
Journal of Intelligent Learning Systems and Applications, 2018, 10, 46-79
http://www.scirp.org/journal/jilsa

ISSN Online: 2150-8410
ISSN Print: 2150-8402

DOI: 10.4236/jilsa.2018.102004 May 31, 2018 46 Journal of Intelligent Learning Systems and Applications

Prediction Distortion in Monte Carlo Tree
Search and an Improved Algorithm

William Li

Delbarton School, Morristown, NJ, USA

Abstract
Teaching computer programs to play games through machine learning has
been an important way to achieve better artificial intelligence (AI) in a variety
of real-world applications. Monte Carlo Tree Search (MCTS) is one of the key
AI techniques developed recently that enabled AlphaGo to defeat a legendary
professional Go player. What makes MCTS particularly attractive is that it
only understands the basic rules of the game and does not rely on expert-level
knowledge. Researchers thus expect that MCTS can be applied to other com-
plex AI problems where domain-specific expert-level knowledge is not yet
available. So far there are very few analytic studies in the literature. In this pa-
per, our goal is to develop analytic studies of MCTS to build a more funda-
mental understanding of the algorithms and their applicability in complex AI
problems. We start with a simple version of MCTS, called random playout
search (RPS), to play Tic-Tac-Toe, and find that RPS may fail to discover the
correct moves even in a very simple game position of Tic-Tac-Toe. Both the
probability analysis and simulation have confirmed our discovery. We con-
tinue our studies with the full version of MCTS to play Gomoku and find that
while MCTS has shown great success in playing more sophisticated games like
Go, it is not effective to address the problem of sudden death/win. The main
reason that MCTS often fails to detect sudden death/win lies in the random
playout search nature of MCTS, which leads to prediction distortion. There-
fore, although MCTS in theory converges to the optimal minimax search, with
real world computational resource constraints, MCTS has to rely on RPS as an
important step in its search process, therefore suffering from the same fun-
damental prediction distortion problem as RPS does. By examining the de-
tailed statistics of the scores in MCTS, we investigate a variety of scenarios
where MCTS fails to detect sudden death/win. Finally, we propose an im-
proved MCTS algorithm by incorporating minimax search to overcome pre-
diction distortion. Our simulation has confirmed the effectiveness of the pro-
posed algorithm. We provide an estimate of the additional computational

How to cite this paper: Li, W. (2018)
Prediction Distortion in Monte Carlo Tree
Search and an Improved Algorithm. Jour-
nal of Intelligent Learning Systems and
Applications, 10, 46-79.
https://doi.org/10.4236/jilsa.2018.102004

Received: March 11, 2018
Accepted: May 28, 2018
Published: May 31, 2018

Copyright © 2018 by author and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jilsa
https://doi.org/10.4236/jilsa.2018.102004
http://www.scirp.org
https://doi.org/10.4236/jilsa.2018.102004
http://creativecommons.org/licenses/by/4.0/

W. Li

DOI: 10.4236/jilsa.2018.102004 47 Journal of Intelligent Learning Systems and Applications

costs of this new algorithm to detect sudden death/win and discuss heuristic
strategies to further reduce the search complexity.

Keywords
Monte Carlo Tree Search, Minimax Search, Board Games, Artificial
Intelligence

1. Introduction

Teaching computer programs to play games through learning has been an im-
portant way to achieve better artificial intelligence (AI) in a variety of real-world
applications [1]. In 1997 a computer program called IBM Deep Blue defeated
Garry Kasparov, the reigning world chess champion. The principle idea of Deep
Blue is to generate a search tree and to evaluate the game positions by applying
expert knowledge on chess. A search tree consists of nodes representing game
positions and directed links each connecting a parent and a child node where the
game position changes from the parent node to the child node after a move is
taken. The search tree lists computer’s moves, opponent’s responses, and com-
puter’s next-round responses and so on. Superior computational power allows
the computer to accumulate vast expert knowledge and build deep search trees,
thereby greatly exceeding the calculation ability of any human being. However,
the same principle cannot be easily extended to play Go, an ancient game still
very popular in East Asia, because the complexity of Go is much higher: the
board size is much larger, games usually last longer, and more importantly, it is
harder to evaluate game positions. In fact the research progress had been so slow
that even an early 2016 Wikipedia [2] noted that “Thus, it is very unlikely that it
will be possible to program a reasonably fast algorithm for playing the Go end-
game flawlessly, let alone the whole Go game”. Still, to many people’s surprise, in
March 2016, AlphaGo, a computer program created by Google’s DeepMind,
won a five game competition by 4-1 over Lee Sedol, a legendary professional Go
player. An updated version of AlphaGo named “Master” defeated many of the
world’s top players with an astonishing record of 60 wins 0 losses, over seven
days, in December 2016. AlphaGo accomplished this milestone because it used a
very different set of AI techniques from what Deep Blue had used [3]. Monte
Carlo Tree Search (MCTS) is one of the two key techniques (the other is deep
learning) [4].

MCTS generates a search tree by running a large number of simulated
playouts. Each playout starts at the current game state and simulates a random
sequence of legal moves until the game ends. By analyzing the statistics, MCTS
estimates which move is more likely to win and takes the statistically best move.
MCTS was first proposed in 2006 [5] [6] [7] and has since received considerable
interest due to its success in Go. What makes MCTS particularly attractive is

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 48 Journal of Intelligent Learning Systems and Applications

that it only understands the basic rules of Go, and unlike the Deep Blue ap-
proach, does not rely on expert-level knowledge in Go. Researchers thus expect
that MCTS can be applied to other complex AI problems, such as autonomous
driving where domain-specific expert-level knowledge is not yet available.

Most studies on MCTS in the literature are based on simulation [8]. There are
very few analytic studies, which would contribute to a more fundamental under-
standing of the algorithms and their applicability in complex AI problems. A key
difficulty of rigorous analysis comes from the iterative, stochastic nature of the
search algorithm and sophisticated, strategic nature of games such as Go. In this
paper we first study Random Playout Search (RPS), a simplified version of
MCTS that is more tractable mathematically. The simplification is that unlike
general MCTS, RPS does not expand the search tree, reflecting an extreme con-
straint of very little computational resource. We use a probabilistic approach to
analyze RPS moves in a recursive manner and apply the analysis in the simple
Tic-Tac-Toe game to see whether RPS is a winning strategy. We then extend our
observations to the full version of MCTS by controlling the number of simula-
tion iterations and play the more complex Gomoku game. We find that, with the
computational resource constraint, MCTS is not necessarily a winning strategy
because of prediction distortion in the presence of sudden death/win. Finally we
propose an improved MCTS algorithm to overcome prediction distortion. Our
analysis is validated through simulation study.

