"‘0 Scientifi Applied Mathematics, 2018, 9, 448-458
cientific ) ) )

‘ ‘: Research http.//www.SC|rp.?rg/Journal/am
94% Publishing ISSN Online: 2152-7393
* ISSN Print: 2152-7385

Comparison between the Laplace
Decomposition Method and Adomian
Decomposition in Time-Space Fractional
Nonlinear Fractional Differential Equations

Mohamed Z. Mohamed!?, Tarig M. Elzaki?*

'"Mathematics Department, Faculty of Sciences, Sudan University of Science and Technology, Khartoum State, Sudan
Mathematics Department, Faculty of Sciences and Arts-Alkamil, University of Jeddah, Jeddah, Saudi Arabia
Email: Lesha-83@hotmail.com, *Tarig.alzaki@gmail.com

How to cite this paper: Mohamed, M.Z.  Abstract

and Elzaki, T.M. (2018) Comparison be-

tween the Laplace Decomposition Method ~ Lhe aim of this paper is to discuss application of Laplace Decomposition Me-
and Adomian Decomposition in Time-Space ~ thod with Adomian Decomposition in time-space Fractional Nonlinear Frac-
Fractional Nonlinear Fractional Differential  tjonal Differential Equations. The approximate solutions result from Laplace
Equations. Applied Mathematics, 9, 448-458.

' Decomposition Method and Adomian decomposition; those two accessions
https://doi.org/10.4236/am.2018.94032

are comfortable to perform and firm when to PDEs. For caption and further

Received: March 15, 2018 representation of the thought, several examples are tool up.

Accepted: April 27,2018

Published: April 30,2018 Keywords

Copyright © 2018 by authors and Laplace Decomposition Method, Mittag-Leffler Function, Partial Fractional
Scientific Research Publishing Inc. Differential Equation

This work is licensed under the Creative

Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/ 1. Introduction

Recently, research has shown that numerous phenomena in fluid mechanics,
viscoelasticity, biology, physics, engineering and other field from knowledge
mastery are successfully modeled by the use of FPDEs.

Researchers developed numerous methods to resolve FODEs, integral equa-
tions and fractional partial differential equations of physical interest. The flow-
ing is an illustration of several of the generality used ones; ADM [3] [4] [5] [6],
VIM [7], FDM [2], DTM [9], HPM [8]. Among the already mentioned ones, the
decomposition method stood up as efficient, easy and accurate in solving a great
group of linear and nonlinear ordinary, partial, deterministic or stochastic diffe-
rential equations. This method is fully appropriate to physically solve problems,
some time ago it did not request superfluous linearization, and other bound

methods and postulate whom may vary the problem being solved [10] [11]. The
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LDM is a numerical algorithm to solve NODEs and PDEs. Khuri [13] [14] de-
veloped this method for the sacrificial solution of a class of NODEs. These nu-
merical technique styles ultimately clarify how the Laplace Transform suppo-
sedly is utilized to sacrifice the solutions of the nonlinear differential equations
by impacting the Decomposition Method that was initially before Adomian.

2. The Definitions of Fractional Calculus and Laplace
Transform

Definition 2.1 Aral function f(¢),z>0 is said to be the space C,,ueR, if
the there exists a real number p>u such that f(1)=¢"f(¢), where
£i(1)eC[0,0), clearly C, =C, if B<u.

Definition 2.2 The left sides Riemann-Liouville fractional integral operator of
order v>0 ofa function f(t) €C,,pu2—1 isdefined as [1]-[15]

I(f—f)ﬂf(é)df v,t>0,
f(t) v=0.

Definition 2.3 The left sided Caputo fractional derivative of £
feCf"l,meNu{O} is defined as [1]-[15]

Jf(t)= (2.1)

an(t) J{%m(t)}, m—1<v<m,meN,
D' f(1)=—=—+= (2.2)
ot amf(l)
v=m.
ot"
Hence, we have the following properties [1]-[15]
1. J”J“f(t)=J"+“f(t), a,v>0.
2.0 :MIW, a>0, y>-1, t>0. (2.3)
C(v+y+1)
m-1 k
3.0 f(0)=f(1)-2 /" (o*)— t>0,m—1<v<m
=0 !

