

A Novel Model of Cancer

Hans W. Giertz

GiertzTech, Gnesta, Sweden Email: hans@miklagaard.com

How to cite this paper: Giertz, H.W. (2018) A Novel Model of Cancer. *Journal of Cancer Therapy*, **9**, 383-387. https://doi.org/10.4236/jct.2018.95034

Received: February 2, 2018 Accepted: May 5, 2018 Published: May 8, 2018

Copyright © 2018 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

This study describes a novel model of cancer. Cancer is caused, according to this model, by two toxic molecules, COF_2 (carbonyl fluoride) and CS_2 (carbon disulfide). COF_2 acts as a catalyst and produces CS_2 . CS_2 acts as a catalyst and produces COF_2 . Hence, the molecules COF_2 and CS_2 have the ability to reproduce each other, *i.e.* to create a chain reaction where COF_2 and CS_2 are multiplied. COF_2 and CS_2 are toxic. It is proposed that long-term cell exposure to COF_2 and CS_2 may disturb cell apoptosis and cause uncontrolled cell growth, *i.e.* cancer. Consequently, cancer is caused by a disease causing mechanism or agent and not by a pathogen. However, cancer can be initiated by e.g. a bacteria or virus that contains the molecules COF_2 and CS_2 , wherein these molecules start a chain reaction producing COF_2 and CS_2 in the infected area and where the result can be cancer. The study describes why Fe_2O_3 (iron (III) oxide) may have a therapeutic effect on cancer.

Keywords

Cancer Model ,Cancer Marker, Cancer Therapy, Catalyzes, Carbonyl Fluoride, Carbon Disulfide, Fe₂O₃, Ferumoxytol

1. Introduction

The present report describes a novel model of cancer. According to this model cancer is caused by a mechanism consisting of two toxic molecules. It is proposed that they impair the immune system. A new method is described that facilitates non-invasive analyses of these two molecules in cancer cell lines and tumors *in vivo*. These molecules create catalyzes, also in a test tube positioned outside the cell line or tumor. The result is analyzed and provides a description of the mechanism causing cancer.

Within medicine enzyme catalyzes is the increase in the rate of a chemical reaction by the active site of a protein. However, the human organism, pathogens, molecules and chemical elements encompass a much larger range of different types of catalyzes. Catalyzes can create new molecules and where the catalyst is another molecule, compound or chemical element [1]. Molecules and chemical elements can act as catalysts where the catalytic reaction is reduction (destruction) of molecules [2]. Catalyzes is caused by radiated energy from molecules and chemical elements and generates reactions also at distance, similar to the electrons field [3].

Recent development displays that many pathogens (e.g. bacteria, virus) as well as autoimmune diseases contain a generic part that consists of the molecules COF_2 and CS_2 . This will be reported in separate studies.

An overwhelming body of evidence displays that relationship among certain bacteria and cancer exists [4]. Chronic gastritis induced by *Helibacter pylori* is the strongest known risk factor for gastric cancer [5]. An estimated 15% of all human cancers worldwide may be attributed to viruses [6] [7]. Several studies have shown that a history of autoimmune diseases increases the risk of cancer [8], despite the fact that cancer and autoimmune diseases are fundamentally different pathological conditions [9].

Numerous reports display that the molecule Fe_2O_3 increases cellular necrosis, increases the rate of apoptosis [10] and significantly inhibits cellular growth [11]. Fe_2O_3 is the active substance in Ferumoxytol [12]. Ferumoxytol is an FDA-approved therapeutic for the treatment of anemia. However, reports display that it also may be effective in treatment of various forms of cancer [13] [14].

2. Novel Model of Cancer

Cancer is caused, according to this model, by two molecules COF_2 and CS_2 . Presence of COF_2 and CS_2 in cancer cell lines and tumors/metastases *in vivo* can be measured by their radiated frequency spectrum (using frequency spectrometry). However, they can also be measured using catalyzes and that is described below.

 COF_2 acts as catalyst and where it creates CS_2 in cell lines and in tumors *in vivo*. CS_2 also acts as catalyst and where it creates COF_2 in cell lines and in tumors *in vivo*. Consequently, a small amount of COF_2 acts as catalyst and creates CS_2 , which in its turn creates more COF_2 and which in its turn creates more CS_2 . Hence, COF_2 or CS_2 generates a chain reaction that produces an increasing amount of COF_2 and CS_2 . The molecule CS_2 is toxic and the molecule COF_2 is extremely toxic. It is proposed that long-term cell exposure to COF_2 and CS_2 may result in reduced apoptosis and uncontrolled cell growth, *i.e.* cancer.

