two-step estimation approach is adopted. In the first step the ARMA (1, 
1)-GJR-GARCH (1, 1) model introduced in Section 3 is fitted to each returns se-
ries assuming that the innovations are conditionally distributed as Student’s t to 
account for heavy tailed distribution. Parameter estimates for the fitted models 
are obtained by the method of quasi-maximum likelihood. The parameter values 
for the fitted models (standard errors enclosed in parenthesis) together with the 
results of diagnostic tests for the standardized squared residuals are presented in 
Table 2. All constant parameters are positively significant from zero except for 
ZAR, so all currency exchange rates increase over time. The AR (1) and MA (1) 
terms for all the currency exchange rates are not significantly different from zero. 
In all four series the sum of 1α  and 1β  parameters is less than one, suggesting 
that the fitted model is stationary. The Ljung-Box test statistic and the Engle’s 
ARCH tests confirm that all the standardized squared residuals fails to detect 
any serial correlation and presence of ARCH effects. The null hypothesis of no 
serial autocorrelation remain is not rejected at 5% level, indicating that neither 
long memory dependence nor non-linear dependence is found in the residual 
series. We conclude that the ARMA (1, 1)-GJR(1, 1)-model sufficiently explains 
the autocorrelation and heteroscedasticity effects in each log return series and 
leads to standardized residuals which represent the underlying zero mean and 
unit variance independently and identically distributed series upon which the 
EVT estimation of the sample CDF tails is based.  

Next, the standardized residuals are fitted with a semi-parametric CDF which  
 

Table 2. Parameter Estimates of the ARMA (1, 1)-GJR-GARCH (1, 1) Model with Stu-
dent’s t innovations. 

Parameters USD/KES UKP/KES EUR/KES SAR/KES 

μ 0.005312 
(0.002623) 

0.007336 
(0.009107) 

0.000780 
(0.008484) 

−0.000377 
(0.013242) 

AR(1) 
0.364453 

(0.137367) 
0.365605 

(0.269765) 
0.461829 

(0.137387) 
0.844281 

(0.082061) 

MA(1) 
−0.421085 
(0.133266) 

−0.408384 
(0.264360) 

−0.525425 
(0.131295) 

−0.873874 
(0.074707) 

ω 0.000997 
(0.000265) 

0.004247 
(0.001625) 

0.002077 
(0.000809) 

0.016105 
(0.005324) 

α1
 0.142435 

(0.017251) 
0.052033 

(0.010827) 
0.038267 

(0.005832) 
0.033645 

(0.011252) 

β1
 0.862056 

(0.014952) 
0.938991 

(0.011378) 
0.952980 

(0.003726) 
0.935587 

(0.012627) 

γ1
 −0.010982 

(0.019326) 
0.002378 

(0.011923) 
0.011861 

(0.009385) 
0.032791 

(0.012164) 

Shape 
3.793270 

(0.207187) 
7.413249 

(0.863450) 
7.218313 

(0.839434) 
10.462478 
(1.594020) 

The table contains results of maximum likelihood estimator for margin models with ARMA (1, 
1)-GJR-GARCH (1, 1) Model with the standard errors in parentheses.  
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consists of using a Gaussian kernel density function for the interior part of the 
distribution and generalized Pareto distribution (GPD) for both tails. Specifically, 
10% of the standardized residuals are reserved for the upper and lower thre-
sholds to estimate the tail distribution. Table 3 presents the results of estimated 
parameters of the tails distribution based on the GPD fitted to the standardized 
innovations. Two threshold levels (upper and lower) are also indicated in Table 3, 
where 10% of total observations for these standardized residual series are used in 
the estimation. For all the returns series, the shape parameter is found to be pos-
itive (except for the upper tail of SAR and the lower tail of EUR) and signifi-
cantly different from zero, indicating heavy-tailed distributions of the innova-
tion process characterized by the Fréchet distribution. The Ljung-Box test and 
the Kolmogorov-Smirnov (KS) tests are used to test the transformed standar-
dized residuals confirm that they are uniform [0, 1].  

Figure 2 and Figure 3 present the scatter plots of the bivariate standardized 
residual series for the ARMA-GJR-GARCH-EVT models before and after trans-
formation into uniform [0, 1] variates respectively. We can observe positive de-
pendence between the pairs of USD-GBP and EUR-GBP currency exchange 
rates. Such filtration still preserves the contemporaneous dependence among the 
returns as shown in Figure 3. The transformed data are used in analyzing the 
dependence structure using copula. 