Definition 2.4 If m—1<v<m,meN, then the Laplace transform of the
fractional derivative D) f (t) is

m-1

L[Dif()]=s"F(s)- X fY(07)s*, >0, (2.4)

k=

o

where F(s) be the Laplace transform of f(7) [1][2] [3].
Definition 2.5 The Mittag-Leffler function E,(r) with v>0 is defined by
the following series representation, valid in the whole complex plane [2]

E,(t) :zw(‘; (4.5)

F(kv+1)

3. The Main Idea of Fractional Laplace Decomposition
Method

In this section the class of Nonlinear Fractional Differential Equation is consi-
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dered.
Dvu(x,t)+Ru(x,t)+Nu(x,t)=f(x,t), x,t>20,m-1<v<m. (3.1)

v

where D' =

the Caputo fractional derivative of is order v,m e N , where R

is a linear operator, N is a nonlinear function and fis the source function. The

initial and boundary associated with Equation (3.1) are of the from

u(x,O):h(x), 0<v<l, t>0, (3.2)
And
a”(a’;’o)=k(x), 1<v<2, >0, (3.3)

According to the Applying of the Laplace transform to Equation (3.1) and the

use of linearity Laplace transform, the result is
L [Dvu (x, t)} +L [Ru (x,t) + Nu (x, t)] =L [f(x, t)} , (3.4)
when the property of Laplace transform is used, we get

svu(x,s) —s"u (x,O) - sv’zut (x,O) = L[f(x,t)] —L[Ru (x,t) + Nu(x,t)], (3.5)

u(x,s) = M-i—@—i-siv[f(x,t)] —S—LV[Ru(x,t) + Nu(x,t)], (3.6)

N

Stander Laplace decomposition defines the solution u (x,t) before the series

0

u(x,t)zZun (x,t) (3.7)

n=0

The Nonlinear operator is decomposed as follows:

Ms

A (3.8)

n

Nu(x,t) =

1l
<

See A4, the Adomian polynomial that are given by
1 d"

A N wﬂiu. , n=12,--. 3.9
\ n!w{ (Z JL (3.9)

Substitution Equation (3.7), Equation (3.8) and Equation (3.9) to Equation
(3.6), we have

iun(x,S):h(x)+k(zx)+S£v[f(x,t)]—§[R;zoun(x,t)+iAn}, (3.10)

N n=0

=

i
(=]
[

when both sides of Equation (3.10) are matched, the following iterative algo-

rithm is yielded:

uo(x,s)=h(x)+k(x)+§[f(x,t)]=g(x,s) (3.11)

s s’
L L
u(x,s) = ——v[Ru0 (x.0)+ AOJ, u, (x,s)= ——V[Ru1 (x,0)+ AIJ (3.12)
s s

Generally, the recursive relation is given as follows
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unﬂ(x,s):—%[l?un (x,t)+AJ, n>1 (3.13)

When the inverse Laplace transform Equation (3.13) is applied, the following

is obtained

u, (x,t) = g(x,t) (3.14)
unﬂ(x,t):—[l [%[Run (x,t)+An:|:|, n>1 (3.15)
s

where g(x,¢) is a function that arises from the source term and the prescribed
initial condition, the initial solution is important, the choice of Equation (3.15) as

the initial solution always leads to noise oscillation during the iteration procedure.

4. Numerical Results

To show the method of coupled fractional nonlinear partial differential equa-
tions, three examples are considered in this section.
Example 1 Consider the nonlinear time-fractional advection partial differen-

tial equation [11].
D'u, (x,t)+u(x,t)u)C (x,t) =x+xt*, t>0,0<v<1, (4.1)

The initial condition is subject to:
u(x,t):O, (4.2)
When the Laplace transform is applied to both sides of Equation (4.1) the fol-
lowing is yielded.
$'u (x, s) — ¢y (x, 0) +L [x + xtz] +L [u (x,t)ux (x,t)} (4.3)

By using the initial condition, the following recurrence relational is yielded

u(x,s):i-i-z_x ! L[u(x,t)ux (x,t)} (4.4)

Sv+l Sv+3 - s_v

Applying the inverse Laplace transform, to both sides of Equation (4.4) yields:

X v 2x

u(x,t) _ r(v+1)t + r(v+3) P {SI_VL[u(x,t)ux (x,t)]:l (4.5)

The LDM proposes a series solution of the function u(x,7) which is given

series Equation (3.7) and using Equation (3.7) into Equation (4.5)
2x

- X v v+2_ -1 L -
I LL[ZAH (46)

In above Equation(4.6) is Adomian polynomials that represents nonlinear

terms. The few components of Adomian polynomials
Ay = gty
A =g + g,
Ay =g 1y + 1y Uy + Uy Uy

Ay = U Uy + Uy Uy + Uy Uy U Uy
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Then following recurrence relations, we have

