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Abstract

The eigenvectors of a fuzzy matrix correspond to steady states of a complex
discrete-events system, characterized by the given transition matrix and
fuzzy state vectors. The descriptions of the eigenspace for matrices in the
max-Lukasiewicz algebra, max-min algebra, max-nilpotent-min algebra,
max-product algebra and max-drast algebra have been presented in previous
papers. In this paper, we investigate the monotone eigenvectors in a max-7
algebra, list some particular properties of the monotone eigenvectors in
max-tukasiewicz algebra, max-min algebra, max-nilpotent-min algebra,
max-product algebra and max-drast algebra, respectively, and illustrate the
relations among eigenspaces in these algebras by some examples.
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1. Introduction

The eigenproblem for a fuzzy matrix corresponds to finding a stable state (or all
stable states) of the complex discrete-events system described by the given tran-
sition matrix and fuzzy state vectors. Therefore, the investigation of the eigen-
space structure in fuzzy algebras is important for application. This problem has
been solved in several types of so-called extremal algebras.

A max- T fuzzy algebra is defined over the interval [0,1] and uses, instead of
the conventional operations of addition and multiplication, the operations of
maximum and one of the triangular norms, the so-called #norm. These opera-
tions are extended in a natural way to the Cartesian products of vectors and ma-

trices. The #-norms together with the #conorms play a key role in fuzzy theory.

DOI: 10.4236/jamp.2018.65093 May 30, 2018 1076 Journal of Applied Mathematics and Physics


http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2018.65093
http://www.scirp.org
https://doi.org/10.4236/jamp.2018.65093
http://creativecommons.org/licenses/by/4.0/

Q. Wanget al.

These functions have applications in many areas, such as decision making, sta-
tistics, game theory, information and data fusion, probability theory, and risk
management.

Although there exist various #norms and families of #norms (see, e.g., [1]),
let us mention the several main #norms: the Lukasiewicz #-norm, the Godel
tnorm, the nilpotent minimum #norm, the product #norm, and the drastic
t-norm.

The Lukasiewicz £#norm is computed as

x®, y=max{x+y—10}.

The Godel #-norm is the simplest #norm and the conjunction is defined as the

minimum of the entries, ie.,

x®; y=min{x,y}.
The nilpotent minimum #norm is defined by

0, if x+y<],

¥ By V= {min {x,y}, otherwise.

The definition of the product £#norm is

X®, y=x-y.

The drastic triangular #-norm is “the weakest norm” and the basic example of
a non-divisible #norm on any partially ordered set. The drastic triangular

t-norm is defined as follows:

® 0, if max {x, y} <1,
T V= min {x, y}, if max {x, y} =1.

Recently, Gavalec ef al [2] [3] investigated the steady states of max-Lukasiewicz
fuzzy systems and monotone interval eigenproblem in max-min algebra, Rashid
et al. [4] discussed the eigenspace structure of a max-product fuzzy matrix and
Gavalec et al. [5] studied the eigenspace structure of a max-drast fuzzy matrix. In
this paper, based on these works, we further study eigenproblem. We investi-
gate the eigenvectors in a max-7 algebra, study monotone eigenvectors in
max-nilpotent-min algebra, discuss the relation between the monotone eigen-
vectors in max-7 algebra and max-drast algebra, and illustrate the relations

among eigenspaces in these algebras by some examples.

2. Eigenvectors in a Max-T Algebra

Let T'be one of the triangular norms used in fuzzy theory, let us denote the real
unit interval [0,1] by Z By the max-7 algebra we understand the triple
(1,®,®) with the binary operations ®=max and ®=T7 on I For given
natural n, we write N = {1,2,---,n} . The set of all permutations on N will be
denoted by P,. The notations /(n) and I(n,n) denote the set of all vectors
and all square matrices of a given dimension »n over 7 respectively. The opera-

tions @ and ® are extended to matrices and vectors in the standard way.
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The eigenproblem for a given matrix Ae/(n,n) in max-7 algebra consists
in finding an eigenvector xe/(n) for which A®x=x holds true. The ei-

genspace of Ael(n,n) isdenoted by
F,(4)={xel(n)|A®x=x}.

Theorem 2.1. Let ®,,®,®, be three triangular norms on 7 Ae](n,n)
and xel(n) . If ®<®<®, , xeF,(A4) and xeF, (4) , then
xeFy(4).

Proof.If xeF, (4) and xeF, (4),then

A® x=x,A®, x=1x.

