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Abstract 

We develop a new full waveform inversion (FWI) method for slowness with 
the crosshole data based on the acoustic wave equation in the time domain. 
The method combines the total variation (TV) regularization with the con-
strained optimization together which can inverse the slowness effectively. One 
advantage of slowness inversion is that there is no further approximation in 
the gradient derivation. Moreover, a new algorithm named the skip method 
for solving the constrained optimization problem is proposed. The TV regula-
rization has good ability to inverse slowness at its discontinuities while the 
constrained optimization can keep the inversion converging in the right di-
rection. Numerical computations both for noise free data and noisy data show 
the robustness and effectiveness of our method and good inversion results are 
yielded. 
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1. Introduction 

Seismic exploration is one of the ways of identifying media properties and 
structures by propagation of waves. The wave is ignited by sources on the sur-
face and propagates into underground. Due to different properties of media, 
various waves such as reflection wave and refraction wave are produced. The 
nature of wave reflection and refraction gives the physical information of media. 
So the inverse of seismic waves can give geological properties of underground 
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materials. Unlike the observation on the surface, crosshole configuration ar-
ranges sources in one well or hole and receivers in another well. Most approach-
es to the inversion of crosshole data involve traveltime tomography. Traveltime 
tomography is efficient and robust. However, the resolution of traveltime tomo-
graphy is limited by its foundation on ray theory and its typical use of first arriv-
als rather than the full waveform. 

The full waveform inversion (FWI) is a high resolution method to inverse the 
media parameter by using the whole wavefield information such as amplitude, 
phase and arrival time. The FWI can be divided into two categories, the time- 
domain method and the frequency-domain method. The FWI was originally de-
veloped in the time domain [1] [2] [3] [4] [5]. In 1984, Tarantola [1] laid the 
foundations for full nonlinear waveform inversion using the formalism of 
least-squares optimization for the wavefield misfit function. Because of the 
computational intensity of the forward modelling process, the global optimiza-
tion methods are impractical. Instead, the gradient-based algorithms are applied 
to find the local minimum of the misfit function. In 1986, Tarantola [3] ex-
tended the theory to elastic wave inversion. The idea was applied to two dimen-
sional crosshole data inversion successfully in the frequency domain [6] [7] [8] 
[9]. Later much more attentions are paid to the frequency domain method, and 
the frequency domain method has the same inversion ability like time domain 
method. Its advantage is that it can be implemented with one selected frequency. 
However, it needs to solve a large-scale system unlike the time domain method 
which the forward problem can be implemented effectively in the time domain. 

The FWI is a typical ill-posed problem for its nonlinearity and cycle-skipping 
problem. To overcome the ill-posedness, various methods have been developed, 
for example the multiscale method [10] [11] [12] and the regularization method 
[13] [14]. Other methods such as the Laplace-domain method [15] [16] [17] and 
the envelop FWI method [18] are proposed to improve the inversion robustness. 
Both the Laplace-domain FWI and envelop FWI are designed to make best of 
low frequency to enhance the robustness of the inversion. An overview of full 
waveform inversion can be found in [19]. Driven by potential application, the 
development of FWI is very rapidly, for example, see [20] [21] [22]. 

In this paper, we develop an effective full waveform slowness inversion me-
thod for crosshole data by combing the total variation regularization with the 
constrained optimization together. We also propose the new skip algorithm to 
implement the constrained optimization problem. The rest of this paper is ar-
ranged as follows. The theoretical method is described in Section 2 in detail. It 
includes the forward method and the inverse method. In Section 3, numerical 
computations both for the noise free data and noisy date are implemented. Fi-
nally, the conclusion is drawn in Section 4. 

2. Theory 

There are three subsections in this section. In Section 2.1, the forward problem 
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and the staggered-grid scheme with the perfectly matched layer are described. In 
Section 2.2, the inversion method and the corresponding algorithm by combing 
TV regularization with bound constraints are described. Section 2.3 involves the 
computations for the gradient of objective function and the step length, which is 
important to the success of inversion. 