The remaining of this paper is organized as followed. Section 2 investigates
RPS playing Tic-Tac-Toe with probability analysis and simulation and highlights
the drawback of RPS. Section 3 discusses a simple solution to address the draw-
back of RPS and extend the discussion to introduce MCTS. Section 4 investigates
the problem of sudden death/win, presents two propositions on the capability of
detecting sudden death/win with a minimax search and MCTS, and examines
the problem of prediction distortion in the context of MCTS playing Gomoku
with detailed simulation results. Section 5 proposes an improved MCTS algo-
rithm to enhance the capability to detect sudden death/win, analyzes the addi-
tional complexity and presents heuristic strategies to further reduce the search
complexity. Appendix A describes the Java implementation of the analysis and
simulation codes used in this study.

2. Random Playout Search in Tic-Tac-Toe Game

The Tic-Tac-Toe game is probably the simplest board game. We propose a sim-
plified version of MCTS, Random Playout Search (RPS), to play the Tic-Tac-Toe
game in order to build a mathematical model for analysis, and hope that the in-
sight from our analysis is applicable to MCTS playing other more complex
games.

2.1. Random Playout Search

To describe RPS, consider the current game position shown in Figure 1. It is the

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 49 Journal of Intelligent Learning Systems and Applications

Figure 1. RPS in Tic-Tac-Toe game.

computer’s turn to move. The computer can move to one of 6 possible positions,
labeled 1 - 6. If the computer takes 1, then the opponent can take 6, which blocks
the diagonal and opens up a vertical and a horizontal to win.

However, RPS does not have this ability to strategically look beyond a few
steps. Instead, RPS employs a large number of simulated playouts 1,2,t = 
and estimates the expected score of move i, for 1 - 6i = . Figure 2(a) describes
the flow chart of RPS and (b) provides the details of function block “simulate
from current game position to endgame”.

Denote ()iM t the number of times that move i has been picked up to
playout t and ()iN t the number of wins minus the number of losses. Initially,

() ()0 0 0i iM N= = for all i. Each playout starts with the current game position.
RPS randomly picks next move i and increments ()iM t by 1. RPS then picks a
sequence of random moves for the computer and the opponent until the game
ends. If the computer wins, then ()iN t increments by 1; if the computer loses,
then ()iN t decrements by 1; otherwise, ()iN t is unchanged. The score is
calculated as follows,

() ()
()

.i
i

i

N t
S t

M t
= (1)

When the preset number of playouts T has been reached, RPS selects the
move *i with the highest score,

()* argmax .i ii S T= (2)

2.2. Probability Analysis

To assess the performance of RPS, we calculate
0 ,is , the expected score of move

i from the current game position 0 . To simplify the notation,
0 ,is is some-

times reduced to is . Denote 1 the game position after move i from 0 ,
where subscript 1 indicates that 1 is on level-1 from the starting position 0
on level-0. There are multiple game positions on level-1 and 1 is one of them.
Denote

1
K the number of legal moves from position 1 . Because in a simu-

lated playout RPS uniformly randomly selects the next move of the opponent,
we have the following recursive equation

1

0 1 1
1

, ,
1

1 ,
K

i j
j

s s s
K =

= = ∑


  


 (3)

where
1, js is the expected score of move j from 1 . Equation (3) can be fur-

ther expanded from every move j of 1 to the next levels until terminal

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 50 Journal of Intelligent Learning Systems and Applications

Figure 2. Flow chart of RPS.

positions are reached. A position is terminal if the game ends at the position,
and the game result (loss, draw, win) determines the expected score of the ter-
minal position to be 1,0,1− , respectively.

While Equation (3) starts from the current position 0 , it is solved by walk-
ing backwards from the terminal positions. An example of solving Equation (3)
is illustrated in Figure 3, where (a) depicts the current game position 0 and 4
possible moves and (b) shows the calculation of

0 ,1s .
Specifically, the game position 1 after move 1 from 0 is labeled as A,

which is expanded into 3AK = next level positions , ,B C D . B is a terminal
position (loss), so 1Bs = − . C is further expanded into 2CK = next level posi-
tions E, F. E leads to a terminal position G (draw) where 0E Gs s= = . F leads to
a terminal position H (loss), so 1F Hs s= = − . Thus, from Equation (3),

()1 1 .
2C E F

C

s s s
K

= + = −

Similarly, D is further expanded into 2DK = next level positions I, J. I leads
to a terminal position K (draw) where 0I Ks s= = . J leads to a terminal position
L (loss), so 1J Ls s= = − . Thus,

()1 1 .
2D I J

D

s s s
K

= + = −

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 51 Journal of Intelligent Learning Systems and Applications

Figure 3. Example of calculating expected score of a move with recursive Equation (3). A
terminal position is marked by a thick square.

Finally, from Equation (3),

(),10

1 2 .
3A B C D

A

s s s s s
K

= = + + = − (4)

Using the same recursive approach, we can obtain

0 0 0,2 ,3 ,4
1 2 1, , .
3 3 3

s s s= − = − = −   (5)

Because
0 0 0 0,2 ,4 ,1 ,3s s s s= > =    , according to Equation (2) RPS selects either

move 2 or 4 with equal probability as the next move from 0 .

2.3. Simulation Results

We expect that

()lim .i it
s S t

→∞
= (6)

Equation (6) states that ()iS t given in (1) converges to is , the expected
score calculated with the recursive analysis model (3) as the number of playouts
increases. We next validate (6) with simulation.

We have simulated the RPS algorithm in Java to play Tic-Tac-Toe according
to Figure 2 and implemented the recursive score calculation (3). Figure 4 shows
the simulation results of the estimated scores ()iS t of 4 possible moves from
the game position in Figure 3(a). From Figure 4, we observe that ()iS t does
converge to is ; however, a large number of simulation playouts are needed for
convergence even for a simple game position.

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 52 Journal of Intelligent Learning Systems and Applications

Figure 4. Comparison of simulation results and analysis model. The black straight lines
represent 1s to 4s , the expected scores calculated with the analysis model (4) (5).

3. From Random Playout Search to Monte Carlo Tree Search
3.1. Expansion of Search Depth in RPS

The above analysis and simulation show that for the simple game position in
Figure 3(a), RPS selects either move 2 or 4 as the next move, even though only 2
is the right move. We have examined other game positions and found that RPS
is often not a winning strategy. Figure 5 lists additional examples of game posi-
tions for which RPS fails to find out the right move.

The reason of RPS failure in those game positions is that in the simulated
playouts RPS assumes that the opponent randomly picks its moves. However, in
the actual game an intelligent opponent does not move randomly. As a result,
the prediction ability of RPS is distorted. In the example of Figure 3(b), when
calculating As , it is assumed that the opponent moves to B, C, D with equal
probability. However, it is obvious that an intelligent opponent will move to B to
win the game and never bother with C, D. The same thing happens in the RPS
simulated playouts.

One way to overcome the prediction distortion is to expand the search depth
of RPS. Take Figure 3(a) for example. So far RPS only keeps the scores of 4
possible level-1 moves from the current game position. Playouts are simulated
from these 4 moves, but RPS does not keep track of the scores below level-1. In
this case, the search depth is 1, as illustrated in Figure 6(a), where the winner
moves are marked with the thick lines and the dashed lines represent simulated
playouts from one position to a terminal position shown as a thick square.