When ®, <®<®,, we have that
X=A® x<A®x<A®, x=x,

ie, A®x=x.Thus, xeF,(A4).

The theorem is proved.

The investigation of the eigenspace structure can be simplified by permuting
any vector xe/(n) toanon-decreasing form.

For given permutations ¢,y € F,, we denote by 4, the matrix with rows
permuted by ¢ and columns permuted by ¥, and we denote by x,, the vec-
tor permuted by ¢.

Theorem 2.2. (Gavalec [6]). Let Ael(n,n), xel(n) and @eP,. Then
xeFy(4) ifand onlyif x,eF, (AW).

We say a vector xel(n) is increasing if x <x, holds for any
i,jeN,i<j and strictly increasing if x, <x, whenever i< ;. The set of all
increasing eigenvectors of a matrix A is denoted by Fj, (A) and the set of all
strictly increasing eigenvectors of a matrix A is denoted by Fj (A) . Similar no-
tation /°(n) and /°(n) will be used without the condition A®x=x.

Theorem 2.3. Let Ae/(n,n) and xel(n).Then xeF;(4) ifand only
if for every i€ N the following hold.

a;®x,<x;,VjeN, a;,®x, =x3jeN.

Proof. By definition, x € F (A) is equivalent with the condition

max{a,.1 ®x,-,a, ®xn} =x,VieN,

which is equivalent to a, ®x, <x, for every jeN and a,®x,=x for
some jeN.

The theorem is proved.

Theorem 2.4. Let Ae(n,n) and xel"(n).If xeF,(A),then

1) a, <1 foral jeN,i<j,

2) a,2x,.

Proof. If xeF, (A) , then it follows from Theorem 2.3 that

a; ®x; <x; Vj>i.

When a, =1, a,®x,=x,>x,, this is a contradiction. Thus, a, <1 for
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every je N,i< j.Noting that ®, is the largest triangular normon 7 we see
that

x,=a, ®x, < mln{ann,xn}

and hence q,, >x,.
The theorem is proved.
In particular, if x € F (4) with x, =1, then

a =1.

nn

3. Eigenvectors in Max-Lukasiewicz Algebra

The following theorem contains several logical consequences of the definition of
Lukasiewicz triangular norm.

Theorem 3.1. (Rashid et al. [7]). Let a,b,c eI.Then

1) a®,b=>b ifandonlyif a=1 or =0,

2) a®,c=b ifandonlyif a=1+b—c or(a<l-c and 5=0),

3) a®,c<b ifandonlyif a<l+b-c,

4) a®,c>b ifandonlyif a>1+b-c,

5)if c¢<b,then a®, c<b.

Combining Theorem 2.3 with Theorem 3.1, we have the following theorem.

Theorem 3.2. (Rashid et al [7]). Let Ae/(n,n) and xel(n). Then
xeFg (A4) ifand only if for every i€ N the following hold:

1) a;,<+x,—x, forevery jeN and ;>i,

2)if i=1,then x;=0 or a;=1+x—x, forsome jeN,

3)if i>1,then a;=1+x,—x, forsome jeN.

The following theorem describes necessary conditions under which a given
square matrix can have a strictly increasing eigenvector.

Theorem 3.3. (Rashid ef al [7]). Let Ael(n,n).If Fy (4)# @, then the
following conditions are satisfied

1) a,<1 forall i,jeN and i<,

2) a, =1.

The following theorem describes necessary and sufficient conditions under
which a three-dimensional fuzzy matrix has a strictly increasing eigenvector.

Theorem 3.4. (Rashid ef al. [7]). Let AeI(n,n). Then Fy, (A4)#® if and
only if the following conditions are satisfied

1) a,<la;<lay,<1,forall i,jeN and i<,

2) a,=1,0r a;<ay,

3) a;=1.
Example 3.1. Let us consider the matrix
0.6 0.8 0.3
A=105 09 04|
03 07 1

Matrix A satisfies conditions (1)-(3) in Theorem 3.4, hence Fy (4)=® and
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Fy (4)={(0,x,,x,)|0 < x, 0.1, x, = x, +0.6}
U{(xl,xz,x3)\0<xl <0.3,x, =x,+0.1,x;, = x, +0.7}.