2.1. Forward Method 

We consider the acoustic wave equation excited by the source ( )f T  located at 
the point ( ),s sx z , which the mathematical form of the pressure ( ), ,u x z t  satis-
fies 

( ) ( ) ( ) ( ) ( )
2

2 , in 0,s s
u u f t x x z z T

t
σ δ δ
∂

−∇ ⋅ ∇ = − − Ω×
∂

     (1) 

( ) ( )
0

0

, ,
, , 0, 0, on

t
t

u x z t
u x z t

t=
=

∂
= = Ω

∂
             (2) 

where 2RΩ ⊂  is the area of computational domain, T is the final observation 
time, 21 vσ =  is the square of slowness parameter, v is the wave velocity. The 
system (1)-(2) is the forward problem. In this paper, we solve the pressure u 
numerically with the finite difference method for its high computational effi-
ciency. Among various of finite difference schemes, the staggered-grid scheme is 
a typical one [23]. In order to apply the staggered-grid method, we introduce 
new variables xw  and zw  defined by u x∂ ∂  and u z∂ ∂  respectively. Then 
system (1)-(2) can be written as the following hyperbolic form 

,xw u
t x

∂ ∂
=

∂ ∂
                          (3) 

,zw u
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∂ ∂
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∂ ∂
                          (4) 
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= + + ⋅ − −
∂ ∂ ∂ ∫           (5) 

Now we construct the difference scheme of (3)-(5) on the staggered grids. The 
schematic map of grid points for different variables is shown in Figure 1. Let 

,
n
i ju  be the wavfield at time n t∆  and position ( ),i x j z∆ ∆ , and ( )1 2

1 2,x i j
w

+
 be 

the value at time ( )1 2n t+ ∆  and position ( )( )1 2 ,n x j z+ ∆ ∆ , and so on. Here 
t∆  is the time step, and x∆  and z∆  are the spatial steps in x and z directions 

respectively. We approximate Equation (3) at time n and position ( )1 2,i j+ , 
Equation (5) at time n and position ( ), 1 2i j + , and Equation (4) at time 

( )1 2n +  and position ( ),i j . Thus we have 
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Figure 1. The schematic map of grid points for the staggered-grid scheme.
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with initial conditions 
1 0

, ,0, 0,i j i ju u− = =                          (9) 

( ) ( )
1 1
2 2
1 1, ,
2 2

0, 0.x zi j i j
w w

− −

+ +
= =                     (10) 

The sufficient and necessary stability for the scheme (6)-(8) is (see Appendix 
A) 

2 2

1 1 .t
x z

σ  ∆ ≤ + ∆ ∆ 
                     (11) 

Since the computational domain is limited, we need to use absorbing boun-
dary conditions to eliminate the boundary reflections. Several methods can be 
applied, for example, the paraxial approximation [24], the exact nonreflecting 
conditions [25] [26] and the perfectly matched layer (PML) method [27]. Here, 
we adopt the PML method in its split formulation. The idea of PML is to design 
a particular layer around the computational domain in which the waves will be 
attenuated satisfactory. In split PML formulation, the wavefield u is split into 
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two components, x-component and z-component, i.e., x zu u u= + . To remove 
the boundary reflections in the absorbing layer, a decaying coefficient ( )d x  or 
( )d z  is introduced. Then system (3)-(5) in the case of the source free can be 

written as the following PML form 

( ) 1 ,x x
x

u wd x u
t xσ

∂ ∂
+ =

∂ ∂
                  (12) 

( ) 1 ,z z
z

u wd z u
t zσ
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+ =

∂ ∂
                  (13) 
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w ud x w
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∂ ∂
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∂ ∂
                    (14) 

( ) ,z
z

w ud z w
t z

∂ ∂
+ =

∂ ∂
                    (15) 

where ( )d x  and ( )d z  are designated to attenuate the refractions in absorb-
ing zone. 