In Figure 6(b), we expand the search depth to 2 by keeping the scores of all

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 53 Journal of Intelligent Learning Systems and Applications

Figure 5. Additional examples where RPS fails to find out the
right move. In each example, move 1 is the right move, but
RPS selects move 2 because move 2 has a higher score than
move 1.

Figure 6. Expansion of search depth of RPS: search depth = 1 in (a) and 2 in (b). In (a), S1
is what is labeled as SA in Figure 3.

the level-2 moves, which are obtained from the simulated playouts. The scores of
the level-1 moves are calculated from those of the level-2 moves with the mini-
max principle. That is, the opponent selects the best move, i.e., with minimum
score, instead of a random move on level-2,

() (),1,2,3
min ,i i jj

S t S t
=

= (7)

for 1, ,4i =  . In comparison, when the search depth is 1, although RPS does
not keep track of (),i jS t , in effect ()iS t is estimated to be

() (),
1,2,3

1 .
3i i j

j
S t S t

=

= ∑ (8)

Comparison of Equations (7) and (8) shows how the prediction distortion is
corrected for the opponent’s move on level-2 by increasing the search depth to 2.

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 54 Journal of Intelligent Learning Systems and Applications

Figure 6(b) shows that now RPS selects the right move (2), as opposed to either
move 2 or 4 in Figure 6(a). Through simulation and analysis, we confirm that
RPS is able to select the right move for the other game positions of Figure 5.

3.2. Brief Summary of MCTS

The idea of expanding the search depth can be generalized to mean that a good
algorithm should search beyond the level-1 moves. MCTS takes this idea even
further. Starting from the current game position, called the root node, the MCTS
algorithm gradually builds a search tree through a number of iterations and
stops when some computational budget is met. Similar to the one shown in Fig-
ure 6, a search tree consists of nodes representing game positions and directed
links each connecting a parent and a child nodes where the game position
changes from the parent node to the child node after a move is taken. Every
node j in the search tree keeps the total score it gets jX and the number of
times it has been visited jn .

Each iteration in MCTS consists of four steps as illustrated in Figure 7.
1) Selection: A child node is selected recursively, according to a tree policy,

from the root node to a leaf node, i.e., a node on the boundary of the search tree.
2) Expansion: A new node is added to the search tree as a child node of the

leaf node.
3) Simulation: A simulated playout runs from the new node until the game

ends, according to a default policy. The default policy is simply RPS, i.e., ran-
domly selecting moves between the computer and the opponent. The simula-
tion result determines a simulation score: +1 for win, −1 for loss, and 0 for
draw.

4) Backpropagation: The simulation score (+1, −1, or 0) is backpropagated
from the new node to the root node through the search tree to update their
scores. A simple algorithm is that the score is added to jX of every node j
along the search tree.

Recall that the nodes from the new node to the terminal node are outside the
boundary of the search tree. Any node outside the boundary of the search tree
does not keep track of any score.

Figure 7. Illustration of one iteration in MCTS. A circle represents a game position in the
search tree. A square represents a terminal position.

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 55 Journal of Intelligent Learning Systems and Applications

The most popular tree policy in MCTS is based on the Upper Confidence
Bounds applied to Trees (UCT) algorithm [9] [10] whose idea is to focus the
search on more promising moves and meanwhile explore unvisited game posi-
tions. To describe the UCT algorithm, consider (1) of Figure 7. The root node
has three child nodes, j = 1, 2, 3, and selects the one that maximizes the UCB
score

2ln1 ,j

j j

X nUCB C
n n

= + (9)

where jX is the total score of child node j, jn the number of times that child
node j has been tried, and jjn n=∑ the total number of times that all child
nodes have been tried. The first term average score

j
j

j

X
S

n
= (10)

aims to exploit higher-reward moves (exploitation), while the second term
2ln

j

n
n

 encourages examining less-visited moves (exploration), and parameter

C balances exploitation and exploration.
After the algorithm stops, the child node of the root node with the highest av-

erage score jS is selected and the corresponding move from the root node to
the selected child node is taken in the actual game.

4. Monte Carlo Tree Search in Gomoku Game
An important theoretical result [8] is that given enough run time and memory,
MCTS converges to the optimal tree and therefore results in the optimal move.
As shown in Figure 7, the search tree adds one node in the expansion step of
every iteration. Within the search tree, UCT selects nodes on the basis of their
scores and can thus identify moves of great promise. Outside the boundary of
the search tree, MCTS uses RPS in the simulation step. The reason that MCTS
converges to the optimal move is that with an infinite amount of search all poss-
ible game positions are added to the search tree and that UCT in effect behaves
like minimax, which is optimal.

In practice, however, MCTS is limited by computational resource and the
search tree is a small subset of the entire game position space. Therefore, MCTS
has to rely on RPS to explore a large game position space that is outside the
search tree. From the study of Tic-Tac-Toe we learn that a major drawback of
RPS is that it assumes the opponent is playing randomly when in fact it is possi-
ble that the opponent knows exactly what it should do strategically.

To study MCTS, we need more sophisticated games than Tic-Tac-Toe. In this
section, we play Gomoku and see how the insight from the study of Tic-Tac-Toe
applies here.

4.1. Sudden Death/Win and Prediction Distortion

Figure 8 shows two game positions in Gomoku where it is currently the

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 56 Journal of Intelligent Learning Systems and Applications

Figure 8. Illustration of sudden death in Gomoku: (a) level-2 and (b) level-4.

computer’s turn to move. In (a), without taking move A, the computer loses in
two steps. In (b), without taking move B or C, the computer loses in four steps.
On the other hand, if the computer is black and the opponent is green in Figure
8, then the computer wins in one step in (a) by taking move A and wins in three
steps in (b) by taking move B or C.

Definition 1. Level-k sudden death or sudden win
A level-k sudden death is a game position where the computer will lose the

game in k steps if the computer does not take one of some subset of moves. A
level-k sudden win is a game position where the computer will win the game in k
steps if the computer takes one of some subset of moves.

The subset of moves is called decisive moves. The level k is the number of
steps that results in a terminal position from the current game position. k is even
for sudden death and odd for sudden win. k is a small number for sudden death
or win; otherwise, death or win is not “sudden”. More importantly, because of
computational resource constraints, it is impractical to detect definite death or
win for a large k. In Figure 8, the game position is a level-2 sudden death in (a)
and a level-4 sudden death in (b).

One way to detect a level-k sudden death or win is to employ a level-k mini-
max search, a slightly modified version of minimax search. Specifically, starting
from the current game position (root node at level-0), repeatedly expand to the
next level by adding the child nodes that represent all the possible next moves
from the parent node. Node expansion ends at level-k. A node of terminal posi-
tion is assigned a score of −1, 0, 1 as in Section 2.2. If a node at level-k is not a
terminal position, it is assigned a score of 0, because its state is undetermined.
Backpropagate the scores to the root node according to the minimax principle.