4. Eigenvectors in Max-Min Algebra

In the case of the max-min (called also: bottleneck) algebras, the eigenproblem
has been studied by many authors and interesting results describing the struc-
ture of the eigenspace have been found (see [3] [8] [9] [10] [11] [12]). In partic-
ular, algorithms have been suggested for computing the maximal eigenvector of
a given max-min matrix (see [13]).

If the binary operation ® coincides with the minimum operation, then the
strictly increasing eigenspace Fy_ (A) can be described as an interval of strictly
increasing eigenvectors, where the bounds m’ (A), M’ (A) el (n) of the inter-
val are defined as follows

m(/)(A)=max{a.,-k|k>j}, M(f)(A)zmax{ajk|k2j},
m;‘(A)zmax{mm(A)\jgi}, M:(A):min{M(j)(A)UZl-}_

If a maximum of an empty set should be computed in the above definition of
m (A) , then we use the fact that max® =0 by usual definition.

The following theorem has been proved in [6].

Theorem 4.1. (Gavalec [6]). Let Ae(n,n) and xel(n) be a strictly in-
creasing vector. Then xe F; (4) ifandonlyif m (A)<x<M(4),ie,

Fy, (A)=[m'(4).M" (4) N1 (n).

Hence, in view of Theorem 4.1, the structure of F; (4) has been completely

described for any Ael(n,n).

5. Eigenvectors in Max-Nilpotent-Min Algebra

We know that the nilpotent minimum norm ®,, is left-continuous and the

R-implication generated from ®,,, is defined by

a—, b=sup{xella®,, x<b}.

Moreover, it follows from Proposition 2.5.2 in [14] that ®, and —,,

form an adjoint pair, Ze., they satisfy the following residual principle

a®,, x<bsox<a—p,, b Vabxel,

and

a—)FDbzmax{xel|a®nMbe}.

If Ael(n,n),then xeF, (4) isequivalent with the two conditions:
1) forany j>i, a;®,, x;<x,

2) thereexist j>i suchthat ¢;®,, x, <x,.

nM *j
For j>i,
1)if a;<x,,then a,;®,, x, <a, <x;

2)if a;>x,,then a,®,, x <x ifand onlyif
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X, Sa; D X, =max{l—aij,x,.},

a)when j>i, x;<l-a;, a;®,, x,=0,
b) when =i, a,®,, x,<x, and

a;®,., X, =x, < x 21-a,;,

1
ie, 1—-a.<x <a, and hence a,>—;
11 1 1 u 2

3)if a,=x,,then ¢;®,, x,<a;,=x and

a;®, X, =x; &x;>l-x, &x+x,>1

6. Eigenvectors in Max-Product Algebra

For every vectors x e /(n), define the quotient vector ¢=g(x)el(n) by

i, ifieN\{n},x #0,

i+l
‘xi+l

TN ifieN\(n),x, =0,

X ifi=n.

Then, xe/"(n) ifandonlyif ¢=g(x) fulfills the following inequalities
0<¢ <1,0<qg,<1, 0<g,<1 VieN\{l,n}.

Noting that for any i< j,

X.

. . ’

a; ®p x; < x, if and only if q; < <
j

xi+1 xi+2 xj

Thus, it follows from Theorem 2.3 that

Theorem 6.1. (Rashid et al. [4]). Suppose that 4e/(n,n) and xel” (n)
Then xefFy, (A) if and only if for every i€ N the following two conditions
hold.

1) a,<q4,,"q,, forevery jeN,j>i,

2) a,=1 or a;=q4,,q,, forsome jeN,;>i.

When xeF; (4), x,>0 and it follows from the proof of Theorem 2.4 that
x,=a,, x,Le, a,=1.

Thus, the following theorem is a corollary of Theorem 2.4.

Theorem 6.2. (Rashid et al. [4]). If Ael(n,n) and Fy (4)# @, then the
following conditions satisfied

1) a,<1 forall i,jeN,i</,

2) a, =1.

This Theorem describes necessary conditions which a square matrix can have

an increasing eigenvector.

7. Eigenvectors in Max-Drast Algebra

For x,yel(n),we have

DOI: 10.4236/jamp.2018.65093

1081 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.65093

Q. Wangetal.

(x®y), =max{x,y,},
(x®D y)’, ={

min{x,,y,}, if max{x,y,} =1,

0, if max{x,,y,} <1

i

for every ieN.

Theorem 7.1. (Gavalec et al [5]). Let Ael(n,n) and xel® (n) . Then
xeky, (4) ifand only if for every i€ N the following conditions hold

1) a,<1 forevery jeN,;j>i,

2)if x,=1,then g, <x,,

3) for some jeli,--,n}, a,®,x, =x,.