5.3. Results for the Dependence Models 

The dependence structure between the transformed standardized residuals of the 
currency exchange rates are modeled using copulas. The results for the estimated 
copula parameter are given in Table 4. The results include the copula parameter 
estimates with the standard errors in parentheses, the coefficients of lower tail 
dependence (LTD) and upper tail dependence (UTD) and selection criteria; AIC, 
BIC and log-likelihood values of each fitted copula. The degrees freedom of the 
Student-t copula are relatively low (less than or equal to 10), suggesting that the  

 
Table 3. Parameter estimates for ARMA-GJR-GARCH-EVT model. 

Parameters USD/KES UKP/KES EUR/KES SAR/KES 

Upper Tail     

Number of Observations 1621 1695 1711 1769 

EVT threshold (u) 1.156 1.2385 1.23326 1.19643 

ξ Shape parameter 0.16375 0.04022 0.07041 −0.08533 

β Scale parameter 0.64138 0.54276 0.56561 0.51586 

Lower Tail     

Number of Observations 1854 1780 1764 1706 

EVT threshold (u) −1.13398 −1.18072 −1.18866 −1.29103 

ξ Shape parameter 0.17137 0.05174 −0.00308 0.07403 

β Scale parameter 0.60968 0.56075 0.53815 0.53738 

 

DOI: 10.4236/jmf.2018.82029 471 Journal of Mathematical Finance 
 

https://doi.org/10.4236/jmf.2018.82029


C. O. Omari et al. 
 

 
Figure 2. Scatter plots of standardized residuals for the pairs of USD-GBP and EUR-GBP currency exchange rates. 
 

 
Figure 3. Scatter plots of transformed standardized residuals for the pairs of USD-GBP and EUR-GBP currency exchange rates. 
 

inter-dependence and tail dependence of the currency exchange pairs are 
non-normal. Comparing AIC, BIC, the Student’s t copula performs best for all 
pairs according to the AIC, BIC criteria. Therefore, we conclude that the Stu-
dent’s-t copula is dominant as the best-fitting copula function for the currency 
exchange rates.  
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Table 4. Parameter estimates for the fitted copulas. 

 USD/GBP USD/EUR USD/SAR GBP/EUR GBP/SAR EURO/SAR 

Gaussian Copula  

Rho (Std. error) 0.48 (0.00) 0.42 (0.01) 0.29 (0.01) 0.72 (0.00) 0.45 (0.00) 0.48 (0.00) 

Copula Loglik 640.41 466.76 211.31 1830.77 554.48 638.77 

AIC −1278.82 −931.52 −420.62 −3659.54 −1106.96 1275.53 

BIC −1272.32 −925.02 −414.11 −3653.03 −1100.46 −1269.03 

Student-t Copula  

Rho (Std. error) 0.47 (0.01) 0.41 (0.01) 0.28 (0.01) 0.73 (0.01) 0.46 (0.01) 0.49 (0.01) 

DoF (Std. error) 6.12 (0.69) 6.65 (0.82) 10.21 (1.85) 6.37 (0.70) 7.12 (0.83) 6.02 (0.59) 

Copula Loglik 691.70 509.42 229.26 1898.13 605.54 719.71 

AIC −1379.41 −1014.83 −454.52 −3792.27 −1207.08 −1435.42 

BIC −1366.40 −1001.82 −441.52 −3779.26 −1194.08 −1422.42 

Clayton Copula  

Parameter (Std. error) 0.68 (0.03) 0.55 (0.02) 0.33 (0.01) 1.52 (0.06) 0.62 (0.02) 0.71 (0.03) 

Copula Likelihood 532.17 393.86 173.99 1562.24 460.46 551.69 

AIC −1062.35 −785.72 −345.98 −3122.48 −918.92 −1101.38 

BIC −1055.85 −779.21 −339.48 −3115.98 −912.42 −1094.88 

Gumbel Copula  

Parameter (Std. error) 1.42 (0.01) 1.34 (0.01) 1.20 (0.01) 1.96 (0.03) 1.39 (0.01) 1.44 (0.02) 

Copula Loglik 618.90 446.04 200.77 1699.80 528.58 614.75 

AIC −1235.81 −890.08 −399.54 −3397.59 −1055.16 −1227.49 

BIC −1229.30 −883.58 −393.04 −3391.09 −1048.66 −1220.99 

Frank Copula  

Parameter (Std. error) 3.09 (0.14) 2.55 (0.12) 1.69 (0.10) 6.19 (0.40) 2.99 (0.14) 3.35 (0.15) 