Figure 9 illustrates an example of level-5 minimax search. The root node at
level-0 has two child nodes, 1 2,A A , in total, 1A has two child nodes 1 2,B B ,
and so on. At level-5, 1 4 9 12, , ,E E E E are terminal positions and assigned a score
of 1, and all other nodes are not terminal and assigned a score of 0. The minimax

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 57 Journal of Intelligent Learning Systems and Applications

Figure 9. Illustration of level-k minimax search.

principle is that a operation of selecting the minimum or maximum score is ap-
plied at every node in alternate levels backwards from level-k. The score of a
node at level-4 is the maximum of the scores of its child nodes at level-5 because
it is the computer’s turn to move. The score of a node at level-3 is the minimum
of the scores of its child nodes at level-4 because it is the opponent’s turn to
move, and so on. In Figure 9 1A is a decision move that leads to a level-5 sud-
den win.

Proposition 2. Any level-k sudden death or win is detectable with the level-k
minimax search.

Proof. We focus on sudden win in the proof. The case of sudden death can be
proved similarly.

For a level-k sudden win to exist, one of the child nodes of the root node (e.g.,

1A in Figure 9), say node 1,1N at level-1, must be a decisive move that leads to
a definite win in level-k. Because it is the opponent’s turn to move at level-1, all
of the child nodes of 1,1N at level-2 (e.g., 1 2,B B in Figure 9), say node

2,1 2,2, ,N N  , must each lead to a definite win. For this to happen, at least one of
the child nodes of 2,1N at level-3 (e.g., 1C in Figure 9), say node 3,1N , must
lead to a definite win so that the opponent has no valid move to avoid the com-
puter’s win, and at least one of the child nodes of 2,2N at level-3 (e.g., 3C in
Figure 9), say node 3,2N , must lead to a definite win, and so on. The above
logic applies to each of 3,1 3,2, ,N N  . For example, all of the child nodes of 3,1N
(e.g., 1 2,D D in Figure 9) must each lead to a definite win, and at least one child
node of each of these nodes (e.g., 1 4,E E in Figure 9) must lead to a definite
win. The process repeats until level-k is reached.

At level-k, the score of a node is 1,0,1− depending on the state of the node
(loss, draw/undetermined, or win). From the process described above, for 1,1N
to be a decisive move, a set of level- ()1k − nodes under 1,1N must each have at
least one child node at level-k being a win, and thus obtain a score of 1 them-
selves according to the minimax principle, which in turn makes their parent
nodes at level- ()2k − to have a score of 1. Their scores are further backpropa-
gated upwards so that eventually the scores of 3,1 3,2, ,N N  are all 1 and those
of 2,1 2,2, ,N N  are 1 as well, which results in a score of 1 for 1,1N indicating
that a level-k sudden win exists and 1,1N is a decisive move leading to the sud-

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 58 Journal of Intelligent Learning Systems and Applications

den win. □
Recall from Section 3.2 that MCTS selects the move on the basis of the average

scores of the child nodes of the root node (10). In general, the average scores of
the child nodes of the root node are rarely equal to the scores of those nodes in a
level-k minimax search precisely. However, prediction distortion is not severe if
the discrepancy between the two scores does not make MCTS to select a differ-
ent child node from what the level-k minimax search would select. It should be
pointed out that the level-k minimax search is not necessarily superior to MCTS
in all game positions. However, in the presence of sudden death or win, if MCTS
selects a move different from the choice of the level-k minimax search, then by
definition MCTS fails to make a decisive move. Hence we have the following
proposition.

Proposition 3. MCTS fails to detect a level-k sudden death or win if the aver-
age scores (10) of the child nodes of the root node are sufficiently deviated from
their scores in the level-k minimax search that a decisive move is not selected in
MCTS.

Because of computational resource constraints, the search tree in MCTS is a
subset of the entire state space. Random moves are applied in the simulation
outside the boundary of the search tree, therefore potentially causing prediction
distortion as learned in the RPS analysis. Figure 10 illustrates two examples. In
(a), it is the opponent’s turn to move in nodes A and B. Simulations through
node A backpropagate higher scores than through node B, making the path
through A deceptively more promising, although in reality A is a loss position
and B is a draw. If the opponent randomly selects its move, then on average A is
better than B. However, if the opponent is intelligent, it selects the move that
results in the computer’s immediate loss. In this example, A is a trap that results
in computer’s sudden death. In (b), it is the computer’s turn to move in nodes A
and B. Simulations through node A backpropagate lower scores than through
node B, making the path through A deceptively less favorable, although in reality
A is a win position and B is a draw. If the computer randomly selects its move,
then on average A is worse than B. However, as the game progresses toward A,

Figure 10. Illustration of sudden death (a) and sudden win (b).

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 59 Journal of Intelligent Learning Systems and Applications

the computer will eventually select the move that results in the computer’s im-
mediate win. This is an example of sudden win for the computer. Furthermore,
even for the nodes within the search tree boundary, their scores may not con-
verge to the minimax scores if not enough simulation iterations have been
taken.

Clearly as the level increases, it becomes more difficult to discover sudden
death/win. In our implementation of MCTS playing Gomoku, we find that
MCTS frequently discovers level-1 and level-3 sudden win and level-2 sudden
death, but often unable to discovery level-4 sudden death. We will analyze the
simulation performance of MCTS next.

4.2. Simulation Results

We have simulated the MCTS algorithm in Java to play Gomoku on an K K×
board. The implementation details are described in Appendix A. We report the
simulation results in this section.

4.2.1. Methodology
We do not model the computational resource constraint in terms of precise
memory or runtime. Instead we vary the number of iterations T. We find that
the run time increases roughly linearly with T and that the Java program runs
into heap memory errors when T exceeds some threshold. For example, for

9K = , the run time is between 7 to 10 seconds for every move at 30000T = ,
and a further increase to 40000T = causes the out of memory error. In con-
trast, for 11K = , the Java program can only run 10000T = before hitting the
memory error. Therefore, we use parameter T to represent the consumed com-
putational resource, and K to represent the complexity of the game.

We are interested in the performance of MCTS in dealing with sudden
death/win. To report the win rate of an entire game, it would depend on the
strength of the opponent, a quantity difficult to measure consistently. Therefore,
we let a human opponent to play the game long enough to encounter various
sudden death/win scenarios and record the fraction of times that the program
detects sudden death/win. Detecting sudden death means that MCTS anticipates
the threat of an upcoming sudden death and takes a move to avoid it. Detecting
sudden win means that MCTS anticipates the opportunity of an upcoming sud-
den win and takes a move to exploit it and win the game.

4.2.2. Result Summary
The simulation results are summarized in Table 11. We make the following ob-
servations.
• Detecting level-4 sudden death is more difficult than detecting level-2 sudden

death. The detection rate drops drastically as the game complexity, represented
by K, increases. On the other hand, the detection rate drops drastically as the
computational resource, represented by T, decrease.

1For 11K = , 10000T = instead of 30,000.

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 60 Journal of Intelligent Learning Systems and Applications

Table 1. Detection rate of sudden death/win of MCTS.