 COF_2 and CS_2 in a cell line or tumor also act as catalysts outside the cell line and outside the human body by means of their radiated energy [3]. A test tube was positioned outside the cell line or outside the body in the vicinity of the tumor. The test tube contained C (carbon), F (fluoride) and S (sulfur) dissolved in H₂O (water). The radiated energy from COF_2 acted as catalyst and created CS_2 in the test tube. The radiated energy from CS_2 acted as catalyst and created COF_2 . Catalyzes of COF_2 and CS_2 in a test tube can be used as a cancer marker and where the method is non-invasive. Alternatively the test tube may contain only C, F and H_2O wherein only COF_2 was created. Alternatively the test tube may contain only C, S and H_2O wherein only CS_2 was created. Catalyzes in a test tube can be used as a method to analyze presence of COF_2 and CS_2 in cell lines or tumors.

 COF_2 can be analyzed using FTIR (Fourier Transform Infrared Spectrometer), GC (Gas Chromatography) or GC/MS (Gas Chromatography-Mass Spectrometry). CS_2 can be analyzed using GC or LC (Liquid Chromatography).

The following types of cancer have been analyzed and they all contain the molecules COF_2 and CS_2 : brain cancer, breast cancer, colon cancer, larynx cancer, leukemia, liver cancer, lung cancer, lymphatic cancer, melanoma, pancreatic cancer, prostate cancer, squamous cell carcinoma, testicular cancer and uterine cancer.

The following cancer cell lines have been analyzed and they contain the molecules COF_2 and CS_2 : cellosaurus cell line Mutu-3, lymphoblastic cell line LCL and epithelial cell line HONE-1.

3. Discussion

A novel model of cancer is presented. Cancer is created by a mechanism that contains two toxic molecules: COF_2 and CS_2 . They have the ability to reproduce each other wherein a chain reaction occurs that produces vast amounts of COF_2 and CS_2 . CS_2 is toxic and COF_2 is extremely toxic. It is proposed that they impair the immune system and where the result can be impaired apoptosis and uncontrolled cell growth, *i.e.* cancer.

Empiric results display that cancer cell lines and cancer tumors act as catalysts wherein they produce COF_2 and CS_2 , also at a distance, *i.e.* in a test tube positioned outside the cell line or outside the body close to the tumor. Catalyzes of COF_2 and CS_2 can be used as cancer marker. The method can also be used in order to analyze content of cell lines and tumors, *i.e.* the cancer causing mechanism.

Reports display correlation between bacterial infections and cancer [5] [6], between viral infections and cancer [7] [8] and between autoimmune diseases and cancer [9] [10]. Recent findings display that many pathogenic bacteria, virus and autoimmune diseases contain a generic part that consists of the molecules COF_2 and CS_2 . These findings will be reported elsewhere. Cancer cannot occur on its own, *i.e.* without presence of COF_2 and/or CS_2 . Presence of COF_2 and/or CS_2 is mandatory in order to start the chain reaction where the long-term result is production of vast amounts of COF_2 and CS_2 . Many pathogenic bacteria and viruses as well as autoimmune diseases contain a generic mechanism that consists of the molecules COF_2 and CS_2 . It is proposed that chronic bacterial, viral and autoimmune diseases may start catalyzes of COF_2 and CS_2 in the infected area. The result is, eventually, a chain reaction that produces vast amounts of COF_2 and CS_2 and, sometimes, subsequent cancer. Hence, bacterial, viral and autoimmune diseases can initiate a chain reaction where the result is cancer. They are not carcinogenic by their own.

Reports display that Fe_2O_3 in nanoparticles had a therapeutic effect on cancer cells in vitro and xenograft liver cancer in mice and where the result was increased inhibitory rate and ratio of apoptosis [11]. Another report describes the therapeutic mechanism of treating SMMC-7721 liver cancer cells using Fe_2O_3 nanoparticles. It was shown that it could cause cellular necrosis, induce cellular apoptosis and significantly inhibit cellular growth, all of which appeared to be dependent on the concentration of the Fe_2O_3 nanoparticles. Fe_2O_3 is the active substance in Ferumoxytol [12]. Stanford researchers discovered that Ferumoxytol triggered the immune system to destroy tumor cells [13]. Another study suggests that Fe_2O_3 nanoparticles in Ferumoxytol could be applied "off label" to protect the liver from metastatic seeds and potentiate macrophage-modulating cancer immunotherapies [14].