X . 2x
v+1) F(v+3)

tv+2

7 (x,t)= F(

|

n=0

Consequently
u, (x,t) =-L" {%L{g%ﬂ
B xF(2v+1) . 4xF(2v+3) I
T ()T (3v+1) T(v+1)T(v+3)T(3v+3)
4xF(2v+5) —
T2 (v4+3)T(3v+5)
u, (x,t)=-L" LLVL{:ZOAIH
3 2xF(2v+l)F(4v+l) 5
_F3(v+l)F(3v+l)F(5v+l)t
8xF(2v+3) 4xF(2v+3) F(4v+3) Svia
—{Fz(v+1)F(v+3)F(3v+3)+F(V+I)F2 (v+3)1"(3v+3)}1"(5v+3)t
8xI"(2v+5) 16xI"(2v+3) L(4v+5) .4
+{r(m)rz (v+3)F(3v+5)+F(v+1)F2(v+3)F(3v+3):|F(5v+5)t

16xF(2v+5)F(4v+7)
T (v+3)T (345D (5v+7)

S5v+6
t

The third term approximating a solution to Equation (4.1) gives the following:
T'(2v+1
u(x,t) = ————1" + Xy 5 < (2v+1) £

F(v+1) F(v+3) r (v+1)F(3v+l))

~ 4xI" (2v + 3) e 47)

F(v+1)F(v+3)F(3v+3)

4xF(2v+5)
I (v 3)T (3v+5)

3ved L

Example 4.2 Consider the nonlinear time-fractional hyperbolic equation [16].
Dvut(x,t):ai[u(x,t)ux (x,t)}, t>0,1<v<2 (4.8)
X
The initial condition is subject to:
u(x,t)=x2, u,(x,t)=—2x2 (4.9)

When the Laplace transform is applied to both sides of Equation (4.8) the fol-
lowing is yielded.
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u (x,s) — 5"y (x, 0) + s”'zu, (x, O) +L [;[u (x, t)ux (x,t)ﬂ (4.10)
x
By using initial conditions, the following recurrence relational is found

u(x,s):x_2_¥+siv[a—ax[u(x,t)ux (x,t)ﬂ (4.11)

N N

When the inverse Laplace transform, is applied, to both sides of Equation
(4.11) the following is yielded:

u(x,t)=x"-2x° + L LL[ [u(x.t)u (xt)}ﬂ (4.12)

The LDM the LDM proposes a series solution of the function u(x,¢) which
is given series Equation (3.6) and using Equation (3.6) into Equation (4.12)

iu"(x,t)=x2—2xt +L [ { {ZA m (4.13)

n=0

In above Equation (4.13) Adomian polynomials represent nonlinear terms
N =uu_. The few components of the decomposition series are derived as fol-

lows:

uy (x,1) = x> = 2x’t

v v+l v+2
(1) = 6x2( t 4 8 J

F(vil) T(v+2) T(ve3)

2v t2v+1
) =72x" -4
() =72 [r(3v+1) r(2v+2)
2v+l 2v+3
F(v+1)t 16 (v+4) J

F(2v+4)F(v+l) F(2v+4 v+3

2 1 V+3 e
+72x°| 8 +8
F(2v+3) F(2v+3 v+2

Example 4.3

Consider a system of nonlinear coupled with partial differential equation [16].
D'y, (x,y,t) +vw, —vw, =-u (4.14)

DYy, (x,y,t) twau, tuw, =v (4.15)

D'w, (x,y,t) tuy, tuy =w (4.16)

The initial condition is subject to:

u (x,y, 0) =" (4.17)
v(x, y,O) =e"7 (4.18)
w(x, y,()) =e (4.19)

When the Laplace transform is applied the both sides of [Equation (4.14), Eq-
uation (4.15) and Equation (4.16)] through using the initial condition, the fol-
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lowing recurrence relational is yielded

xX+y
u(x,y,s)= es _Sia[vxwy —v,wW, —u] (4.20)
x-y
v(x,y,8)= - +S£/,[v—wxuy —uw, | (4.21)
—x+y L
w(x,y,s) = . +S—#[w—uxvy —uyva (4.22)

Through applying inverse Laplace transform to both sides of [Equation (4.20),
Equation (4.21) and Equation (4.22)] we can yields.

o L
u(x,y,t)=e""-L I[S_a[vxwy -V, W, —u:|:| (4.23)
v(x,y,t)=e""+L" |:S£ﬁ[v— W, —uW, :@ (4.24)
w(x, y,t) —e Y ) [Siﬂ[w—uxvy —uyvxﬂ (4.25)

The LADM assumes a series solution of the function u(x,r) which is given
series Equation (3.6) and through using Equation (3.6) into [Equation (4.23),
Equation (4.24) and Equation (4.25)] yielding.

