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Abstract 
The increased demand for machinery and transport has led to an overwhelm-
ing increase in the use of fossil fuels in the last century. Concerning the eco-
nomic and environmental concern, macroalgae with high fermentable poly-
saccharide content (mainly mannitol, cellulose and laminarin), can serve as an 
excellent alternative to food crops for bioethanol production, a renewable liq-
uid fuel. In this study, Saccharina latissima, a brown macroalgae readily 
available on the Norwegian coast was used as the carbohydrate source for the 
fermentative production of bioethanol. The macroalgae harvested was found 
to contain 31.31 ± 1.73 g of reducing sugars per 100 g of dry Saccharina latis-
sima upon enzymatic hydrolysis. The subsequent fermentation with Sac-
charomyces cerevisiae produced an ethanol yield of 0.42 g of ethanol per g of 
reducing sugar, resulting in a fermentation efficiency of 84% as compared to 
the theoretical maximum. Using these results, an evaluation of the fermenta-
tion process has demonstrated that the brown macroalgae Saccharina latis-
sima could become a viable bioethanol source in the future. 
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1. Introduction 

Recent increased environmental concerns globally have resulted in an increased 
interest in developing economically viable methods for producing alternative 
renewable fuels for transportation. Biofuels like biodiesel, bioethanol, and biogas 
are considered to be promising fuel sources due to their sustainability, adapta-
bility and low environmental impact [1] [2] [3] [4], and can be used in conven-
tional internal combustion engines when blended with fossil fuels [5]. Bioetha-
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nol is one such renewable example that has already gained acceptance. Cur-
rently, the majority of bioethanol is produced using the first and sec-
ond-generation substrates. These substrates require a land area that competes 
with current food crops [6] [7].  

With the excessive use of pesticides and fertilizer in such terrestrial substrate 
production, concerns for the environment are rising. The production of ethanol 
from such substrates also has many hurdles such as high cost of production, 
structural characteristics, geographic latitude and limited yield [10].  

An alternative to terrestrial substrates is the use of third generation marine 
substrates like seaweeds (photosynthetic organisms) for bioethanol production 
[11] [12]. Seaweeds can be considered the ocean’s version of terrestrial plants, as 
they are also composed of rigid polysaccharide-based structures, and collect vast 
quantities of polysaccharides, which many upon hydrolysis can be fermented to 
produce ethanol [13]-[18]. Macroalgae use as a bioethanol substrate has several 
advantages over terrestrial plants, where they have significantly larger area pro-
ductivity (Table 1), do not compete with conventional food-based agriculture, 
do not require irrigation, recycle ocean bicarbonate, and are compatible with ex-
isting production streams and biorefineries [19] [20] [21]. Despite this, sacchari-
fication of biomass into fermentable sugars for bioethanol production still re-
mains to be one of the main challenges [22].  

In Nordic countries, where significant levels of terrestrial agriculture are not 
possible due to the winter climate, macroalgae offers a feasible alternative. For 
example, Norway has an extensive coastline of relatively warm water (consider-
ing the latitude) due to the Gulf stream, providing perfect growing conditions 
for the largely abundant carbohydrate-rich (laminarin, mannitol and alginate) 
sugar kelp Saccharina latissima [23] [24]. Laminarin and mannitol serve as stor-
age carbohydrates in S. latissima that accumulate in the summer, while alginate 
is a structural carbohydrate. Laminarin and mannitol are substrates that can be 
fermented to produce ethanol by many various microbes [25] [26]. This is not 
the case for alginate, which is challenging without the use of specific genetically 
modified organisms [27] [28].  

In this study, S. latissima from Trondheimsfjord, Norway, was used for the 
production of bioethanol from their glucose, laminarin and mannitol (fermentable)  
 
Table 1. Major bioethanol crops and macroalgae comparison. 

Substrate 
Average yield 
(kg/ha/year) 

Dry weight of hydrolysable carbohydrates 
(kg/ha/year) 

Wheat (grain) 2800 1560 

Maize (kernal) 4815 3100 

Sugar beet 47,070 8825 

Sugar cane 68,260 11,600 

Macroalgae [8] 75,000 4500 

Data was obtained from [9], unless otherwise stated. 
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carbohydrates. Additionally, a straight-forward carbohydrate extraction method 
was used to lower potential process costs. An evaluation of the process was de-
veloped to demonstrate that the brown macroalgae Saccharina latissima could 
become an economically viable bioethanol source in Nordic countries. 

