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ABSTRACT 

Protein secretion plays an important role in bacterial lifestyles. In Gram-negative bacteria, a 
wide range of proteins are secreted to modulate the interactions of bacteria with their envi-
ronments and other bacteria via various secretion systems. These proteins are essential for 
the virulence of bacteria, so it is crucial to study them for the pathogenesis of diseases and 
the development of drugs. Using amino acid composition (AAC), position-specific scoring 
matrix (PSSM) and N-terminal signal peptides, two different substitution models are firstly 
constructed to transform protein sequences into numerical vectors. Then, based on support 
vector machine (SVM) and the “one to one” algorithm, a hybrid multi-classifier named Se-
cretP v.2.2 is proposed to rapidly and accurately distinguish different types of Gram-negative 
bacterial secreted proteins. When performed on the same test set for a comparison with 
other methods, SecretP v.2.2 gets the highest total sensitivity of 93.60%. A public indepen-
dent dataset is used to further test the power of SecretP v.2.2 for predicting NCSPs, it also 
yields satisfactory results. 

 

1. INTRODUCTION 

As a universal and important biological process, protein secretion may occur in all organisms. In this 
process, Gram-negative bacterial secreted proteins should cross two lipid bilayers including the cytoplas-
mic membrane (CM) and the outer membrane (OM), while Gram-positive bacterial secreted proteins just 
need cross the CM [1]. Therefore, the secretion process of the former is more complex than that of the lat-
ter, and more secretion systems are existing in Gram-negative bacterial cells. 

Up to now, at least nine secretion systems have been discovered from Gram-negative bacteria, which 
are named from the type I (T1SS) to the type IX secretion system (T9SS) on the basis of the OM secretion 
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mechanisms [2]. Proteins released via the T1SS are called type I secreted proteins (T1SPs), and other types 
of proteins are known by analogy with this. According to the presence of N-terminal signal peptides or 
not, secreted proteins can be simply classified into two groups: classically secreted proteins (CSPs) (e.g., 
T2SPs, T5SPs, T7SPs, T8SPs and T9SPs) and non-classically secreted proteins (NCSPs) (e.g., T1SPs, 
T3SPs, T4SPs and T6SPs) [3]. They are normally secreted into the extracellular environment or directly 
injected into host cells, but also anchored to the OM at times, even as a part of cell-surface appendages 
such as flagella and pili [4]. They are essential for the virulence of bacteria and lead to various diseases [5] 
[6], so it is crucial to study them for the pathogenesis of diseases and the development of drugs. Unfortu-
nately, researchers pay more attention to the structure and function of different secretion systems, rather 
than their secretory products [7]. Moreover, there have been a number of computational approaches de-
signed to identify type-specific Gram-negative bacterial secreted proteins, such as T3SPs [9]-[14] or T4SPs 
[15] [16] [17] [18] [19], but only a few for distinguishing different types of secreted proteins simulta-
neously. 

Based on our previous research [20], this work is intended to further improve the efficiency of recog-
nition among different types of Gram-negative bacterial secreted proteins. Firstly, two different substitu-
tion models are developed based on AAC, PSSM and N-terminal signal peptides. Then, a SVM-based mul-
ti-classifier is constructed by the “one to one” algorithm, which is called SecretP v.2.2 in this paper. When 
using a test set to assess the actual performance of SecretP v.2.2, it achieves an overall sensitivity of 93.60% 
for distinguishing six different types of Gram-negative bacterial secreted proteins. Furthermore, a public 
independent dataset is used to evaluate the prediction performance of SecretP v.2.2 in identifying dif-
ferent types of NCSPs, and the prediction results are comparable to those of the previous version Se-
cretP v.2.1. 

2. MATERIALS AND METHODS 

2.1. Data Sets 

To make a comprehensive comparison in method, all data sets used in this study are exactly the same 
as those in our previous work [20]. The training and test sets consisted of six types of Gram-negative bac-
terial secreted proteins, including T1SPs, T2SPs, T3SPs, T4SPs, T5SPs and T7SPs. Here, “T1SP” represents 
the type I secreted protein, and the remaining are named by analogy with it. A public independent dataset 
of 89 NCSPs was constructed by Kampenusa and Zikmanis [21], which contains 32 T1SPs, 41 T3SPs and 
16 T4SPs. The detailed data processing has been described in our previous work [20], and all data sets used 
in this study are listed in Table 1. 
 
Table 1. All data sets used in this study. 