The above studies display a correlation between Fe_2O_3 and therapeutic effect on cancer and in particular the therapeutic effect of Ferumoxytol. The following is proposed. Fe_2O_3 acts as a catalyst where it reduces (destroys) the molecule COF_2 contained in cancer tumors and metastases. However, the molecule CS_2 is not destroyed. Destruction of (only) COF_2 inhibits further production of CS_2 and which limits toxic exposure in cancer tumors and metastases and where the result is increased cellular necrosis and apoptosis. This type of catalyzes can be demonstrated in the following experiment. A test tube containing COF_2 was positioned close to 10 grams of Fe_2O_3 during 15 minutes. Then the test tube was removed and its content of COF_2 was analyzed; the result was zero content of COF_2 .

4. Conclusion

The overall conclusion is that it has been difficult to analyze the cause of cancer using state of the art technique. The present report displays a novel method. Molecules in cancer cell lines and tumors can be analyzed because they radiate energy that causes catalyzes outside the cell line and outside the body in a test tube wherein specific molecules are created (COF_2 and CS_2). These molecules can be analyzed using conventional measurement techniques such as FTIR, GC, GC-MS and LC. The conclusion is also that Fe_2O_3 reduces the molecule COF_2 and hence, Fe_2O_3 may have an important role in cancer therapy.

References

- Garcia-Viloca, M., Gao, J., Karplus, M. and Thrular, D.G. (2004) How Enzymes Work: Analysis by Modern Rate Theory and Computer Simulations. *Science*, 303, 186-195. https://doi.org/10.1126/science.1088172
- [2] Applied Catalysis A: General (2001) Hoelderich Special Issue, 221, 443-457.
- [3] Giertz, H.W. (2016) A Novel Model of the Atom. *Journal of Modern Physics*, 7, 413-421. <u>https://doi.org/10.4236/jmp.2016.75042</u>
- [4] Mager, D.L. (2006) Bacteria and Cancer: Cause, Coincidence Or Cure? A Review. *Journal of Translational Medicine*, 4, 14. <u>https://doi.org/10.1186/1479-5876-4-14</u>

- [5] Daniel, P., et al. (2008) Regulation of the Helicobacter pylori Cellular Receptor Decay-Accelerating Factor. Journal of Biological Chemistry, 283, Article ID 23922. https://doi.org/10.1074/jbc.M801144200
- [6] Liao, J.B. (2006) Viruses and Human Cancer. The Yale Journal of Biology and Medicine, 79, 115-122.
- Zur Hausen, H. (1991) Viruses in Human Cancers. *Science*, 22, 1167-1173. https://doi.org/10.1126/science.1659743
- [8] Volkers, N. (1999) Do Autoimmune Diseases Raise The Risk of Cancer? *Journal of the National Cancer Institute*, 1, 1992-1993. https://doi.org/10.1093/jnci/91.23.1992
- [9] Rahat, M.A. and Shakya, J. (2016) Parallel Aspects of the Microenvironment in Cancer and Autoimmune Diseases. *Mediators of Inflammation*, 2016, Article ID 4375120. https://doi.org/10.1155/2016/4375120
- [10] Yan, S., et al. (2005) Therapeutic Effect of Fe₂O₃ Nanoparticles Combined with Magnetic Fluid Hyperthermia on Cultured Liver Cells and Xenograft Liver Cancers. *Journal of Nanoscience and Nanotechnology*, 5, 1185-1192. https://doi.org/10.1166/jnn.2005.219
- Yan, S. (2014) Therapeutic Mechanism of Treating SMMC-7721 Liver Cancer Cells with Magnetic Fluid Hyperthermia Using Fe₂O₃ Nanoparticles. *Brazilian Journal of Medical and Biological Research*, 47, 947-959. https://doi.org/10.1590/1414-431X20143808
- [12] Neiser, S. (2015) Physico-Chemical Properties of the New Generation IV Iron Preparations Ferumoxytol, Iron Isomaltoside 1000 and Ferric Carboxylmaltose. *BioMetals*, 28, 615-635. <u>https://doi.org/10.1007/s10534-015-9845-9</u>
- [13] Digitale, E. (2016) Iron Nanoparticles Make Immune Cells Attack Cancer. Stanford Medicine News Center.
- [14] Zanganeh, S., et al. (2016) Iron Oxide Nanoparticles Inhibit Tumour Growth by Inducing Pro-Inflammatory Macrophage Polarization in Tumour Tissues. Nature Nanotechnology, 11, 986-994. <u>https://doi.org/10.1038/nnano.2016.168</u>