We use the following model for the damping parameter ( )d p  [28] [29] 

( ) ( )
2

0 0
3, ln , , ,
2

p vd p d d R p x z
L L

 = = − = 
 

        (16) 

where L is the thickness of PML absorbing layer, v is the media velocity, x or z is 
the distance from current position to PML inner boundary, and R is a parameter 
chosen as 3 610 ~ 10− − . Note that the coefficient ( )d p  is zero in the original 
computational domain. The staggered-grid scheme for system (12)-(15) is 
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The forward computations can be extrapolated explicitly in the time direction 
based on (17)-(21). In Figure 2, the snapshot of wave propagation in a homoge-
neous media with velocity 3000 m/s at time 0.8 s is shown. Figure 2(a) is the re-
sult without PML while Figure 2(b) is the result with PML. We can see that the 
serious boundary reflections in Figure 2(a) are eliminated effectively in Figure 
2(b). 

2.2. Inversion with Constraints 

Consider the inversion of slowness fields in the vector ( )T
1 2, , , sσ σ σ σ=  .  
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(a) 

 
(b) 

Figure 2. Snapshot of wave propagation at time 0.8 s. (a) No PML; (b) PML.
 

 
Define the objective function ( )J σ  as 

( ) ( ) ( )( ) ( )2

0

22

1 , , , , d d d
2

d d ,

T
obs r

shot
J u x z t u x z t x x x z t

x z

σ δ

η ε σ

Ω

Ω

= − −

+ + ∇

∑ ∫ ∫

∫
      (22) 

where the summation is for all the shots or sources in the well. In Equation (22), 
the first term comes from the misfit between the forward data u and the ob-
served data obsu , the second term is the TV regularization with positive para-
meter 2ε , and 0η >  is the regularization parameter. The TV regularization is 
applied because it can yield better inversion result at jump discontinuities theo-
retically [30] [31]. For more theory about Tikhonov theory, reader may refer to 
references, for example [32] [33]. The inverse problem is to minimize the objec-
tive function, i.e.,  

( )min .J
σ

σ                             (23) 

It is a high dimensional complex optimization problem. The dimensions are 

x zN N , where xN  and zN  are the discretization points along x and z direc-
tions respectively. In this paper, the iterative decent method named the global 
Barzilai-Borwein (GBB) method is applied because it is suitable for solving 
high-dimensional complex minimization problem [34] [35] [36]. Generally, for a 
given nonlinear function : nf R R→ , let 0 nRσ ∈  be the initial slowness vec-
tor, then the ( )1m + -th iteration is obtained by 

( )1 ,m m m mfσ σ α σ+ = − ∇                      (24) 

where the superscript m denotes the iteration number, mα  is the step length 
and f∇  is the gradient of f  at the point mσ . 
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Now we propose to solve the minimization problem (23) as a constrained op-
timization problem subject to the constraints a bσ≤ ≤ . Here a and b are the 
lower bound and upper bound for each component of the vector σ respectively. 
The solution of constraint problem for nonlinear optimization is challenging. 
Usually, the penalty function technique is used to change the constrainted opti-
mization to unconstrained optimization problem [37]. In this paper, we develop 
a new effective algorithm called the skip method to solve it. The concept of the 
skip method is to skip the current inverse result if it goes outside of the bound 
constraints and simply store previous results. For our experience, the skip me-
thod performs better than the penalty method. Numerical computations in Sec-
tion 3 will show the effectiveness of the skip method. 