Sudden Death

Level-2 Level-4

T = 30,000 T = 3000 T = 30,000 T = 3000

K = 7 100% 100% 80% 60%

K = 9 100% 40% 50% 10%

K = 11 60% <15% 15% <5%

Sudden Win

Level-1 Level-3

T = 30,000 T = 3000 T = 30,000 T = 3000

K = 7 100% 100% 100% 100%

K = 9 100% 100% 100% 90%

K = 11 100% 100% 80% 50%

• There seems to be a tipping point beyond which the detection rate of sudden

death is so low that MCTS is useless. For example, for T = 30,000, the tipping
point is around K = 7 to 9.

• The detection rate is not symmetric between sudden death and sudden win.
Indeed, it seems much easier to detect sudden win than to detect sudden
death. In particular, MCTS is always able to detect level-1 sudden win.
Moreover, at a first glance, one may expect the detection rate of level-2 sud-
den death to be higher than that of level-3 sudden win, because level-3 sud-
den win involves more steps to search through. However, it turns out that
detecting level-3 sudden win is more robust than detecting level-2 sudden
death in a variety of K, T scenarios. We will further investigate this pheno-
menon by looking deeper into the scores in MCTS iterations.

• Not shown in Table 1, we observe that when T is small, e.g., T = 3000, and K
is large, e.g., K = 9, sometimes MCTS takes seemingly random positions
when there are no sudden death/win moves. Furthermore, when K = 11,
MCTS often miss the opportunity of seizing level-3 win positions; how-
ever, conditional on it already getting into a level-3 win position, MCTS
has high probability to exploit the level-3 win opportunity. Therefore,
given the computational resource constraint, it is challenging for our Java
implementation of MCTS to handle the complexity of a 11 × 11 or larger
board.

4.2.3. Level-4 Sudden Death
To investigate the reason that MCTS fails to detect level-4 sudden death, we next
examine a specific scenario shown in Figure 11 with K = 9. Shown on the left
side of the figure is the current game position, a level-4 sudden death situation.
It is now the computer’s turn to move. The correct move should be either B or
C. However, after examining all available positions on the board with T =
30,000, MCTS decides to take position A.

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 61 Journal of Intelligent Learning Systems and Applications

Figure 11. An example of level-4 sudden death in Gomoku.

The moves , ,A B C correspond to three child nodes of the root node,
represented by three circles labeled as , ,A B C in Figure 11. To understand why
MCTS chooses node A over node B or C, we plot the MCTS statistics of the
three nodes in Figure 12. We observe that node A achieves a higher average
score than node B or C does and is visited much more frequently.

This observation may be puzzling, because position A leads to level-3 sudden
win, after the computer takes A. So, wouldn’t the opponent take B or C therefore
resulting in computer’s loss? These two possible moves are represented by two
child nodes of node A, labeled as A1, A2 in Figure 11. The statistics of nodes A1,
A2 are also plotted in Figure 12. We note that the average scores of nodes A1,
A2 are indeed quite negative, indicating that A1, A2 likely result in computer’s
loss as expected.

To understand why the low, negative scores of A1, A2 fail to bring down the
score of node A, we plot in Figure 13 the MCTS statistics of all the child nodes
of node A when the simulation stops at T = 30,000. Among all the child nodes,
node A1 is of index 15 and node A2 of index 43. We note that MCTS indeed vis-
its A1, A2 much more frequently than other child nodes of node A and that the
total scores of A1 and A2 are quite low, both being expected from the exploita-
tion principle of the UCT algorithm (9).

From the backpropagation step in Section 3.2, we know that a node’s total
score is the sum of the total scores of its child nodes. Therefore, we predict that if
more computational resource were available (e.g., with greater numbers of

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 62 Journal of Intelligent Learning Systems and Applications

Figure 12. Average scores and numbers of visits of nodes A, B, C, A1, A2 of Figure 11 as
the MCTS simulation progresses.

MCTS simulation), the scores of A1 and A2 would eventually dominate the
score of their parent node A so that it would be lower than the score of node B
or C at which point MCTS would correctly select position B or C and avoid

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 63 Journal of Intelligent Learning Systems and Applications

Figure 13. Total scores and numbers of visits of all the child nodes of node A of Figure
11 at the end of simulation.

sudden death. In other words, the practical limitation of MCTS in dealing with
sudden death is caused by the computational resource. In a way, this is some-
what expected when we note in Section 2.3 that convergence is quite slow even
for a simple game position (Tic-Tac-Toe) and a simple algorithm (RPS).

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 64 Journal of Intelligent Learning Systems and Applications

4.2.4. Level-2 Sudden Death versus Level-3 Sudden Win
The example scenario in Figure 14 with K = 11 shows how MCTS fails to detect
level-2 sudden death while pursuing level-3 sudden win. Shown on the left side
of the figure is the current game position, a level-2 sudden death situation. It is
now the computer’s turn to move. The correct move should be B to avoid level-2
sudden death. However, after examining all available positions on the board
with T = 10,000, MCTS decides to take position A to pursue level-3 sudden win.

The moves A, B correspond to two child nodes of the root node, represented
by two circles labeled as A, B in Figure 14. Figure 15 plots the MCTS statistics
of the two nodes. We observe that node A achieves a higher average score than
node B does and is visited much more frequently.

Figure 16 plots the MCTS statistics of all the child nodes of node A when the
simulation stops at T = 10,000. Among all the child nodes, node A1 is of index
56. We note that MCTS indeed visits A1 more frequently than any other child
node and the total score of A1 is the lowest, similar to what we have observed in
Figure 13. However, the difference between the child nodes is not as significant.
The reason is probably that K is larger and T is smaller in this example and as a
result MCTS is still biased towards exploration and exploitation has not been in
effect.

The difference of the statistics of nodes A and B in Figure 15, however, is
quite minor. In fact, we note that towards the end of the simulation, the average
score of B increases while that of A decreases and MCTS visits node B increa-
singly more often, indicating that if more computational resource were available
to allow T to go further beyond 10,000, then node B would probably overtake
node A as the winner and MCTS would find the correct move and overcome
level-2 sudden death.

5. An Improved MCTS Algorithm to Address Sudden
Death/Win

The issue of sudden death/win is a known problem for MCTS [11] [12]. In [13],
the authors propose that if there is a move that leads to an immediate win or

Figure 14. An example of level-2 sudden death in Gomoku.

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 65 Journal of Intelligent Learning Systems and Applications

Figure 15. Average scores and numbers of visits of nodes A, B, A1 of Figure 14 as the
MCTS simulation progresses.

loss, then play this move; otherwise, play MCTS. Clearly this algorithm only ad-
dresses level-1 sudden win or level-2 sudden problems. As mentioned before,
level-2 sudden death or level-1 win is not a major issue in MCTS at least for
playing Gomoku with reasonable K, T. While it is possible that with sufficient

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 66 Journal of Intelligent Learning Systems and Applications

Figure 16. Total scores and numbers of visits of all the child nodes of node A of Figure
14 at the end of simulation.

computational resource MCTS could eventually deal with sudden death/win,
next we propose an improved MCTS algorithm that addresses this problem
without increasing drastically required computational resource.

