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Abstract 
The rupture force of the streptavidin-biotin complex was investigated using 
atomic force microscopy (AFM). The most frequently observed rupture force 
(MFOF), which is essential for the evaluation of the potential landscape, was 
evaluated by processing 22,500 force curves using two methods. One method 
is a conventional method, which is usually built in commercial AFM systems, 
i.e., difference between the baseline value and the minimum force value in the 
force curve. The other is a detection of rupture events based on a fuzzy logic 
algorithm to detect the rupture event from analyzing the shape of the force 
curves. Our statistical analysis revealed that the conventional method exhi-
bited a significant artifact, which is the increase in the population of small 
forces comparable to thermal noise of cantilevers, resulting in a smaller 
MFOF. Based on this finding, we discuss the choice of a method and its effec-
ton the illustrated potential landscapes of ligand-receptor complexes. 
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1. Introduction 

Single-molecule force spectroscopy (SMFS) is a promising technique to investi-
gate the nature of inter-or intra-molecular interactions and the mechanical 
properties of various molecular systems (ligand-receptor systems, protein mole-
cules, polymer chains, etc.) from their mechanical responses. Common SMFS 
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tools are atomic force microscopy (AFM), blood cell force spectroscopy, and 
optical or magnetic tweezers [1] [2]. By measuring force along the reaction 
coordinate (direction of pulling) and analyzing the forces, we can reveal the 
number of and positions of internal potential barriers. The successful examples 
range over the potential landscapes of binding of ligand-receptor complexes [3] 
[4], protein-unfolding and refolding pathways [5] [6] [7], and other inter and 
intramolecular interactions [8] [9] [10] [11] [12]. 

For the above applications, we need to analyze a large number (at least hun-
dreds) of force-separation curves and to perform statistical analysis of the ob-
served rupture forces in the curves. By measuring the rupture forces at different 
loading rates and applying the Bell-Evans theory (Equation (1)) [13] [14], we can 
illustrate the overview of the potential landscape. The theory is expressed in 

( ){ }*
0ln lnB b l b Bf k T x r x k Tτ= + ,                 (1) 

where f*, kB, T, xb, rl, and τ0 are the most frequently observed rupture force 
(MFOF), Boltzmann constant, temperature, the position of a potential barrier, 
loading rate, and natural bond life time, respectively. To evaluate MFOF from a 
histogram of rupture forces of a single ligand-receptor complex, we need to col-
lect the force curves with the single-molecule event preferentially. For this, the 
densities of ligand and receptor molecules on the probe and substrate are opti-
mized (lowered) for the preferential formation of the single bond. With the op-
timization, the probability of observing rupture events is 10% - 20%. Therefore, 
construction of a histogram containing 100 data points requires measurements 
of around 500 - 1000 force-separation curves. One can easily imagine that the 
manual detection of interaction force from each force-separation curve is prac-
tically impossible. 

A conventional detection way, which is usually built in commercial AFM sys-
tems, is through the subtraction of the minimum value from the baseline of the 
curve. This method evaluates any adhesion force operating between the tip and 
surface, including non-specific interaction and thermal noises together with the 
specific ligand-receptor interaction. Therefore, we have to set a filter to carefully 
isolate forces coming from specific interaction for data analysis. In common ex-
perimental configurations, the ligand (or receptor) is immobilized on a tip or 
surface via a flexible polymer chain (in most cases polyethylene glycol). There-
fore, most of the cases, rupturing events of ligand-receptor bonds appear after 
the stretch of the polymer (Figure 1). The characteristic force-separation profile 
is well fitted to the worm-like-chain or free-joint-chain models [15] [16] [17].  

There are several methods of detecting the polymer stretching, e.g., fitting of 
the stretch curves [18] and evaluation of the shape of curves at the rupture event 
[19]. Among them, Kasas et al. proposed a strong method that enables 
semi-automated detection of rupturing event of specific interaction after the 
stretching of a polymer chain [20]. This method is successfully utilized by several 
groups [21]-[33]. However, in most of the reports, the analyses of the force 
curves were still performed without the above detecting techniques. 
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Figure 1. Typical force-separation curve and detections of a rupture 
event (a) by the conventional method, in which the difference between 
the minimum force value from and the baseline was determined and 
(b) by fuzzy logic algorithm in which three criteria (V-shape, vertical 
steep segment, and right angle) were utilized. 

 
In this work, we discuss the difference in histograms of rupture forces ob-

tained by the conventional approach and the method developed by Kasas et al., 
in particular, the artifacts of the conventional method appearing in the histo-
gram of force and its origin in detail, which has not been discussed so far. 