2. Materials and Methods 
2.1. Macroalgae Collection 

S. latissimi, an abundant macroalgae found in large numbers along the Norwe-
gian west coast, was collected from Trondheimsfjord (N 63˚26'56", E 10˚10'48") 
near Trondheim, Norway in August of 2017. The macroalgae were subsequently 
washed using tap water to remove particulates from the surface. S. latissima was 
then milled using a tabletop blender with 10 mL of deionized water per 1 kg of 
macroalgae to produce a dense macroalgae pulp. The pulp was dried for 48 h at 
30˚C and then stored in airtight plastic bags in a dry location for further use. 

2.2. Enzymatic Hydrolysis 

Commercial β-glucanase (G4423) from Trichoderma longibrachiatum (Sigma 
Aldrich, Germany) was used during enzymatic hydrolysis. This was an enzy-
matic mixture of β-1-3/1-4-glucanase, xylanase, cellulase, β-glucosidase, 
β-xylosidase, α- -˪arabinofuranosidase and amylase activities. The macroalgae 
pulp (10% w/v) was suspended in 0.15 M sodium carbonate (Na2CO3) solution 
to a volume of 25 L at a starting pH of 9.0 in a stirred tank (CE640, Gunt, Ger-
many) for 2 h at 50˚C. After 2 h, the pH was adjusted to 6 using HCl acid solu-
tion. Then 5 mg of enzyme mix per g of macroalgae dry weight was added to the 
solution, and left in the stirred tank for 48 h. Samples were taken every 12 h and 
analyzed for glucose concentration using a hexokinase glucose assay kit 
(GAHK20-1KT, Sigma, Germany). 

2.3. Carbohydrate Characterization 

Total carbohydrates, reducing sugar and glucose content were both determined 
by acidic treatment of pre-hydrolysis dry biomass. Biomass (0.5 g) was treated 
with 5 mL of 72% (v/v) H2SO4 at room temperature for 30 minutes with constant 
stirring via a magnetic stirrer. The sample was then diluted to a volume of 50 mL 
with deionized water, then autoclaved at 121˚C for 30 minutes. Once cooled, 
NaOH was added to the sample to reach a pH of 7.5. The total carbohydrates in 
the sample were then determined by using a phenol-sulfuric acid method [29]. 
Reducing sugars in the sample were determined using a dinitrosalicylic acid 
method [30]. Glucose content of the hydrolysate was determined using a 
hexokinase glucose assay kit (GAHK20-1KT, Sigma, Germany). 

2.4. Ethanol Characterization 

Ethanol concentration was determined using spectrophotometric measurements 
at 267 nm in a potassium dichromate and perchloric acid solution [31]. 
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2.5. Macroalgae Fermentation 

Saccharomyces cerevisiae was chosen for the fermentation experiments as it is a 
well understood fermentative organism. The organism was supplied with the 
fermentation equipment (Gunt, Germany). The 25 L of hydrolysate was used in 
the fermentation tank as the substrate (CE640, Gunt, Germany). 1 g of yeast per 
L of hydrolysate was added, along with 0.3% (w/v) of yeast extract and 1% (w/v) 
peptone and adjusted to a pH of 6.8 to support yeast growth. Fermentation was 
performed at 30˚C for 48 hours. The reducing sugar and ethanol content of the 
fermented hydrolysate was measured at 12 h intervals throughout the fermenta-
tion. Samples were centrifuged at 10,000 × g for 15 minutes at 4˚C, and the su-
pernatant removed for analysis. Reducing sugars in the supernatant were deter-
mined using a dinitrosalicylic acid method [30]. 

2.6. Statistical Data Analysis 

All experiments within this study were conducted in triplicate with the results 
displayed as mean values ± the standard deviation. 

3. Results 

The sugar kelp S. latissima (Figure 1) is naturally occurring and fast-growing 
macroalgae that can be found on the extensive coastlines of Nordic countries 
like Norway, which contains large amounts of carbohydrates and proteins. With 
the demand for biofuels increasing in recent years, it seems imperative that en-
zymatically treated macroalgae be identified as a potential source of bioethanol 
to achieve a biorefinery approach. 

3.1. Carbohydrate Yield of S. latissima 

The total carbohydrate, reducing sugar and post-hydrolysis glucose yield was 
determined using samples collected in August of 2017 (Table 2). Before enzy-
matic hydrolysis, the total carbohydrates were 58% ± 2.6% of the dry weight of S.  
 