2.3. Computations for the Gradient and Step Length 

For minimizing the problem (23), the gradient and the step length are required. 
The gradient of the objection functional (22) with respect to σ is 

( ) 2

20 22
d d d d d ,

T

shot

J u x z t x z
t

σ σ
φ η

σ ε σ
Ω Ω

∂ ∂ ∇
= − − ∇ ⋅

∂ ∂ + ∇
∑ ∫ ∫ ∫     (25) 

where φ  is the backward wavefield satisfying 

( ) ( )
2

2 ,obs ru u x x
t
φ

σ φ δ
∂

−∇ ⋅∇ = − − ⋅ −
∂

            (26) 

0, 0,t T
t Tt

φ
φ

=
=

∂
= =

∂
                   (27) 

which can be solved effectively like the forward problem in Section 2.1. The 
backward problem (26)-(27) is introduced in the gradient derivation naturally in 
Appendix B. There are two terms on the right hand side of Equation (25). The 
first is the gradient of the misfit functional between the forward data u and the 
observed data obsu , which is derived in Appendix B. We remark that there is no 
Born approximation in the gradient derivation in Appendix B. The second is 
the gradient of TV regularization term and its discrete form can be obtained by 
the approximation of the gradient operator, i.e., 

( ) ( )2 22
, , ,x i j z i jD Dσ σ σ∇ ≈ +                (28) 

where 

1, 1, , 1 , 1
, ,, .

2 2
i j i j i j i j

x i j z i jD D
x z

σ σ σ σ
σ σ+ − + −− −

= =
∆ ∆

            (29) 

The parameter ε  in Equation (25) is a small number to prevent the singularity 
of the denominator. 

Now we consider the step length which is important to the success of inver-
sion. For a general objective function φ : 

( ) ( ) ,k k k kf x pφ α α= +                      (30) 

the one dimensional line search is applied to find the step length, where kp  is 
the search direction and kα  is the step length. Line search condition gives the 
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step length kα  which guarantees the sufficient decrease in the objective func-
tion f  by inequality 

( ) ( ) T
1k k k k k k kf x p f x c f pα α+ ≤ + ∇  

for some constant ( )1 0,1c ∈ . The reduction of the objective function is propor-
tional to both the search direction and the step length. The sufficient condition 
states that kα  is the step length only if 

( ) ( ) T
1k k k k kf x c f pφ α α≤ + ∇ . 

The decrease is not enough if it only satisfies the sufficient condition because 
it can satisfy for the very small value of α . For this reason it requires another 
essential condition called the curvature condition. If kα  satisfies 

( )T T
2k k k k k kf x p p c f pα∇ + ≥ ∇  

for some constant ( )2 1 ,1c c∈ , it is called to satisfy the curvature condition. The 
sufficient decrease condition and the curvature condition together are called 
Wolfe condition [37]. It can also be possible a step length satisfies the Wolfe 
condition but it closes to a minimizer of φ . Due to this reason we use the mod-
ified curvature condition to enlarge the step length which lies in a broad neigh-
bourhood of local minimizer. Therefore, kα  satisfies the strong Wolfe condi-
tion if it satisfies the following two conditions 

( ) ( ) T
1 ,k k k k k k kf x p f x c f pα α+ ≤ + ∇                 (31) 

( )T T
2 ,k k k k k kf x p p c f pα∇ + ≤ ∇                  (32) 

where 1 20 1c c< < < . For the importance of line search in inversion, the algo-
rithm for line search is given by Algorithm 1 and Algorithm 2. The FWI algorithm 
with both TV regularization and bound constraints is given by Algorithm 3. 
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3. Numerical Computations 

We implement numerical computations with C-language code. The computa-
tional domain is X ZΩ = × , where [ ]0,0.25 kmX =  and [ ]0,0.25 kmZ = . 
The spatial increment is 8.33 mx z∆ = ∆ =  and time step 0.001st∆ = . In nu-
merical computations, the regularization parameter η  is around 91.0 10−× . 
The crosshole configuration is shown in Figure 3. The sources are located in the 
left well marked as * while the receivers are located in the right well marked as o. 
There are 27 sources in the left well and 29 receivers in the right well. The source 
function is the Ricker wavelet given by 

( ) ( )( )( ) ( )( )20 02 π
0 02 π 1 e ,f t tf t A f t t − −= − −           (33) 

where 0 25 Hzf =  is the peak frequency, A is the maximum amplitude and  
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Figure 3. The exact slowness model. The sources are in the left well marked 
as * and the receivers in the right well marked as o. 