Moreover, the following theorem describes necessary and sufficient condi-
tions which a square matrix possesses a strictly increasing eigenvector.

Theorem 7.2. (Gavalec et al. [5]). Let Ae(n,n).Then F; (4)=® ifand
only if the following conditions are satisfied

1) a,<1 foral jeN,;>i,

2) 0<aq, forall ieN\{l} with a,<I,

3) a,<a, forall i,keN,k<i with a,<1,

4) a, =1.

When xeFy (4),x,>0 and

a,,, if x, =1,

ifx,#1,a, =1,

x,=a,, ®,x, =1x

no

0, otherwise,

Le, a, =1. This shows that conditions (1) and (4) in Theorem 7.2 are also
straightforward consequences of Theorem 2.4.

The next theorem characterizes all the eigenvectors of a given matrix. In other
words, the theorem completely describes the eigenspace structure.

Theorem 7.3. (Gavalec et al [5]). Let Ael(n,n), Fy (4)=®, and
xel*(n). Then xeF; (4) if and only if the following conditions are satis-
fied

1) x,=a, forall ieN with a,<I,

2)if x,=1,then x,2aq, forall ie N\{n} with a,=1,

3)if a,<10<aq,,then x, <1,

4)if a, <1 forsome ieN\{l},then x, =1.

8. The Relations among These Eigenspaces

Now we discuss the relation between the monotone eigenvectors in max- 7"alge-
bra and max-drast algebra.
Theorem 8.1. Let A= (“,—,-) el(nn),xel"(n). If xeFy(A4) and q,=1
(i=1,--,n), then
xeFy (4).

Proof. Assume that x € Fy (A4).Foreach ie N, when j>i, it follows from

Theorem 2.4 that a, <1.If x, =1, then
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a,®x,®---Da, Qx, =x (i=1,---,n).
Thus, g, <x, (i=1,---,n) .
When a, <x, (i=1--,n),
a, ®,x; :min{l,xi} =X,
Le., there exist some j e {i,---,n} such that
a ®, X; =x,.
Therefore, xe Fy_ (4) by Proposition 3.3 in [5].

The theorem is proved.

Finally, we illustrate the relations among eigenspaces in these algebras by two
examples.

Example 8.1. Let

EEREE RN
3 2 2 4
PR
3 2 3 3
1 1
14 3 | |2 ]
Then
11 1] J1]
3 2 2 4| |4
11 2 1 1
A®, x=|— — Z|®,|=|=|-]|,
’ 3 2 3| °13] |3
11, L
14 3 | (2] |2]
ft 1 1] [1] - -
L1l 1]
AR, x=|- — Z|®,|=|=|0]
3 2 3 3 X
11, s
14 3 | |2 -2

Thus, xeFj, (A4), but xeF; (4). This illustrates that the condition a, =1

(i=1,---,n) is necessary in Theorem 6.2. Moreover, by a simple computation,

oo

111
e, | ——,— e FS (A).
e (4 3 2)6 5 (4)

This example shows that

we see that

F (A) 2 F, (4)

evenif ® <®,.
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Example 8.2. Let

1
]

—

[N R N N N N N
Bl—= N[ — W[ N~
= W= b=

Then the conditions (1)-(4) hold in Theorem 3.4 in [5]. Thus, F®<D (A) EYON
But,

ie, [m'(4),M"(4)]=® and F; (4)=0.

9, Conclusions and Further Works

The eigenproblem for a fuzzy matrix corresponds to finding a stable state of the
complex discrete-events system described by the given transition matrix and
fuzzy state vectors and the investigation of the eigenspace structure in fuzzy al-
gebras is important for application. Gavalec et al. [2] [3] have investigated the
steady states of max-Lukasiewicz fuzzy systems, Rashid et a/l [4] and Gavalec et
al. [5] have discussed the eigenspace structure of a max-product fuzzy matrix
and a max-drast fuzzy matrix, respectively.

In this paper, we investigated the eigenvectors in a max- 7" algebra, discussed
monotone eigenvectors in max-nilpotent-min algebra, and studied the relation
between the monotone eigenvectors in max- 7"algebra and max-drast algebra.

In a forthcoming paper, we will further investigate monotone eigenvectors in

max-nilpotent-min algebra and max- 7"algebra.
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