 
Figure 1. Saccharina latissima. Image of Saccharina latissima obtained from Trond-
heimsfjord (N 63˚26'56", E 10˚10'48") near Trondheim, Norway in August of 2017. 
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Table 2. Carbohydrate composition of S. latissima. 

Carbohydrate group Relative percentage of dry weight 

Total carbohydrates 58 ± 2.6 

Total reducing sugars 37 ± 1.1 

Glucose (pre-hydrolysis 11 ± 1.2 

 
latissima. The reducing sugar content was 37% ± 1.1% of the dry weight of S. 
latissima, whereas content was 11% ± 1.2% of the dry weight of S. latissima. This 
is within the expected range of carbohydrate composition based on similar re-
search of S. latissima [32], including recent research undertaken using S. latis-
simi from Trondheimsfjorden [33] [34]. 

3.2. Enzymatic Hydrolysis of S. latissima 

The enzymatic hydrolysis of S. latissima was undertaken to hydrolyze the storage 
carbohydrates into reducing sugars during a two h macroalgae lysis step, fol-
lowed by a 48 h enzymatic hydrolysis step for later use in fermentation. An en-
zymatic mixture of β-1-3/1-4-glucanase, xylanase, cellulase, β-glucosidase, 
β-xylosidase, α- -˪arabinofuranosidase, and amylases was used. The macroalgae 
pulp was suspended in 0.15 M sodium carbonate (Na2CO3) solution at a starting 
pH of 9.0 in a stirred tank. Measurements of the reducing sugar concentration 
were obtained every 12 h throughout the hydrolysis process.  

The initial macroalgae lysis step liberated 9.18 ± 1.21 g/L of reducing sugar. 
The following enzymatic saccharification during the hydrolysis process yielded a 
further 22.13 ± 1.43 g/L after 48 h (Figure 2; Table 3). This resulted in a total 
reducing sugar concentration of 31.31 ± 1.73 g/L after the hydrolysis was com-
plete. With the total reducing sugar content observed to be 37 ± 1.1 using the 
dinitrosalicylic acid method [30] before hydrolysis, the calculated efficiency of 
reducing sugar release from the macroalgae lysis and enzymatic hydrolysis 
process was calculated to be 85%. 

The maximum rate of enzymatic saccharification of the macroalgae was ob-
served after 2 h of incubation (Figure 3; Table 4), with a gradual decline after 
that, a typical saccharification efficiency relationship observed in other similar 
studies [19] [35] [36]. It has been speculated that this decline in hydrolysis rate 
could be the result of inhibition of the enzymes by the products glucose and cel-
lobiose [19] [36] [37].  

3.3. Fermentation of S. latissima Hydrolysate 

The fermentation of S. latissima was performed at 30˚C for a period of 48 h. The 
hydrolysate was used as the bioethanol fermentation substrate. The yeast Sac-
charomyces cerevisiae was used for the fermentation process, with the maximum 
theoretical ethanol yield of 0.51 g per g of reducing sugar. Measurements of the 
reducing sugar and ethanol (Figure 4) concentration were obtained every 12 h 
throughout the fermentation process (Table 3). The maximal ethanol concentration  
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Figure 2. Carbohydrate enzymatic hydrolysis. The concentration of reducing sugars re-
leased in grams per liter from the enzymatic hydrolysis of Saccharina latissima over a pe-
riod of 48 hours. The results displayed are mean values of triplicate experiments with the 
standard deviation displayed as error bars. 
 
Table 3. Hydrolysis yields from S. latissima. 

Time (h) 
Total sugar concentration 

(g/L) 
Sugar released via hydrolysis 

(g/L) 
Saccharification rate 

(g/L) 

0 9.18 ± 1.21 0 0 

12 18.50 ± 1.41 9.32 ± 0.98 0.78 ± 0.06 

24 26.19 ± 1.78 17.61 ± 1.34 0.69 ± 0.02 

36 28.44 ± 1.65 20.26 ± 1.41 0.22 ± 0.03 

48 31.31 ± 1.73 22.13 ± 1.43 0.16 ± 0.02 

 

 
Figure 3. The rate of saccharification during enzymatic hydrolysis. The rate in grams of 
sugar per liter, per hour of saccharification as a result of the enzymatic hydrolysis of Sac-
charina latissima over a period of 48 hours. The results displayed are mean values of trip-
licate experiments with the standard deviation displayed as error bars. 
 
was reached after 36 h, at 13.02 ± 0.61 g/L. With the initial glucose concentration 
of 31.31 ± 1.73 g/L, the maximum ethanol yield from S. latissima was 0.42 g 
ethanol per 1 g of reducing sugar, 84% of the theoretical yield. 
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Table 4. Fermentation yields from S. latissima. 