Copula Loglik 555.65 391.82 181.20 1687.55 528.55 639.95 

AIC −1109.30 −781.64 −360.40 −3373.11 −1055.11 −1277.89 

BIC −1102.80 −775.13 −353.89 −3366.61 −1048.61 −1271.39 

Joe Copula  

Parameter (Std. error) 1.53 (0.02) 1.42 (0.02) 1.25 (0.01) 2.19 (0.03) 1.49 (0.02) 1.54 (0.02) 

Upper Tail 0.43 0.37 0.26 0.63 0.41 0.43 

Copula Loglik 472.40 336.92 149.66 1286.41 393.68 450.12 

AIC −942.81 −671.84 −297.32 −2570.83 −785.37 −898.24 

BIC −936.31 −665.34 −290.82 −2564.32 −778.86 −891.74 

This table presents estimated parameters of copulas via two-stage maximum likelihood estimator. Standard 
errors are shown in parentheses. Loglik represents log likelihood function. Figures in bold indicate signifi-
cant at 5% level. 
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5.4. Forecasting Value at Risk 

In this section, an equally weighted portfolio of the four currency exchange rates 
is constructed to exploit the GARCH-EVT-copula framework in forecasting 
portfolio VaR. In order to compute portfolio VaR forecasts, a rolling window is 
set at 1000 observations to generate portfolio VaR forecasts per currency ex-
change series for all the data sets. The Monte Carlo simulation approach is used 
to compute the one-day-ahead VaR of the portfolio at the 90%, 95% and 99% 
levels of significance.  

To assess the accuracy of portfolio VaR forecasts, the Kupiec’s unconditional 
coverage test and the independence and Christoffersen’s conditional coverage 
tests are used to perform backtesting. For the testing period of 2475 observations 
and confidence levels of 10%, 5%, and 1%, we expect 248, 124 and 25 exceed-
ances, respectively. As expected, VaR forecasts of the Gaussian-copula model, 
which we include for comparison, are the least accurate. However, we would like 
to evaluate them using the above tests in order to compare them directly to the 
forecasting accuracy of the Student’s t copula as well as the GARCH-EVT-t co-
pula model. For our testing period, the benchmark Gaussian and the Student’s t 
copula produce almost the same hit sequences and hence are considered togeth-
er. When comparing these expected hits with the actual hits then it looks like the 
99% VaR is fairly accurate, but the 95% and 90% VaR slightly overestimate the 
risk.  

The p-values of the VaR backtests are shown in Table 5. According to the 
tests, the forecasts of the copula models show a weak lack of coverage at the 90% 
and 95% levels, but this is not the case at the important 99% level, which is fre-
quently used in practice. The backtesting results indicate that all p-values of the 
unconditional coverage and conditional coverage tests are greater than 0.05 and 
the calculated exceedances percentages of all portfolio VaR tests are close to the  

 
Table 5. Tests of independence, unconditional and conditional coverage. 

Model alpha: 
Percentage of  
exceedances 

POF-Kupiec  
(Unconditional  

Coverage) 

Joint-Christoffersen 
(Conditional  

Coverage) 

Gaussian copula 90% 9.50% 0.362 0.580 

 95% 4.40% 0.138 0.313 

 99% 0.90% 0.721  

Student-t copula 90% 9.20% 0.186 0.318 

 95% 4.50% 0.271 0.478 

 99% 0.92% 0.721  

GARCH-EVT-t copula 90% 9.70% 0.768 0.763 

 95% 4.80% 0.474 0.635 

 99% 0.96% 0.865  

Table 5 Results for the one-day-ahead portfolio VaR for the currency exchange portfolio data. P-values for 
the Kupiec and Christoffersen VaR backtests are also given. 
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theoretical probability level of 10%, 5% and 1%. For the 99% VaR none of the 
combined tests is rejected, so this means the amount of hits are not significantly 
different from the expected hits. This implies that all the null hypotheses are not 
rejected and the calculated exceedances based on the best-fitting GARCH-EVT-t 
copula model are correct. That is, they are correct and independent (conditional 
coverage test).  

