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ABSTRACT 

Many sampling formulas are available for processes in baseband  ,a a  at the Nyquist rate πa . However signals 
of telecommunications have power spectra which occupate two bands or more. We know that PNS (periodic 
non-uniform sampling) allow an errorless reconstruction at rate smaller than the Nyquist one. For instance PNS2 can 
be used in the two-bands case  at the Landau rate   ,a b b a   ,   πa b  We prove a set of formulas which are 
available in cases more general than the PNS2. They take into account two sampling sequences which can be periodic 
or not and with same mean rate or not. 
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1. Introduction 

Communications signals are often transmitted in frequ- 
ency channels which are in the form  where the 
width  is small with respect to . For instance 
we have  for the whole FM band (87.5 
MHz, 108 MHz). Of course, the occupied frequency in- 
terval by a single station is smaller which leads to rela- 
tive occupency very weak. When modelling by stationary 
processes, negative frequencies are taken into account. 
Real processes are transmitted in frequency bands in the 
form . We know that such processes 
can be reconstructed by sampling at the Landau rate 

 ,b a
a




2
a b

a b

 ,a b 



  / 0.a 

 ,b a

2  πa b , which is weaker than the Nyquist rate 
2 πa  [1]. PNS2 (Periodic Nonuniform Sampling of 
order 2) is the most known example [2,3]. In the case of 
baseband signals where power spectra are strictly in 

, any sampling plan regular enough can be asso- 
ciated with errorless formulas provided that the sampling 
rate is larger than 

 ,a a 

2 πa  [4-6]. They are close to La-
grange interpolation formulas, replacing far samples by 
well-chosen sequences. However this kind of scheme 
cannot be used when power spectra are not in baseband. 

This paper addresses the problem of errorless sampling 
of stationary processes Z =   ,Z t t  with spectral  
 

support inside two symmetric sets of the real line. For 
instance and without loss of generality, let this support be 
(1), where l   and > 0 . This means that [7,8] 

    E = ei
ZZ t Z t s


d  


        (2) 

where E  ..  stands for the mathematical expectation (or 
ensemble mean) and the superscript   for the complex 
conjugate.  Zs   is the spectral density of the process 
Z. We assume that   = 0Zs   in some neighboorhood 
of the bounds of 0  to be sure that Z is oversampled 
with respect to the Landau's theorem in all studied cases. 

Knowing that   is arbitrary the minimal sampling 
rate for errorless reconstruction is 2 because 0 = 4π  
[1]. Samplings like PNSn (periodic nonuniform sam- 
pling of order n) may be solutions of the problem [9], 
[10]. For example we have the formula [2,3] 
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sin π
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provided that  2l a b  . We are in the case of a PNS2 
where the sampling sequences are  and a b . 

 

         = 2 1 π , 2 1 π 2 1 π , 2 1 πl l l l                                  (1)



New Formulas for Irregular Sampling of Two-Bands Signals 254 

 
In this paper we highlight a class of sampling sequ- 

ences which answer the problem, and we give the associ- 
ated reconstruction formulas. They generalize the PNS2 
sampling set properties (and more generally the PNSn 
sets properties). 

2. A Sampling Formula 

Let Z 

 = , , = 1,2j j
nt n jt   

be two sampling sequences with distinct elements 
(  whatever ) such that: 1 2

n mt t ,m n
1) It exists two sampling formulas for the process in 

baseband of width 2  defined by two kernels π  1 ,g t x  
and  2 ,g t x : 
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for some > 0 . 
2) It exists two real numbers 1 2,   such that for all 

 n

2 12 ,j
n jlt       .         (5) 

At these conditions, and when (   is defined by (1)) 

  = 0,Zs     

we have the sampling formula (6). 
The proof is in Appendix 1. 

3. Examples 

3.1. Example 1 

The well-known formula (3) for the PNS2 verifies (6) 
with (sinc =x sin x x )  
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3.2. Example 2 

Let consider the following sampling scheme 

1 2 2
2 2 1
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(6) is available with [11,12],  
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Actually we are in the PNS4 frame with sequences based  

on 
1

2 ,2 , 2 ,2 1,
2

n n a n a n n     . 

3.3. Example 3 

We assume that 

1 2 1 2 2 1
= , = , 0, , ,...,

2 2 2n n n n

l
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with 2πla  and the n  constant for b > 1n N   
(for instance equal to 0). We are no longer in the PNS 
frame (except when all  are equal). We can take nb
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where  2
2 , ng t t  is given by (7) (see the Appendix 2) 

with 
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1
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= .

1
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If  is large and then if the increments l 1 l  are small,   
. 
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we have a model for (observed) jitter quantified at the 
value 1 l . Of course, we can complicate the sampling 
plan by introducing sampling gaps in the . 1

nt

3.4. Example 4 

Examples above deal with two samplings t1 and t2 with 
equal mean rate 1. Following the value of  (the place 
of subbands) we can imagine samplings with mean rates 
which are different and not multiple (but rational be- 
tween them). For instance consider the following case 
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 2
2 , ng t t  is the usual sampling formula matched to the 

sampling rate 3/2 delayed by , true for power spectra 
in 

a
 3π 2,3π 2 .   The larger  the better the choice 

for available samplings. Unlike the preceeding examples, 
we are in a situation of a true oversampling (

l

  is arbi- 
trarily small). However, if  is not too small, the mean 
rate sampling is more favourable than the Nyquist one. 

l

3.5. Example 5 

One or both sequences can be mixed. For instance 
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The formula (6) can be used when , 
with 
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4. Conclusions 

Most of the time, processes used in communications occ- 
py symmetrical power spectral bands in the form  u 

   = , , , >b a a b a   
 

. Very often, the relative ban- 
dwidth 2 b a b  is small. However, most of the sam- 

pling formulae are matched to baseband processes where 
 = ,a a  . In this case the choice of errorless samplings 

is large, whatever the sampling, uniform or irregular [5,6, 
13]. The sampling mean rate for errorless reconstruction is 

πa  in the latter case (the Nyquist rate) and it is 
  πb a  in the former case (the Landau rate) [1]. In 
communications the Landau rate is small in front of the 
Nyquist rate. The research for errorless samplings with 
Landau rate is important for reducing calculus cost. The 
choice of errorless samplings is limited to the PNS [9,10] 
and has to be increased. It is the aim of this short paper. A 
new sampling formula is proved and examples are given. 
They are based on formulas true in baseband and generally 
well-known [4,14,15]. Example 3 deals with irregular 
samplings at the Landau rate and can be used in the pres- 
ence of jitter. In example 4, we have two samplings with 
different periods which generalizes the PNS2. The method 
which is used can be generalized to other power spectra 
including more than two pieces [16,17]. It is also possible 
to use a mixing of several periodic samplings for the se-
quences t1 and/or t2 [11,12]. 
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Appendix 

Appendix 1 

If    , = , e
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Then we also have  
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Now we assume that   = 0Zs   for   . We 
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We define (11) 
From (9), (10) we have 
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The linear system (12,13) is solved in (14) which leads 
to (6). We understand the key of this formula. The prob-
lem is to write (1) so that  j

n
j

nZ t  and Z t


  disap-
pear (they are not observed) and the jZ nt  appear (they 
are observed). 

Appendix 2 

With  F z  defined by (8) we consider nI  the com-
plex integral 
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We apply the residue’s theorem with order 1 singulari-
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We obtain (7) from (15) using the fundamental isometry 

which allows to change ei x  by  Z x  in (15) [13]. 
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