Type Training set Test set Independent dataset 

T1SP 112 25 32 

T2SP 99 29 - 

T3SP 182 28 41 

T4SP 62 22 16 

T5SP 164 35 - 

T7SP 48 33 - 

Total 667 172 89 
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2.2. Feature Extraction 

2.2.1. Amino Acid Composition 
Amino acid composition (AAC) represents the occurrence frequencies of the twenty common amino 

acids in a protein sequence, and each protein is described as a 20-dimensional vector by this method. 

2.2.2. Position-Specific Scoring Matrix 
Position-specific scoring matrix (PSSM) is commonly used to describe the evolutionary information 

of amino acid residues in protein sequences, and it has been repeatedly proved that when adding PSSM 
into a protein substitution model for protein classification, the prediction performance of the method will 
significantly improve [22] [23]. So PSSM was also chosen to represent protein samples in this study. The 
PSSM for each protein sequence was firstly generated by using PSI-BLAST [24] against the Swiss-Prot da-
tabase, with three iterations and an E-value cut-off of 0.001. In this way, a matrix consisting of L rows and 
20 columns is created, where L is the length of a query sequence, and 20 columns represent occurrence or 
substitution of each type of twenty common amino acids. Because the lengths of proteins are not equal, an 
equation was then used to make all PSSM matrix size-uniformed, as described in our earlier study [23]. 
Finally, a 20-dimensional vector is also obtained for each protein sequence. 

2.2.3. N-Terminal Signal Peptides 
As a critical factor for distinguishing CSPs from NCSPs, N-terminal signal peptides in protein se-

quences were predicted by the SignalP 4.1 server [25], and represented by the D-scores. 

2.3. Model Construction 

Support vector machine (SVM) has been shown as a powerful machine learning algorithm in computation-
al biology [20] [23] [26] [27] [28] [29]. Here, the LIBSVM program (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) 
was employed to build different SVM models. As the default kernel function of LIBSVM, the radial basis 
function (RBF) was chosen here, and a grid search approach was used to optimize the regularization pa-
rameter C and the kernel width parameter γ. Though there have been several different validation methods 
in statistical prediction, the jackknife test is deemed the most rigorous and objective [30], and it was also 
adopted for this study. It has been confirmed that the “one to one” algorithm is more effective than the 
“one to rest” algorithm [20], so the “one to one” algorithm was also selected to solve the multi-class classi-
fication problem. Meanwhile, different weights were assigned to reduce the data imbalance, which are in-
versely proportional to the corresponding rates between any two types of secreted proteins in the training 
set. 

2.4. Performance Evaluation 

In order to evaluate the performance of different types of SVM models, sensitivity and accuracy are 
used here, and they are defined by the following equations. 

( )Sensitivity TP TP FN= +                                (1) 

( ) ( )Accuracy TP TN TP TN FP FN= + + + +                        (2) 

where TP, TN, FP and FN represent true positive, true negative, false positive and false negative, respec-
tively. 

3. RESULTS 

3.1. Parameters Optimization 

Based on the features described in Section 2.2 and the “one to one” algorithm, three different mul-
ti-classifiers are developed in this study, and each one of them contains 15 SVM models. The substitution 
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model of the first multi-classifier consists of AAC and PSSM, as called PsePSSM by Shen and Chou [31], 
and each protein sequence is represented by a 40-dimensional vector. While the substitution model of the 
second multi-classifier is constructed by combining AAC, PSSM and N-terminal signal peptides, and a 
41-dimensional vector is used to describe each protein sequence. With the adding of N-terminal signal 
peptides, the predictive ability of SVM models for discriminating CSPs from NCSPs can effectively im-
prove, but reduce for identifying different types of CSPs or NCSPs. So 6 SVM models (13, 14, 34, 25, 27, 
57) from the first multi-classifier and 9 SVM models (12, 15, 17, 23, 24, 35, 37, 45, 47) from the second 
multi-classifier, are selected to construct the third hybrid multi-classifier, which is called SecretP v.2.2 in 
this study. Here, model “12” represents that this model was constructed by using the training sets of T1SPs 
and T2SPs, and the remaining are known by analogy with it. 

All prediction results of the three multi-classifiers were presented in Supplementary Tables S1-S3, 
respectively. As shown in these Supplementary Tables, models constructed by both of CSPs and NCSPs 
(e.g., 45 and 12) tend to achieve higher accuracies, while those constructed by only CSPs or NCSPs appear 
to get lower accuracies (e.g., 27 and 34). Comparing the results listed in Supplementary Table S1 and Ta-
ble S2, it is clear that with the adding of N-terminal signal peptides, the performance of models composed 
by CSPs and NCSPs (e.g., 23 and 45) slightly improve, while those composed by only CSPs or NCSPs (e.g., 
27 and 34) cut down. In view of these factors, SecretP v.2.2 is proposed as described in the previous para-
graph, and chosen as the final predictor for distinguishing different types of Gram-negative bacterial se-
creted proteins. 