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 67 Journal of Intelligent Learning Systems and Applications

5.1. Basic Idea

To identify a level-k sudden death/win, we have to use a minimax search of
depth k starting from the root node [11]. One brute-force algorithm, as shown in
Figure 17(a), is that when the computer enters a new root node, it first runs the
minimax search; if there is a sudden death/win within k steps, then follows the
minimax strategy to take sudden win or avoid sudden death; otherwise, proceed
with MCTS.

However, the computational costs of the minimax search would be significant
even for a modest k. Carrying out the minimax search for every new root node
reduces the computational resource left for MCTS. The key idea of our proposal
is to not burden MCTS with the minimax search until it becomes necessary.

Figure 17(b) shows the flow chart of the improved MCTS algorithm. When
the computer enters a new root node, it carries out MCTS. At the end of the si-
mulation step of every MCTS iteration, if the number of steps from the root
node to the terminal position exceeds k, then continue to the next MCTS

Figure 17. Flow chart of the improved MCTS algorithm: (a) Brute-force algorithm; and (b) Proposed algorithm.

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 68 Journal of Intelligent Learning Systems and Applications

iteration; otherwise, run the minimax search from the root node and follow the
algorithm of Figure 17(a). In our implementation, we run a single minimax
search of depth k to cover both level-k sudden death and level- ()1k − sudden
win for even k.

From Proposition 2 the brute-force algorithm is guaranteed to detect any lev-
el-k sudden death or win. However, the improved MCTS algorithm can only
guarantee the detectability with probability.

Proposition 4. Any level-k sudden death or win is detectable, with probabili-
ty, with the improved MCTS algorithm in Figure 17(b), where the probability
depends on the number of MCTS iterations, the complexity of the game, and the
value of k.

The reason of “guarantee with probability” in Proposition 4 is that the im-
proved MCTS algorithm needs to encounter a terminal node within level-k in at
least one of the many iterations before a minimax search is triggered. In Gomo-
ku, we find that the probability is close to 1 when the number of iterations is
large, the board size is modest, and depth k is a small number, e.g., T = 30,000, K
= 9, k = 4.

5.2. Simulation Results

We have implemented the improved MCTS algorithm in JAVA. The implemen-
tation includes a minimax search of depth 4, and we confirm that the program is
able to always detect any level-2/4 sudden death and level-1/3 sudden win. To
assess the computational resource used in the minimax search of depth 4 and the
overall MCTS algorithm, we record the total elapsed time of every MCTS step,
which includes T simulations and possibly a minimax search, as well as the
elapsed time of every minimax search when it happens. Figure 18 shows that the
cumulative distribution functions (CDF) of the two elapsed times for the case of
T = 30,000, K = 9.

We observe that the elapsed time of a minimax search is pretty uniformly
distributed from 0 to about 1.8 seconds and that the elapsed time of a MCTS
step is either small (below 2 seconds) or quite large (above 6 seconds), where
the small value corresponds to the scenarios where MCTS can find easy moves
to win the game (level-1 or level-3 sudden win). On average, a single minimax
search is about 1/6 of the entire MCTS 30,000 simulations. As the depth in-
creases, the minimax search will be exponentially expensive. Therefore, the
advantage of the proposed algorithm over the brute-force algorithm could be
significant.

5.3. Heuristic Strategies to Enhance Performance

In the improved algorithm of Figure 17(b), the minimax search of depth k runs
from the root node to detect the presence of sudden death or win. We next pro-
pose to employ a heuristic strategy to reduce the minimax search complexity and
to enhance the MCTS effectiveness. The basic idea is that it is not necessary

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 69 Journal of Intelligent Learning Systems and Applications

Figure 18. CDF of the total elapsed time in every MCTS step and the elapsed time of a
minimax search.

to search over all the child nodes of the root node. Instead, we only need to run
the minimax search from a subset of promising child nodes.

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 70 Journal of Intelligent Learning Systems and Applications

Suppose that in one iteration of MCTS a terminal node of loss (or win) is en-
countered within depth k from the root node, indicating the potential presence
of sudden death (or win). Mark the child node of the root node selected in that
iteration as a potential sudden death (or win) move.

Consider the first heuristic strategy. Instead of triggering a minimax search
immediately as in Figure 17(b), we continue to run MCTS for some number of
iterations and then apply the following two rules.

1) For the subset of child nodes of the root node whose average scores are in
the top 1x percentile and that have been marked as a potential sudden death
move, run a minimax search of depth 1k − from each of them. If the minimax
score of a child node in the subset is equal to −1, then mark it as a sudden death
move and refrain from selecting it in subsequent MCTS iterations. Continue to
run MCTS.

2) For the subset of child nodes of the root node whose average scores are in
the top 2x percentile and that have been marked as a potential sudden win
move, run a minimax search of depth 1k − from each of them. If the minimax
score of any of them is equal to 1, then mark the child node as a sudden win
move, which is the best move to select, and stop MCTS. Otherwise, continue to
run MCTS.

Rule 1 is to prevent a sudden death move from prevailing in MCTS node se-
lection. For example, move A in Figure 11 will be detected and discarded, and
therefore will not prevail over move B or C. Rule 2 is to discover a sudden win
move and to end MCTS sooner. Here 1 2,x x are heuristic numbers that are used
to trade off the reduction in minimax search with the improvement of MCTS ef-
fectiveness.

Consider the second heuristic strategy. Instead of running MCTS for some
number of iterations, applying the above two rules and then continuing MCTS
as in the first strategy, we can run MCTS to the end and then apply the following
two similar rules.

1) For the child node of the root node with the highest average score, if it has
been marked as a potential sudden death move, run a minimax search of depth

1k − . If its minimax score is equal to −1, then discard it, proceed to the child
node with the second highest average score and repeat this rule. Otherwise, pro-
ceed to the next rule.

2) For the subset of child nodes of the root node whose average scores are in
the top 2x percentile and that have been marked as potential sudden win
moves, run a minimax search of depth 1k − from each of them. If the minimax
score of any of them is equal to 1, then select the move. Otherwise, select the
move according to the MCTS rule.

The performance of the above two heuristic strategy can be assessed with the
following proposition.

Proposition 5. Either the first or second heuristic strategy has the same capa-
bility to detect a sudden death as the improved MCTS algorithm in Figure

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 71 Journal of Intelligent Learning Systems and Applications

17(b). Its capability to detect a sudden win improves as 2x increases, and is in
general strictly weaker than the improved MCTS algorithm, except in the special
case where 2 100x = in which case it has the same sudden win detection capa-
bility.

In Gomoku, if 2x is a small number, the complexity reduction over the im-
proved algorithm of Figure 17(b) is in the order of ()2O K , because the size of
the subset of the child nodes from which a minimax search actually runs is
roughly 21 K of the size of the total set. Even for a modest board size K, e.g.,

9K = , the reduction is significant.

6. Conclusions

In this paper we analyze the MCTS algorithm by playing two games, Tic-Tac-Toe
and Gomoku. Our study starts with a simple version of MCTS, called RPS. We
find that the random playout search is fundamentally different from the optimal
minimax search and, as a result, RPS may fail to discover the correct moves even
in a very simple game of Tic-Tac-Toe. Both the probability analysis and simula-
tion have confirmed our discovery.