 

0 0.01st =  is the time when maximum amplitude occurs. The squared slowness 
of the model exact is 

( )
( )

0.111, ,
0.250, , \

x z C
x z C

σ
 ∈=  ∈Ω

                    (34) 

where 

( ) ( ) ( ){ }2 2, : 0.125 0.125 0.000851C x z x z= − + − < . 

As shown in Figure 3, this exact model contains a roughly spherical body with 
lower slowness in the middle on the background media with high slowness. We 
will consider the inversion in two cases: the noise free data and nosy data. 

3.1. Noise Free Data 

First we consider the inverse for the noise free data. The inverse result after 54 
iterations without TV regularization and bound constraints in Algorithm 3 is 
shown in Figure 4. We remark that more iterations in Figure 4 is impossible 
because no step length can be found and the iteration is automatically stopped. 
We can see the inverse result differs from the exact model very much, which 
shows the inversion does not converge correctly. The inverse results with three 
different methods after 200 iterations are shown in Figure 5. For contrast, the 
exact model is shown in Figure 5(a) again. Figures 5(b)-(d) are the inverse re-
sults with TV regularization, with bound constraints, and with both TV regula-
rization and bound constraints, respectively. Comparisons show that Figures 
5(b)-(d) are much better than Figure 4. Moreover, Figure 5(d) with both TV 
regularization and bound constraints is best. Figure 6 is the convergence history  
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Figure 4. Inverse result without TV regularization and bound constraints. 
The inversion is stopped automatically after 54 iterations. 

 

 

 
Figure 5. Exact model and inverse results with three different methods after 200 itera-
tions. (a) Exact model; (b) TV regularization; (c) Bound constraints; (d) Both TV regula-
rization and bound constraints. 
 
of the objective function for the first 200 iterations. In Figure 6, we can see the 
curve for the method with both TV regularization and bound constraints  
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Figure 6. The objective function values for the first 200 iterations. 

 
decreases fastest. The inverse results can be improved further if more iterations 
are carried out. Figure 7 is a comparison between the exact model and three in-
verse results after 1000 iterations. Every inversion method takes approximately 
12 hours for 1000 iterations with single processor (cpu MHz: 20000.021). Figure 
7(a) is the exact model. Figures 7(b)-(d) are the inverse results with TV regula-
rization, with bound constraints, and with both TV regularization and bound 
constraints, respectively. We can clearly see that Figures 7(b)-(d) are much bet-
ter than Figures 5(b)-(d), respectively. And Figure 7(d) obtained with both TV 
regularization and bound constraints performs best. Therefore, the TV regulari-
zation and bound constraints are necessary and its effectiveness in inversion is 
obvious. 

3.2. Noisy Data 

The recorded data are usually affected by noise due to error in measurements or 
the influence of natural environment. So it is necessary to consider noise analy-
sis. The Gaussian white noise is one of the effective way to add noise. It has the 
normal distribution and standard deviation of the data. Let the discrete signal be 

{ }
1

tNi

i
S

=
 and the noisy signal { }

1

tNi

i
S

=
 . To obtain { }

1

tNi

i
S

=
 , we simply add { }

1

tNi

i
S

=
 

to a white Gaussian noise which is random number with the mean zero and 
standard deviation under different signal-to-noise ratio (SNR) 

2

, ~ 0, ,
SNR

ti i i i S N
S S N N

 
 = + Ν
 
 