3.2. Performance on the Independent Data Sets 

In order to compare the prediction performance of SecretP v.2.2 with other methods, including the 
first and the second multi-classifiers described in Section 3.1, and SecretP v.2.1, the test set shown in Table 
1 is used here. All statistical results of the four methods are listed in Table 2. From this table, it is clear  
 
Table 2. Prediction results of the four methods obtained by analyzing the test set. 

Type T1SP T2SP T3SP T4SP T5SP T7SP Total 

No. of sequences 25 29 28 22 35 33 172 

The first multi-classifier 

Correct hit 18 24 28 20 35 30 155 

Sensitivity (%) 72.00 82.76 100.00 90.91 100.00 90.91 90.12 

The second multi-classifier 

Correct hit 23 24 27 17 35 29 155 

Sensitivity (%) 92.00 82.76 96.43 77.27 100.00 87.88 90.12 

SecretP v.2.1 

Correct hit 22 23 28 18 35 29 155 

Sensitivity (%) 88.00 79.31 100.00 81.82 100.00 87.88 90.12 

SecretP v.2.2 

Correct hit 23 25 28 20 35 30 161 

Sensitivity (%) 92.00 86.21 100.00 90.91 100.00 90.91 93.60 
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that SecretP v.2.2 gets the highest total sensitivity of 93.60%, while other three methods achieves the same 
total sensitivity of 90.12%, but the detailed prediction results of them are different. This indicates that it is 
a right decision to choose SecretP v.2.2 as the final predictor in this study. 

As described in Section 2.1, a public independent dataset is selected to further evaluate the predictive 
power of SecretP v.2.2 for identifying different types of NCSPs. The comparison results of the four me-
thods for this dataset are listed in Table 3. As shown in Table 3, 86 of the 89 NCSPs are correctly identi-
fied by SecretP v.2.2 and SecretP v.2.1, but only 82 are correctly identified by the first and the second mul-
ti-classifiers. For the detailed results, SecretP v.2.2 wrongly predicted 2 T1SPs as T5SPs and 1 as a T7SP, 
while SecretP v.2.1 wrongly predicted 2 T1SPs as T2SPs and 1 as a T5SP [20]. Therefore, the prediction 
performance of SecretP v.2.2 for identifying NCSPs is comparable to that of SecretP v.2.1. 

4. DISCUSSION AND CONCLUSION 

A large number of secreted proteins have been discovered from Gram-negative bacteria in recent 
years, and they are classified into different types according to diverse secretion systems. These proteins 
play an important role in the interactions between bacteria and host cells, so more and more works have 
been done for them. 

Many computational methods have been proposed to identify secreted proteins so far, but only a very 
few for distinguishing different types of secreted proteins simultaneously. To address this, SecretP v.2.1 
has been developed in our previous work [20]. As an upgraded version of SecretP v.2.1, SecretP v.2.2 is 
also proposed for this purpose here. The same training and test sets are used to build the two methods, and 
both of them are constructed based on SVM and the “one to one” algorithm. The biggest difference be-
tween them is the feature sets of protein sequences. The substitution model of SecretP v.2.1 contains AAC  
 
Table 3. Prediction results of the four methods obtained by analyzing the independent dataset. 

Type T1SP T3SP T4SP Total 

No. of sequences 32 41 16 89 

The first multi-classifier 

Correct hit 25 41 16 82 

Sensitivity (%) 78.13 100.00 100.00 92.13 

The second multi-classifier 

Correct hit 29 40 13 82 

Sensitivity (%) 90.63 97.56 81.25 92.13 

SecretP v.2.1 

Correct hit 29 41 16 86 

Sensitivity (%) 90.63 100.00 100.00 96.63 

SecretP v.2.2 

Correct hit 29 41 16 86 

Sensitivity (%) 90.63 100.00 100.00 96.63 
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and auto covariance (AC), and each protein is translated into a 45-dimensional numerical vector. While 
the substitution models of SecretP v.2.2 consist of AAC, PSSM, with or without N-terminal signal pep-
tides, and a 40-dimensional or 41-dimensional vector is used to represent a protein sequence. The dimen-
sion of numerical vectors for SecretP v.2.2 is slightly less than that for SecretP v.2.1, which results in 
shorter transit times. Moreover, though AC can reflect the neighboring effects between amino acid resi-
dues in a protein sequence, it has been confirmed that the parameter lg in the equation of AC is not sensi-
tive enough for the classification of different types of secreted proteins [20] [28]. Conversely, PSSM can 
effectively describe the evolutionary information of amino acid residues in protein sequences, and 
N-terminal signal peptides are very useful for distinguishing CSPs from NCSPs and NSPs [27]. So com-
paring with SecretP v.2.1, SecretP v.2.2 seems to be a more reasonable predictor for distinguishing differ-
ent types of Gram-negative bacterial secreted proteins, and the final results also support this view. 