6. Conclusion 

This paper implements the application of the GARCH-EVT-Copula model to 
evaluate the portfolio risk of an equally weighted portfolio of currency exchange 
rates. First, the ARMA-GJR-GARCH (1, 1) model is used to filter the log-returns 
for the presence of autocorrelation and conditional heteroscedasticity. Conse-
quently the Generalized Pareto distribution is applied to model the tail distribu-
tion of the innovation of each currency return. Bivariate Elliptical and Archi-
medean copulas are fitted to the paired independently and identically distributed 
transformed standardized series to model the dependence structure between the 
return series. The portfolio VaR for an equally weighted portfolio of four cur-
rency exchange returns is also computed using the benchmark models and the 
GARCH-EVT-copula model. The empirical results demonstrate that the Stu-
dent’s-t copula is the most appropriate copula in modeling dependence structure 
between all pairs of currency exchange rates. The GARCH-EVT-Copula model 
captures the portfolio VaR forecast successfully on the basis of the coverage 
backtesting tests. Further research should consider time-varying dependence 
modeling and high dimensional multivariate copula modelling approach such as 
vine copulas in financial risk management applications.  

Acknowledgements 

The author acknowledges the Dedan Kimathi University Research Fund for fi-
nancial support. The authors also thank all the reviewers for insightful com-
ments. 

References 
[1] Engle, R.F. and Manganelli, S. (2004) CAViaR: Conditional Autoregressive Value at 

Risk by Regression Quantiles. Journal of Business & Economic Statistics, 22, 
367-381. https://doi.org/10.1198/073500104000000370 

[2] Artzner, P., Delbaen, F., Eber, J.M. and Heath, D. (1999) Coherent Measures of 
Risk. Mathematical Finance, 9, 203-228. https://doi.org/10.1111/1467-9965.00068 

[3] McNeil, A.J. and Frey, R. (2000) Estimation of Tail-Related Risk Measures for He-
teroscedastic Financial Time Series: An Extreme Value Approach. Journal of Em-
pirical Finance, 7, 271-300. https://doi.org/10.1016/S0927-5398(00)00012-8 

[4] Sklar, M. (1959) Fonctions de Répartition à n Dimensions et Leurs Marges. Publica-
tions de l’Institut Statistique de l'Université de Paris, 8, 229-231. 

[5] Embrechts, P. (1999) Extreme Value Theory in Finance and Insurance. Manuscript, 
Department of Mathematics, ETH, Swiss Federal Technical University. 

 

DOI: 10.4236/jmf.2018.82029 475 Journal of Mathematical Finance 
 

https://doi.org/10.4236/jmf.2018.82029
https://doi.org/10.1198/073500104000000370
https://doi.org/10.1111/1467-9965.00068
https://doi.org/10.1016/S0927-5398(00)00012-8


C. O. Omari et al. 
 

[6] Demarta, S. and McNeil, A.J. (2005) The t Copula and Related Copulas. Interna-
tional Statistical Review, 73, 111-129.  
https://doi.org/10.1111/j.1751-5823.2005.tb00254.x 

[7] Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R. and Laeven, R. (2006) Risk Mea-
surement with Equivalent Utility Principles. Statistics & Decisions, 24, 1-25.  
https://doi.org/10.1524/stnd.2006.24.1.1 

[8] Cherubini, U., Luciano, E. and Vecchiato, W. (2004) Copula Methods in Finance. 
John Wiley & Sons, Hoboken. https://doi.org/10.1002/9781118673331 

[9] Cherubini, U., Gobbi, F., Mulinacci, S. and Romagnoli, S. (2012) Dynamic Copula 
Methods in Finance. John Wiley & Sons, Hoboken. 

[10] Nelsen, R.B. (2006) An Introduction to Copulas. 2nd Edition, Springer Science 
Business Media, New York.  

[11] Joe, H. (1997) Multivariate Models and Multivariate Dependence Concepts. CRC Press, 
Boca Raton. https://doi.org/10.1201/b13150 

[12] Jondeau, E. and Rockinger, M. (2006) The Copula-GARCH Model of Conditional 
Dependencies: An International Stock Market Application. Journal of International 
Money and Finance, 25, 827-853. https://doi.org/10.1016/j.jimonfin.2006.04.007 

[13] Wang, Z.R., Chen, X.H., Jin, Y.B. and Zhou, Y.J. (2010) Estimating Risk of Foreign 
Exchange Portfolio: Using VaR and CVaR Based on GARCH-EVT-Copula Model. 
Physica A: Statistical Mechanics and Its Applications, 389, 4918-4928.  
https://doi.org/10.1016/j.physa.2010.07.012 