                  (35) 

where ( )2,m sΝ  denotes a normal distribution with mean m and standard de-
rivation 2s , and ⋅  is the Euclidean mean. We first present some noisy data  
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Figure 7. Exact model and inverse results with three different methods after 1000 itera-
tions. (a) Exact model; (b) TV regularization; (c) Bound constraints; (d) Both TV regula-
rization and bound constraints. 
 
at different receivers with different SNR levels. Figures 8-10 are the noisy data 
received from a source with SNR = 100, SNR = 10, SNR = 1, respectively. In each 
figure, the data received at three different receivers rz , i.e., 2r zz N= , 

3 4r zz N=  and r zz N=  are shown. Here zN  is the number of discretization 
points in z direction. In these figures, the red line denotes the noise free data 
while the blue line represents the noisy data and we can see clearly that the lower 
SNR is the higher noise in the data. Generally, the inversion for noisy data is 
challenge because the problem is nonlinear and ill-posed. However, numerical 
inverse results by our proposed method are still good. In Figure 11, the inverse 
results by three different methods for noisy data with SNR = 100 are given. Fig-
ure 11(a) is the exact model. Figures 11(b)-(d) are the inverse results after 1000 
iterations with TV regularization, with bound constraints, and with both TV re-
gularization and bound constraints, respectively. Comparing the results in Fig-
ure 11, we can clearly see that Figure 11(d) obtained with both TV regulariza-
tion and bound constraints performs best. Correspondingly, the inverse results 
for the noisy data with SNR = 10 and SNR = 1 are shown in Figure 12 and Fig-
ure 13 respectively. After comparing these results, we can see that even in the 
case of lower SNR with SNR = 1, the inverse result with both TV regularization 
and bound constraints are still good, which shows the robustness of our pro-
posed method. 
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(a) 

 
(b) 

 
(c) 

Figure 8. Noisy data with SNR = 100 received in the right well at three different positions 

rz . (a) 2r zz N= , (b) 3 4r zz N= , (c) r zz N= . 
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(a) 

 
(b) 

 
(c) 

Figure 9. Noisy data with SNR = 10 received in the right well at three different positions 

rz . (a) 2r zz N= ; (b) 3 4r zz N= ; (c) r zz N= . 
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(a) 

 
(b) 

 
(c) 

Figure 10. Noisy data with SNR = 1 received in the right well at three different positions 

rz . (a) 2r zz N= ; (b) 3 4r zz N= ; (c) r zz N= . 
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Figure 11. Exact model and inverse results with three different methods after 1000 itera-
tions for noisy data with SNR = 100. (a) Exact model; (b) TV regularization; (c) Bound 
constraints; (d) Both TV regularization and bound constraints. 
 

 
Figure 12. Exact model and inverse results with three different methods after 1000 itera-
tions f for noisy data with SNR = 10. (a) Exact model; (b) TV regularization; (c) Bound 
constraints; (d) Both TV regularization and bound constraints. 
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Figure 13. Exact model and inverse results with three different methods after 1000 itera-
tions for noisy data with SNR = 1. (a) Exact model; (b) TV regularization; (c) Bound con-
straints; (d) Both TV regularization and bound constraints. 

4. Conclusion 

Full waveform inversion is an effective method for recovering the media para-
meter. It is an optimization iterative process by minimizing the misfit between 
the recorded and synthesized data. In this paper, we have developed a new nu-
merical method for crosshole waveform slowness inversion. This method com-
bines TV regularization with constrained optimization together. The TV regula-
rization method can yield better images of slowness at its discontinuities while 
the bound constraints from logging data can give more reliable constraints to 
keep the inversion converging to the right result. The combination is necessary 
to improve the robustness and inversion precision. The novel skip method is 
proposed to implement the constrained optimization problem effectively. Nu-
merical computations both for noise free data and noisy data with lower SNR 
show the effectiveness and robustness of the proposed method. In the future, we 
will design preconditioners to improve the computational efficiency further. 
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Appendix A. The Stability for the Scheme (6)-(8) 