Time (h) 
Total sugar concentration 

(g/L) 
Ethanol concentration 

(g/L) 
Theoretical yield 

(g/L) 
Efficiency 

(%) 

0 31.31 ± 1.73 0 0 0 

12 15.83 ± 1.21 6.16 ± 0.32 7.74 40 

24 6.59 ± 0.78 10.98 ± 0.56 12.36 71 

36 1.56 ± 0.62 13.02 ± 0.61 14.88 84 

48 0.2 ± 0.17 12.83 ± 0.55 15.56 82 

 

 
Figure 4. Sugar and ethanol concentration during fermentation. The concentration of 
reducing sugars and ethanol in grams per litre during the fermentation of the enzymatic 
hydrolysate of Saccharina latissima over a period of 48 hours. The results displayed are 
mean values of triplicate experiments with the standard deviation displayed as error bars.  
 

The yield observed in this study is amongst the higher known yields as com-
pared to other observations made when using macroalgae as the bioethanol sub-
strate (Table 5). Furthermore, since the experiments were undertaken at a large 
volume (not batch tests), these results display the potential for such bioethanol 
production up-scaling to industrial levels. After the 36 h point, the ethanol yield 
was observed to decline very slightly, and this may be due to the metabolism of 
the yeast strain, which can consume ethanol [35] [36] [37] [48].  

The ethanol yield observed in this study is comparable with the ethanol yields 
observed in lignocellulosic materials. Maize was observed to produce 0.48 g 
ethanol per 1 g of glucose [49], Prosopis juliflora 0.49 g ethanol per 1 g of glu-
cose [35], Lantana camara 0.48 g ethanol per 1 g of glucose [36], and newspaper 
waste 0.39 g ethanol per 1 g of glucose [37].  

3.4. Future Biorefinery Prospects of S. latissima 

Our results from S. latissima fermentation observed when extracting with so-
dium carbonate that by using 1 kg of wet S. latissima as the initial biomass, the 
amount of reducing sugars available was 31.3 g, which can then be fermented 
into ~ 13 g of ethanol. This carbohydrate-rich macroalgae could be used as the  
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Table 5. Comparison of glucose and ethanol yields from other macroalgae (modified 
from [19] [38]). 

Macroalgae Ethanol yield (g/g sugar) Reference 

Saccharina japonica 0.41 [28] 

Sargassum sagamianum 0.38 [39] 

Saccharina japonica 0.17 [40] 

Kappaphycus alverzii 0.39 [41] 

Laminaria japonica 0.41 [42] 

Gracilaria verrucosa 0.43 [19] 

Kappaphycus alverzii 0.37 [43] 

Gelidium amansii 0.38 [44] 

Ulva fasciata 0.45 [38] 

Gracilaria salicornia 0.08 [45] 

Saccharina japonica 0.41 [28] 

Ulva pertusa 0.38 [46] 

Alaria crassifolia 0.28 [46] 

Gelidium elegans 0.38 [46] 

Sargassum sagamianum 0.13 - 0.23 [47] 

 
raw material for bioethanol production, opening up further economic opportu-
nities in aquaculture. By using macroalgae for the production of bioethanol, the 
requirement for fresh water, fertilizers and agricultural land for bioethanol pro-
duction will significantly reduce. Furthermore, Nordic countries will be able to 
produce bioethanol locally, previously unfavorable due to the limited amount of 
agricultural land available, from naturally occurring S. latissima. 

The cost of processing macroalgae for ethanol production can be kept low by 
employing cost-effective processing methods as used in this study; however, the 
cost of harvesting large quantities of macroalgae, as well as its delivery to the 
fermentation plant, are still significant barriers that require attention for the im-
plementation of this technology at an industrial scale. 

4. Conclusion 

This study has demonstrated the potential for S. latissima as biomass for the 
production of bioethanol. This could also be linked to current alginate extraction 
industries to form an S. latissima-based biorefinery in Nordic countries. The 
ethanol yield observed was among the higher ethanol yields reported in the lit-
erature, suggesting S. latissima could be significant biomass for bioethanol pro-
duction in Norway. The vast coastlines in Nordic countries like Norway provide 
an extensive area for macroalgae production, in a natural, sustainable manner. 
Not only does the use of macroalgae from the ocean help reduce ocean acidifica-
tion and mitigate climate change, but it also separated bioethanol biomass pro-
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duction from terrestrial agriculture that is essential for food production. 
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