[14] Ghorbel, A. and Trabelsi, A. (2014) Energy Portfolio Risk Management Using 
Time-Varying Extreme Value Copula Methods. Economic Modelling, 38, 470-485.  
https://doi.org/10.1016/j.econmod.2013.12.023 

[15] Tang, J., Zhou, C., Yuan, X. and Sriboonchitta, S. (2015) Estimating Risk of Natural 
Gas Portfolios by Using GARCH-EVT-Copula Model. The Scientific World Jour-
nal, 2015, Article ID: 12595. https://doi.org/10.1155/2015/125958 

[16] Huang, C.S. and Huang, C.K. (2014) Assessing the Relative Performance of 
Heavy-Tailed Distributions: Empirical Evidence from the Johannesburg Stock Ex-
change. Journal of Applied Business Research, 30, 1263.  
https://doi.org/10.19030/jabr.v30i4.8675 

[17] Hougaard, P. (1986) A Class of Multivariate Failure Time Distributions. Biometrika, 
73, 671-678. https://doi.org/10.2307/2336531 

[18] Joe, H. and Xu, J.J. (1996) The Estimation Method of Inference Functions for Mar-
gins for Multivariate Models. The University of British Columbia, Vancouver. 

[19] Patton, A.J. (2006) Estimation of Multivariate Models for Time Series of Possibly 
Different Lengths. Journal of Applied Econometrics, 21, 147-173.  
https://doi.org/10.1002/jae.865 

[20] Akaike, H. (1974) A New Look at the Statistical Model Identification. IEEE Trans-
actions on Automatic Control, 19, 716-723.  
https://doi.org/10.1109/TAC.1974.1100705 

[21] Schwarz, G. (1978) Estimating the Dimension of a Model. The Annals of Statistics, 
6, 461-464. https://doi.org/10.1214/aos/1176344136 

[22] Glosten, L.R., Jagannathan, R. and Runkle, D.E. (1993) On the Relation between the 
Expected Value and the Volatility of the Nominal Excess Return on Stocks. The 
Journal of Finance, 48, 1779-1801.  
https://doi.org/10.1111/j.1540-6261.1993.tb05128.x 

 

DOI: 10.4236/jmf.2018.82029 476 Journal of Mathematical Finance 
 

https://doi.org/10.4236/jmf.2018.82029
https://doi.org/10.1111/j.1751-5823.2005.tb00254.x
https://doi.org/10.1524/stnd.2006.24.1.1
https://doi.org/10.1002/9781118673331
https://doi.org/10.1201/b13150
https://doi.org/10.1016/j.jimonfin.2006.04.007
https://doi.org/10.1016/j.physa.2010.07.012
https://doi.org/10.1016/j.econmod.2013.12.023
https://doi.org/10.1155/2015/125958
https://doi.org/10.19030/jabr.v30i4.8675
https://doi.org/10.2307/2336531
https://doi.org/10.1002/jae.865
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1111/j.1540-6261.1993.tb05128.x


C. O. Omari et al. 
 

[23] Alexander, C. and Sheedy, E. (2008) Developing a Stress Testing Framework Based 
on Market Risk Models. Journal of Banking & Finance, 32, 2220-2236.  
https://doi.org/10.1016/j.jbankfin.2007.12.041 

[24] Kupiec, P.H. (1995) Techniques for Verifying the Accuracy of Risk Measurement 
Models. The Journal of Derivatives, 3, 73-84.  
https://doi.org/10.3905/jod.1995.407942 

[25] Christoffersen, P.F. (1998) Evaluating Interval Forecasts. International Economic 
Review, 39, 841-862. https://doi.org/10.2307/2527341 

 

DOI: 10.4236/jmf.2018.82029 477 Journal of Mathematical Finance 
 

https://doi.org/10.4236/jmf.2018.82029
https://doi.org/10.1016/j.jbankfin.2007.12.041
https://doi.org/10.3905/jod.1995.407942
https://doi.org/10.2307/2527341

	Currency Portfolio Risk Measurement with Generalized Autoregressive Conditional Heteroscedastic-Extreme Value Theory-Copula Model
	Abstract
	Keywords
	1. Introduction
	2. Copulas
	3. Modelling of Marginal Distributions
	4. Forecasting VaR and Backtesting
	4.1. Value-at-Risk (VaR)
	4.2. Backtesting

	5. Data and Empirical Results
	5.1. Data Description
	5.2. Results for the Marginal Distributions
	5.3. Results for the Dependence Models
	5.4. Forecasting Value at Risk

	6. Conclusion
	Acknowledgements
	References