We apply the Fourier method to analyze the stability. Since the source term in 
Equation (8) has no influence on stability, we consider the source-free formula-
tion of the scheme (6)-(8) for brevity, i.e., 

( ) ( )
1 1
2 2

1 1 1, , ,
2 2 2

,
n n n

x x x xi j i j i j
w w r uδ

+ −

+ + +
− =                 (36) 

( ) ( )
1 1
2 2

1 1 1, , ,
2 2 2

,
n n n

z z z zi j i j i j
w w r uδ

+ −

+ + +
− =                (37) 

( ) ( )
1 1

1 2 2, , ,,

1 ,n nn n
i j i j x x x z z z i ji j

u u r w r wδ δ
σ

+ ++  − = + 
 

          (38) 

where xr t x= ∆ ∆ , zr t z= ∆ ∆ , and xδ  and zδ  are the central difference op-
erators in x and z directions respectively. Noting that at time 1 2n −  we have 

( ) ( )
1 1

1 2 2, , ,,

1 .n nn n
i j i j x x x z z z i ji j

u u r w r wδ δ
σ

− −−  − = + 
 

            (39) 

Subtracting (39) from (38) and applying (36)-(37), we obtain 

( ) ( )( )1 1 2 2
, , , , ,

12 .n n n n n
i j i j i j x x x i j z z z i ju u u r u r uδ δ δ δ

σ
+ −− + = +      (40) 

Let 1Ι = −  and suppose xk  and zk  are the wavenumber in the x and z 
directions respectively. By applying , e ex zik jkn n

i ju u Ι Ι=   to Equation (40), we have 
1 ,n nA+Ζ = Ζ                         (41) 

where 

( )2 22 1
,

1 0
x x z zp r p r

A
σ + + −

 =
 
 

               (42) 

1
1 ,

n
n

n

u
u

+
+  

Ζ =  
 





                       (43) 

and 

2 24sin , 4sin .
2 2
x z

x z
k kp p   = − = −   

  
           (44) 

The sufficient and necessary condition for stability is that the eigenvalues of 
matrix A is within or on the unit circle. The characteristic equation of matrix A 
is 

2 2
2 2 1 0.x x z zp r p r

λ λ
σ

 +
− + + = 
 

              (45) 

The stability requires 
2 2

2 2,x x z zp r p r
σ
+

+ ≤                    (46) 

which gives 
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1
2

2 24 ,x zp pt
x x

σ
−

 ∆ ≤ − + ∆ ∆ 
                   (47) 

or 

2 2

1 1 ,t
x z

σ  ∆ ≤ + ∆ ∆ 
                     (48) 

which is just the stability (11). 

Appendix B. The Derivation for the Gradient 

For convenience, we denote the first term in Equation (22) by 

( ) ( ) ( )21 d d d ,
2 obs rT

shot
u u x x x z tχ σ δ

Ω
= − −∑ ∫ ∫           (49) 

and the forward operator A by 

( ) ( ) ,s su f x x z zδ δΑ = ⋅ − −                     (50) 

where A is given by 
2

2 .
t

σ
∂

Α = −∇ ⋅∇
∂

                     (51) 

The operator A is a self-conjugate operator. See the following Lemma 1. 
Lemma 1. For any ( )( )2 1

0, 0, ;u L T Hφ ∈ Ω  satisfying 

0
0

0, 0; 0, 0,t T t
t T t

uu
t t
φ

φ
= =

= =

∂ ∂
= = = =

∂ ∂
             (52) 

where 1
0H  is the Sobolev space, then operator A is the self-adjoint operator, i.e., 

2 2

2 2d d d d d d .
T T

u u x z t u x z t
t t

φσ φ σ φ
Ω Ω

   ∂ ∂
−∇ ⋅∇ = −∇ ⋅∇   

∂ ∂   
∫ ∫ ∫ ∫  (53) 

Proof. Based on the definition of the operator A, we have 

( )

( )

2

2

2

2

d d d d d d

d d d d d d .