We continue our studies with the full version of MCTS to play Gomoku. We
find that while MCTS has shown great success in playing more sophisticated
games like Go, it is not effective to address the problem of sudden death/win,
which ironically does not often appear in Go, but is quite common on simple
games like Tic-Tac-Toe and Gomoku. The main reason that MCTS fails to
detect sudden death/win lies in the random playout search nature of MCTS.
Therefore, although MCTS in theory converges to the optimal minimax search,
with computational resource constraints in reality, MCTS has to rely on RPS as
an important step in its simulation search step, therefore suffering from the
same fundamental problem as RPS and not necessarily always being a winning
strategy.

Our simulation studies use the board size and number of simulations to
represent the game complexity and computational resource respectively. By ex-
amining the detailed statistics of the scores in MCTS, we investigate a variety of
scenarios where MCTS fails to detect level-2 and level-4 sudden death. Finally,
we have proposed an improved MCTS algorithm by incorporating minimax
search to address the problem of sudden death/win. Our simulation has con-
firmed the effectiveness of the proposed algorithm. We provide an estimate of
the additional computational costs of this new algorithm to detect sudden
death/win and present two heuristic strategies to reduce the minimax search
complexity and to enhance the MCTS effectiveness.

The importance of sudden death/win is not limited to the board games. The
real-world AI applications such as autonomous driving sometimes face similar
situations where certain actions lead to drastic consequences. Therefore, we
hope to extend the research of the MCTS algorithm to these applications in the
future study.

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 72 Journal of Intelligent Learning Systems and Applications

References
[1] Schaeffer, J., Müller, M. and Kishimoto, A. (2014) Go-Bot, Go. IEEE Spectrum, 51,

48-53. https://doi.org/10.1109/MSPEC.2014.6840803

[2] https://en.wikipedia.org/wiki/Computer_Go

[3] Nandy, A. and Biswas, M. (2018) Google’s DeepMind and the Future of Reinforce-
ment Learning. In: Reinforcement Learning, Apress, Berkeley, 155-163.
https://doi.org/10.1007/978-1-4842-3285-9_6

[4] Silver, D., et al. (2017) Mastering the Game of Go without Human Knowledge. Na-
ture, 550, 354-359. https://doi.org/10.1038/nature24270

[5] Coulom, R. (2006) Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. In: van den Herik, H.J., Ciancarini, P. and Donkers, H.H.L.M., Eds., Com-
puters and Games. CG 2006. Lecture Notes in Computer Science, vol 4630, Sprin-
ger, Berlin, Heidelberg, 72-83.

[6] Kocsis, L. and Szepesvári, C. (2006) Bandit Based Monte-Carlo Planning. In:
Fürnkranz, J., Scheffer, T. and Spiliopoulou, M., Eds., Machine Learning: ECML
2006. ECML 2006. Lecture Notes in Computer Science, vol 4212, Springer, Berlin,
Heidelberg, 282-293. https://doi.org/10.1007/11871842_29

[7] Chaslot, G.M.J-B., Saito, J.-T., Bouzy, B., Uiterwijk, J.W.H.M. and van den Herik,
H.J. (2006) Monte-Carlo Strategies for Computer Go. Proceedings of the 18th Be-
NeLux Conference on Artificial Intelligence, Belgium, 2006, 83-90.

[8] Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P.I., Rohlfshagen, P.,
Tavener, S., Perez, D., Samthrakis, S. and Colton, S. (2012) A Survey of Monte Carlo
Tree Search Methods. IEEE Transactions on Computational Intelligence and AI in
Games, 4, 1-49. https://doi.org/10.1109/TCIAIG.2012.2186810

[9] Auer, P., Cesa-Bianchi, N. and Fischer, P. (2002) Finite-Time Analysis of the Mul-
ti-Armed Bandit Problem. Machine Learning, 47, 235-256.
https://doi.org/10.1023/A:1013689704352

[10] Chang, H., Fu, M., Hu, J. and Marcus, S. (2005) An Adaptive Sampling Algorithm
for Solving Markov Decision Processes. Operations Research, 53, 126-139.
https://doi.org/10.1287/opre.1040.0145

[11] Ramanujan, R., Sabharval, A. and Selman, B. (2010) On Adversarial Search Spaces
and Sampling-Based Planning. Proceedings of the 20th International Conference on
Automated Planning and Scheduling, Toronto, 12-16 May 2010, 242-245.

[12] Browne, C. (2011) The Dangers of Random Playouts. ICGA Journal, 34, 25-26.
https://doi.org/10.3233/ICG-2011-34105

[13] Teytaud, F. and Teytaud, O. (2010) On the Huge Benefit of Decisive Moves in
Monte-Carlo Tree Search Algorithms. Proceedings of IEEE Conference on Compu-
tational Intelligence and Games, Copenhagen, 8-21 August 2010, 359-364.
https://doi.org/10.1109/ITW.2010.5593334

https://doi.org/10.4236/jilsa.2018.102004
https://doi.org/10.1109/MSPEC.2014.6840803
https://en.wikipedia.org/wiki/Computer_Go
https://doi.org/10.1007/978-1-4842-3285-9_6
https://doi.org/10.1038/nature24270
https://doi.org/10.1007/11871842_29
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1287/opre.1040.0145
https://doi.org/10.3233/ICG-2011-34105
https://doi.org/10.1109/ITW.2010.5593334

W. Li

DOI: 10.4236/jilsa.2018.102004 73 Journal of Intelligent Learning Systems and Applications

Appendix A
A. Java Implementation

The following appendix sections describe the Java implementation of the analy-
sis and simulation codes used in this study.

A1. Tic-Tac-Toe and Gomoku Game GUI
I downloaded a Java program from the Internet, which provides a graphic user
interface (GUI) to play Tic-Tac-Toe. I modified the program to play Gomoku.
Figure A1 shows a screenshot of the game GUI generated by the program.

The game GUI consists of two panels. The left panel shows two options to
play the game: person-to-person or person-to-computer. In this study I am only
interested in the latter option. The two colors, black (person) and green (com-
puter), show whose turn it is to move. The right panel is a K × K grid to
represent the game board.

The program uses an array currentTable[] of length K2 to represent the cur-
rent game position, where element currentTable[i*K+j] is the state of row i and
column j of the game board. currentTable[i*K+j] can be in one of three states:

enum TILESTATUS {EMPTY, PERSON, COMPUTER}.
Initially, all elements are EMPTY. When it is the person’s turn to move and

the human player clicks on one of the empty grid element, the program changes
the corresponding element of currentTable[] to PERSON. When it is the com-
puter’s turn to move, the program calls a function.

int choseTile()
which returns an integer index pointing to one of the elements of currentTable[]
representing the computer’s move. The program changes the corresponding

Figure A1. A screenshot of Gomoku game environment.