With a comprehensive comparison between SecretP v.2.2 and SecretP v.2.1, several conclusions could 
be drawn from this study. 1) The evolutionary information of protein sequences can effectively improve 
the total power of predictors for protein classification. 2) Though N-terminal signal peptides are originally 
used to distinguish CSPs from non-secreted proteins (NSPs), they also play an important role in the classi-
fication of CSPs and NCSPs. 3) The effective feature selection can not only improve the prediction per-
formance of classifiers, but also cut down the dimension of numerical vectors to reduce operation time. 4) 
The “one to one” algorithm is really good at solving the multi-class classification problem. 

Overall, as an improved approach for rapidly and accurately identifying different types of 
Gram-negative bacterial secreted proteins, SecretP v.2.2 is established in this work, which could be a bene-
ficial supplement for future secretome studies. 
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Table S1. Parameter statistics of different SVM models for the first multi-classifier. 

Type C λ Weight Accuracy (%) 

12 128 0.03125 10:11 96.2085 

13 8 0.125 3:2 95.9184 

14 0.5 0.5 1:2 95.4023 

15 2 0.03125 10:7 93.1159 

17 2 0.03125 3:7 96.2500 

23 32 0.03125 9:5 93.2384 

24 2 0.5 3:5 93.1677 

25 32 0.03125 8:5 92.7757 

27 8 0.03125 1:2 83.6735 

34 2 0.5 1:3 86.4754 

35 2 0.5 10:11 95.0867 

37 0.5 0.125 5:19 95.6522 

45 8 0.03125 8:3 96.4602 

47 2 0.5 7:9 97.2727 

57 2 0.125 2:7 97.6415 

Note: “12” represents that this model was constructed by using the training sets of T1SPs and T2SPs, and 
the remaining are known by analogy with it. Different weights were assigned to reduce the data imbalance, 
which are inversely proportional to the corresponding rates between any two types of secreted proteins in 
the training set. 
 
Table S2. Parameter statistics of different SVM models for the second multi-classifier. 

Type C λ Weight Accuracy (%) 

12 32 0.03125 10:11 97.1564 

13 8 0.03125 3:2 96.9388 

14 32 0.03125 1:2 98.8506 

15 2 0.03125 10:7 94.2029 

17 2 0.5 3:7 97.5000 

23 2 0.125 9:5 95.3737 

24 2 0.03125 3:5 91.9255 

25 32 0.03125 8:5 92.0152 

27 8 0.03125 1:2 82.9932 
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34 8 0.125 1:3 86.0656 

35 2 0.5 10:11 96.8208 

37 8 0.03125 5:19 96.9565 

45 2 0.125 8:3 98.2301 

47 2 0.5 7:9 96.3636 

57 32 0.03125 2:7 96.6981 

Note: “12” represents that this model was constructed by using the training sets of T1SPs and T2SPs, and 
the remaining are known by analogy with it. Different weights were assigned to reduce the data imbalance, 
which are inversely proportional to the corresponding rates between any two types of secreted proteins in 
the training set. 
 
Table S3. Parameter statistics of different SVM models for the third multi-classifier. 

Type C λ Weight Accuracy (%) 

12 32 0.03125 10:11 97.1564 

13 8 0.125 3:2 95.9184 

14 0.5 0.5 1:2 95.4023 

15 2 0.03125 10:7 94.2029 

17 2 0.5 3:7 97.5000 

23 2 0.125 9:5 95.3737 

24 2 0.03125 3:5 91.9255 

25 32 0.03125 8:5 92.7757 

27 8 0.03125 1:2 83.6735 

34 2 0.5 1:3 86.4754 

35 2 0.5 10:11 96.8208 

37 8 0.03125 5:19 96.9565 

45 2 0.125 8:3 98.2301 

47 2 0.5 7:9 96.3636 

57 2 0.125 2:7 97.6415 

Note: “12” represents that this model was constructed by using the training sets of T1SPs and T2SPs, and 
the remaining are known by analogy with it. The third multi-classifier also contains 15 SVM models, 6 
(models 13, 14, 34, 25, 27, 57) of which are from the first multi-classifier, and 9 (models 12, 15, 17, 23, 24, 
35, 37, 45, 47) from the second multi-classifier. Different weights were assigned to reduce the data imbal-
ance, which are inversely proportional to the corresponding rates between any two types of secreted pro-
teins in the training set.  
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