2. Experimental 
2.1. Preparation of Substrates 

We immobilized streptavidin molecules to self-assembled monolayers (SAMs) of 
alkanethiols on Au (Furuya Meatal, Japan)/Ge (The Nilaco Corporation, Ja-
pan)/Si (Furuuchi Chemical, Japan) substrates. The metal substrates were fabri-
cated by thermal evaporation under a vacuum (base pressure is around 2 × 10−6 
Pa). To control the density of streptavidin molecules on the substrate, we fabri-
cated the SAM from two precursor thiol molecules with different terminal 
groups: HSC11(EG)6OCH2COOH (MW: 526.73 g/mol, ProChimia Surfaces, Po-
land) and HSC11(EG)3OH (MW: 336.53 g/mol, ProChimia Surfaces, Poland). A 
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thiol solution (1 mM) was prepared by dissolving HSC11(EG)6OCH2COOH: 
HSC11(EG)3OH in ethanol (5 mL, Wako, Japan) at a molar ratio of 1:3. Next, we 
activated the −COOH terminal group to form a amide bond with −NH2 groups 
of streptavidin. The substrates were then transferred to a solution of 
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC, Tokyo 
Chemical Industry, Japan) (5 mL and 75 mM) and 300 mM N-hydroxysuccinimide 
(NHS, KANTO CHEMICAL, Japan) in Milli-Q water and reacted for 30 min. 
Finally, the substrates with activated groups were then immersed in the strepta-
vidin (Sigma-Aldrich, USA) in phosphate-buffered silane (PBS, Sigma-Aldrich, 
USA) for 2 h to complete the immobilization of streptavidin molecules. 

2.2. Immobilization of Biotin Molecules on AFM Probes 

A solution (80 µL) of (3-aminopropyl)triethoxysilane (APTES, Tokyo Chemical 
Industry, Japan) and triethylamine (TEA, Wako, Japan) at a volume ratio of 3:1 
was prepared under in dry nitrogen. APTES aids to the silane coupling of the 
amino acid to the tip via a linker, while TEA catalyzes the reaction. The probes 
were placed in a sealed box together with the APTES/TEA solution allowing the 
vapor molecules to attach to the tip surface (silicon) for 3 h in nitrogen atmos-
phere producing a primary amine terminal group extending from the tip surface. 
α-Biotin-(ethylene glycol)24-ω-succinimidyl propionate (Biotin-dPEG24-NHS, 
Quanta BioDesign, USA) and α-Methoxy-(ethylene glycol)24-ω-propionic acid 
succinimidyl ester (MeO-dPEG24-NHS, Quanta BioDesign, USA) were dissolved 
in PBS (1 mM). The probes were then immersed in the mixture of Bio-
tin-dPEG24-NHS and MeO-dPEG24-NHS at a volume ratio of 1:5 for 12 h. 

2.3. Atomic Force Microscopy and the Measurement Conditions 

We employed a commercial AFM system (MFP-3D Bio, Oxford Instruments, 
USA) equipped with a liquid cell. All measurements were performed in PBS at 
room temperature (300 K). The spring constants of cantilevers were calibrated 
by measuring the thermal noise [34]. The triggering force and loading rate were 
fixed at 150 pN and 126 pN/sec, respectively. The deflection sensitivity was eva-
luated from the force-separation curve in the linear compliance region (around 
under 1 nN), where the force increases linearly as a function of piezo displace-
ment, after all measurements to avoid mechanical damage to the probe. We used 
a cantilever (Biolever mini, Olympus, Japan) whose nominal spring constant was 
60 pN/nm. 

3. Data Analysis 
3.1. Conversion of Force-Displacement Curves to  

Force-Separation Curves 

First, force-piezo displacement curves were converted to force-separation curves 
by using the obtained deflection sensitivity [35]. In this work, the zero separa-
tion was defined by the x-positions at the triggering force of 150 pN. 
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3.2. Detection of Streptavidin-Biotin Interaction from  
Force-Separation Curves 

In this work, we employed two methods to extract the force of streptavi-
din-biotin interaction from force-separation curves. One is a subtraction of the 
minimum value in the force curve from the baseline [Figure 1(a)]. The base line 
was defined by the average of 10 points at the separation of 60 nm in the curve. 

The other approach was a method based on fuzzy logic algorithm developed 
by the Kasas et al. In this approach, the events of the rupture of the streptavi-
din-biotin bond was detected with the shape of the peak. The detection was 
based on three criteria, which were a V-shape, vertical steep segment, and right 
angle [Figure 1(b)]. Three vectors to calculate scores were set same as the para-
meters used by Kasas et al. We eliminated that force curves with multiple rup-
ture events, because the loading force was shared by multiple bonds resulting in 
a lowering of the loading rate. Considering the population of such curves (less 
than 1%), the effect on the overall statistics is negligible. 