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 74 Journal of Intelligent Learning Systems and Applications

element of currentTable[] to COMPUTER. After every move, the program calls
a function

boolean checkWinner(TILESTATUS[] currentTable, int select)
to check whether the game position currentTable has a winner where select is
the latest move.

Function choseTile() is where any AI algorithm is implemented. In the
Tic-Tac-Toe Java program downloaded from the Internet, the default imple-
mentation is to randomly return any index that corresponds to an EMPTY ele-
ment. In this study, I have implemented the RPS and MCTS algorithms in cho-
seTile(). I will describe our implementation of RPS and MCTS later.

A2. Implementation of Probability Analysis of RPS
I wrote a Java program to calculate the expected score of each move from the
current game position of RPS. The Java program is used in the probability analy-
sis in Section 2.2.

The calculation is based on the recursive Equation (3). The current game po-
sition is represented by the root node and all the legal next-step moves from the
current game position by the computer form its immediately child nodes. The
Java problem uses a recursive function

float scoreIteration(TURN turn, int select)
to calculate the expected score of the child node presented by currentTable. De-
note K the number of EMPTY elements in the root node and index[k] the k-th
EMPTY element. The main() function calls scoreIteration() for each of the K
child nodes of the root node, k, with turn set to COMPUTER, select set to in-
dex[k], and currentTable[index[k]] set to COMPUTER. currentTable[index[k]]
is reset to EMPTY after each function call.

The programming idea of scoreIteration() is that if the node is terminal, then
return −1, 0, 1 depending on the game outcome; otherwise, expand to its child
nodes and call scoreIteration() recursively. When a node expands to its next lev-
el child nodes, the number of EMPTY elements decrements by one. The pseudo
of scoreIteration() is given as follows.

A3. MCTS and RPS Implementation
I downloaded a Java program from the Internet
(https://code.google.com/archive/p/uct-for-games/source), which implements
the MCTS algorithm. I modified the MCTS program to work with the GUI pro-
gram, to output various statistics to study the simulation results in Sections 2.3
and 4.2, and to allow flexible alrogithm selection, which will be necessary to im-
plement the improved MCTS algorithm of Section 5.

The MCTS Java program defines a class called MCTSNode, which includes a
number of variables and methods to implement the algorithm described in Sec-
tion 3.2. The most important variables are

int totalScore to store the total score of the node,
int timesVisited to store the total number of times the node is visited,

https://doi.org/10.4236/jilsa.2018.102004
https://code.google.com/archive/p/uct-for-games/source

W. Li

DOI: 10.4236/jilsa.2018.102004 75 Journal of Intelligent Learning Systems and Applications

ArrayList<MCTSNode> nextMoves to store an array list pointing to the child
nodes of the node,

int indexFromParentNode to store the move that its parent node takes to
reach the node,

TILESTATUS[] nodeGameState to store the game position of the node,
TILESTATUS nodeTurn to store whose turn it is to move.
The average score of the node is simply totalScore/timesVisited. The most

important methods are described below.
Function choseTile() calls bestMCTSMove(), which returns the move chosen

by MCTS.

bestMCTSMove() in turn calls runTrial() in each MCTS iteration, in which
the game ends in one of three outcomes

enum TURN {PERSON, COMPUTER, DRAW}.
runTrial() calls simulateFrom() to simulate a random playout beyond the tree

boundary.
The RPS algorithm is a simpler version of MCTS. One variable is added to the

MCTSNode class:

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 76 Journal of Intelligent Learning Systems and Applications

int levelFromTopNode to store the number of levels from the root node to the
node. For a child node of the root node, levelFromTopNode is set to 1.

The only change to implement RPS is that line 5 of function runTrial() is re-
placed by

if Node is a leaf node AND levelFromTopNode == 0 then
so that only the root node is expanded to add its child nodes, which are never

expanded and are kept as the leaf nodes.

A4. Improved MCTS Implementation
I revised the MCTS Java program to implement the improved MCTS algorithm
of Figure 17(b). In addition to levelFromTopNode, two variables are added to

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 77 Journal of Intelligent Learning Systems and Applications

the MCTSNode class:
int simulationDepth to store the number of steps from the root node to where

the game ends in function simulateFrom()
ArrayList<MCTSNode> nextMinimaxMoves to store an array list pointing to

the child nodes of the node that are the optimal moves found in the minimax
search. nextMinimaxMoves is a subset of nextMoves.

Besides, a static variable is defined:
int MINIMAXSEARCH to indicate whether the minimax search should be

taken and whether has been taken.
The changes to functions bestMCTSMove(), runTrial() and simulateFrom()

are summarized as follows.
In bestMCTSMove(), lines 3 to 4 are replaced by the following.

In runTrial(), lines 7 to 11 are replaced by the following. Here, constant
NUMSIMULATIONDEPTH is the depth k in Figure 17(b)).

In simulateFrom(), the following is added immediately after line 8.
simulationDepth ← simulationDepth+1
Function minimax() does the minimax search and constructs the array lists

nextMinimaxMoves of the root node and the child nodes up to level

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 78 Journal of Intelligent Learning Systems and Applications

NUMSIMULATIONDEPTH. I wrote two versions of minimax(). The first ver-
sion uses recursion.

The recursive version of minimax() can successfully play Tic-Tac-Toe but
runs into heap memory errors when playing Gomoku even with modest board
sizes. Although the code is simple and clean, the recursive function calls con-
sume a significant amount of memory. To overcome this problem, I wrote the
second version using iteration. The second version does not run into any er-
rors but is not general enough for any NUMSIMULATIONDEPTH.
NUMSIMULATIONDEPTH has to be set to 4.

https://doi.org/10.4236/jilsa.2018.102004

W. Li

DOI: 10.4236/jilsa.2018.102004 79 Journal of Intelligent Learning Systems and Applications

https://doi.org/10.4236/jilsa.2018.102004

	Prediction Distortion in Monte Carlo Tree Search and an Improved Algorithm
	Abstract
	Keywords
	1. Introduction
	2. Random Playout Search in Tic-Tac-Toe Game
	2.1. Random Playout Search
	2.2. Probability Analysis
	2.3. Simulation Results

	3. From Random Playout Search to Monte Carlo Tree Search
	3.1. Expansion of Search Depth in RPS
	3.2. Brief Summary of MCTS

	4. Monte Carlo Tree Search in Gomoku Game
	4.1. Sudden Death/Win and Prediction Distortion
	4.2. Simulation Results
	4.2.1. Methodology
	4.2.2. Result Summary
	4.2.3. Level-4 Sudden Death
	4.2.4. Level-2 Sudden Death versus Level-3 Sudden Win

	5. An Improved MCTS Algorithm to Address Sudden Death/Win
	5.1. Basic Idea
	5.2. Simulation Results
	5.3. Heuristic Strategies to Enhance Performance

	6. Conclusions
	References
	Appendix A
	A. Java Implementation
	A1. Tic-Tac-Toe and Gomoku Game GUI
	A2. Implementation of Probability Analysis of RPS
	A3. MCTS and RPS Implementation
	A4. Improved MCTS Implementation