T T

T T

uu x z t u x z t
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∂ 
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∂

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

 (54) 

Applying the Green formula in time and using the conditions (52), the first 
term in Equation (54) becomes 

2

2

0

2

20
0

2

2

d d d

d d d

d d d
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T

T

T
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∫ ∫

∫ ∫

∫ ∫

          (55) 
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Similarly, applying the Green formula in space and noting boundary condi-
tions of u  and φ , the second term in Equation (54) becomes 

( )

( )

d d d

d d

d d d

d d d .

T

T

T

T

t u x z

udt u x z
n

ut u u x z
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∫ ∫

∫ ∫

          (56) 

Inserting Equations (55) and (56) into Equation (54), we have 
2 2

2 2d d d d d d .
T T

u u x z t u x z t
t t

φσ φ σ φ
Ω Ω

   ∂ ∂
−∇ ⋅∇ = −∇ ⋅∇   

∂ ∂   
∫ ∫ ∫ ∫  

The proof is complete. Making variation for the objective function (49), we 
obtain 

( ) ( ) ( )
( ) ( ) d d d ,obs rT

shot
u u x x u x z t

δχ σ χ σ δσ χ σ

δ δ
Ω

= + −
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where 

( ) ( ).u u uδ σ δσ σ= + −                    (58) 

Note that ( ) ( ) ( )( )2 1
0, 0, ;u u L T Hσ δσ σ+ ∈ Ω  and satisfy initial conditions 
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we obtain ( )( )2 1
00, ;u L T Hδ ∈ Ω  and uδ  satisfies 

0
0

0t
t

uu
t
δ

δ
=

=

∂
= =

∂
. 

Theorem 2 If φ  is the solution of the following backward problem 

( ) ( )
2

2 ,obs ru u x x
t
φ

σ φ δ
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−∇ ⋅∇ = − − ⋅ −
∂

          (60) 

0, 0,t T
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φ
φ

=
=

∂
= =
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then the gradient of the objective function (49) is 
2

2 d d d .
T

shot

u x z t
t

χ
φ

σ Ω

∂ ∂
= −

∂ ∂∑ ∫ ∫                    (62) 

Proof Based on Equation (57) and the definition of φ  by Equations 
(60)-(61), we have 

( ) ( ) ( )
2

2

d d d
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Using boundary conditions and Lemma 1, we obtain 

( )
2

2 d d d .
T

shot

u u x z t
t
δδχ σ φ σ δ

Ω

 ∂
= − +∇ ⋅∇ 

∂ 
∑ ∫ ∫           (64) 

From the definition we know ( )u σ  and ( )u σ δσ+  and satisfy 

( ) ( ) ( ) ( ) ( ) ( )
2

2 ,s s
u

u f t x x z z
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σ δσ
σ δσ σ δσ δ δ
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 (65) 
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2 .s s

u
u f t x x z z

t
σ

σ σ δ δ
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Subtracting Equation (66) from equation (65), we have 

( )22

2 2 0.
uu u

t t
σ δσδσ δ δσ

∂ + ∂
− +∇ ⋅∇ + = 

∂ ∂ 
          (67) 

Inserting Equation (67) into Equation (64), we have 

( ) ( )2

2 d d d .
T

shot

u
x z t

t
σ δσ

δχ σ φ δσ
Ω

 ∂ +
= −  ∂ 
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Let 0δσ → , we obtain the gradient 
2

2 d d d .
T

shot

u x z t
t

χ
φ

σ Ω

∂ ∂
= −

∂ ∂∑ ∫ ∫                      (69) 

The proof is completed. The result (69) is just the first term on the right hand 
side of Equation (25). We can see that there is no Born approximation in the de-
rivation above. 
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