Considering our design of the tip [biotin immobilized via 10 nm of PEG chain 
and streptavidin (around 5 nm) fixed on the surface via 2 nm of PEG chain], 
rupture events with longer rupture separation may involve other molecular 
events such as unfolding of streptavidin, stretching of contaminants. Therefore, 
we discuss the rupture events with rupture separations shorter than 30 nm for 
the both cases. 

4. Results & Discussion 

Our analysis using the fuzzy logic algorithm method revealed that the rupture 
events were detected in only 11% of the total force curves. The MFOF was ob-
served at 27 pN [Figure 2(a)], in agreement with the previously reported results 
[13], indicating that single-molecule events were dominant, and that there is a 
small contribution of events for rupturing of double or higher multiple bonds to 
the total statistic. 
 

 
Figure 2. Histograms of (a) force and (b) distribution of all detected rupture events by 
conventional and fuzzy logic algorithm methods. 
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The histograms clearly exhibit the difference in the statistics of rupture forces 
[Figure 2(a)]. The MFOF values are significantly different, i.e., 10 and 27 pN 
from the conventional and fuzzy logic algorithm methods, respectively. The 
overall comparison is shown in Figure 2(b) revealed that the false detection of 
rupture event in weak rupture force region (<15 pN) distributes in the overall 
range of the rupture separation. 

The conventional method returns one “rupturing” force value from each 
force-separation curve even without any rupturing event. It picked up the min-
imum value even from the noise, generating the increase in the number of rup-
ture force comparable to the magnitude of the thermal noise as shown in Figure 
3(a) (in this work around 10 pN in peak-to-peak). These results show in the in-
crease of the population in the region of small rupture forces [Figure 2(a)]. 

Next, we discuss several examples of false detections that were avoided by the 
fuzzy logic algorithm. Figure 3(a) exhibits a typical false detection of thermal 
noise of cantilever from force curves without any rupture events. The fuzzy logic 
algorithm perfectly succeeded in eliminating this kind of data from the statistics. 
As to the case of Figure 3(b), the stretching of contaminants seemed confined 
between the tip and surface. In this case, a strong adhesion with a long rupture 
separation was observed. The long-separation peeling-off process exhibited a 
long plateau shape and dull peaks before the rupture in the negative force. The 
fuzzy logic algorithm rejected similar cases because of the low scores for the 
V-shape. 

Finally, we discuss the artifact on the potential landscape evaluated based on 
the Bell-Evans theory. As we discussed, the conventional method tends to over-
estimate the population of weak rupture force by picking up the thermal noise, 
resulting in the decrease in the MFOF. The overall change in the force-loading 
rate profile, which is used to estimate the xb and τ0, depends on the combina-
tion of ligands and receptors and the design of the tip and surface. Here, we 
display two examples of the artifact of the conventional method on plots of 
 

 
Figure 3. Examples of false-detected rupture events by the conventional method (a) 
thermal noise, (b) non-specific interaction probably due to hydrophobic contaminant 
confined between the tip and surface. 
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force-loading rate and potential landscapes (Figure 4). The main artifact, an 
overall lowering of the rupture force in every loading rate results in the shorter 
τ0 (the inverse of the intersection of the plot and the x-axis), indicating the lower 
potential barrier than the real barrier height. Even small changes in a slope of the 
plot lead to the change in both in xb and in particular τ0 [Equation (1)], since 
x-axis is in a logarithmic scale and the position of the intersection drastically 
changes. 

5. Conclusion 

We investigated statistics of single-molecule interaction forces of the streptavi-
din-biotin ligand-receptor system. To effectively extract single molecular events 
from 22,500 force-separation curves obtained from AFM measurements, we em-
ployed two different ways. One is a conventional way that is built in major 
commercial AFM systems. It calculates the difference between the minimum 
value in the curve and baseline. The other is a method based on fuzzy logic algo-
rithm initially proposed by Kasas et al. In this method, the rupture events in the 
force-separation curves were recognized by the scoring of characteristic shape. 
We found that the obvious difference in the obtained histograms of the rupture 
force. The conventional way frequently exhibited false detection, which picked 
up the thermal noise as a rupturing event. This false detection contributed to the 
increase in the population of the force weaker than 20 pN, resulting in the lo-
wering of the most frequently observed rupture force, which is an important 
factor to illustrate potential landscapes of ligand-receptor systems based on the 
Bell-Evans theory. The conventional way also undesirably detected the non-specific 
interaction as the rupturing event. We found that this also provides undesirable 
effects on histograms in an overall range. Therefore, we concluded that the effec-
tive selection of force curves for data analyses using approaches of shape recog-
nition is important for the quantitative analyses of various force measurements 
(adhesion, deformation, protein-stretching, etc.). 
 

 
Figure 4. Schematic illustrations of the artifact on (a) force-loading rate plots (note that 
x-axis is in a logarithmic scale) and (b) the resulting potential landscapes evaluated by the 
Bell-Evans theory. 
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