S (ron)=e 1| LIS (o) 56, () || 120

n=0 n=0 n=0

S (vat) e + I Li,{v S H (uw)-3 1, (u,w)ﬂ (427)

n=0 n=0 n=0

iWn (x, y,t) ey |:£”|:Wn —iJ" (u,v)—il(" (u,v):H (4.28)
n=0 N n=0 =0

n

where  F, (v,w),G,(v,w),H,(v,w),I,(v,w),J,(v,w) and K,(v,w) are
Adomian polynomials they represent nonlinearities arising in above system
[Equation (4.26), Equation (4.27) and Equation (4.28)] of nonlinear coupled
partial differential equations. The components of above Adomian polynomials
are given below

) (V9 W) = Yoy Wox

F (v’ W) = Vi, Wor T Vo, Wix

F, (v, w) =V, Wy, H VW, TV, W, (4.29)

o0
F;l (v’ W) = Zviywnflx
i=0

G, (v, w) = Vo Wo,
Gl (V’ W) = leWOy + VOxwly

G, (v, W) = Vo, Wy, VW, + vy Wy, (4.30)

o0
Gn (V, W) = zvianfly
i=0
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H, (v, w) = Wy, Uy,
Hl (V’ W) = Wlxu0y + WOxuly

H, (v, w) =Wy, + Wy, + Wy Uy,

[1 (V, W) = wly”Ox + WOyulx

I, (v, w) =Wy, Uy, + Wy + W,y U

L,(v.w)= anu

Jo (v, w) Uy Vo,
w)=

ulxv0y + quVly

<

—

=

S
I

quVZy + ulxvly + uZXVOy

J, (viw) = Z%nu

Ky (vow) =1, v,
K] (V, W) = uIyVOx + uOyle

K, (v, w) =y Vo, F ULV U Y,

Kn (V,W) Zuly n-1x

The following recursive relation is obtained:

u, (x, y,t) =", u,, (x,y,t)

=L Lia{iF (v,w)—g)Gn (V’W)—”nﬂ

n=0

Vo (x y,t) =", v, (x,y,t)

{ S, (1)1 )|

(vow) - uOJ:|

yWox ~ VoxWo, ~Uo :I}

xX+y

e

" |
&,y (xo04) [ S SK,

[

[

[

hlt\ Mlhhlh

(4.31)

(4.32)

(4.33)

(4.44)

(4.35)
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AL
v (xp,t)="L" s_ﬂ[vo —Hy(u,w)—1, (u,w)]}
S L, R B A e B Y
- s_ﬁ[e =t o, —t W, | =1 l[s_ﬂ[e yﬂ - r(/m)t
L
w(x,p,0)="L" = [wo =y (u,v) - K, (u,v)ﬂ
_ i L Cx+ - L —x+ ei)ﬁy )
:Ll_s# [e }_uoxVOy uOyvox] _Ll|:Sy[ y]jl F(ﬁ+l)t
u, (x,y,t)=L" {_[E (v,w)=G, (v,w) —ul]}
L ex+y ex+}
— L—l = ta _ t2a
s [F(a+1) :H I'(2a+1)
gl L
v, (x,y,t) =L L—ﬂ[vz -H, (u,w)—12 (u,w)ﬂ
_ L_1 i ex—v tﬂ _ ex—y 25
sP|T(B+1) r(2p+1)
gl L
wy (x,y,0)=L" L_ﬂ[w] —J(u,v)-K, (u,v)ﬂ
L efx+y e—x+y
=L'|— = I
|:s" l:l“(,u—i-l) H F(2,L1+1)
So the expected solutions are as follows:
u(x,p,t) =3 u,(x,.)
n=0
X+y ex+y
— o ty a 2a
© T+ T(a+)
p e (4.38)
— "
¢ { "Ta+l) T(2atl) }
© tka
= L)
The solution in a closed form is given as
=eE, (1) (4.39)
v(x,p,t) = v, (x1.1)
n=0
e e
— ¥y P LA
r(p+n) repe T
y e (4.40)
=e" |1+ + 4o
L(p+1) T(28+1)
= 1
=e
= F(kﬂ+l)
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The solution in a closed form is given as

=eE, (") (4.41)

w(x,y,t) = an (x,y,t)
n=0

—x+y —x+y

: e
— o ¥ty t/l tZy
T TTeary)
y 2 (4.42)
— e_X+}, 1 + + + s
F(,u+1) F(2,u+1)
s
= 7
k=0 T (kﬂ + 1)
The solution in a closed structure is given as
=e"E, (1) (4.43)

5. Conclusion

In this treatise, Laplace decomposition method has been successfully used to

solve the approximate solution of nonlinear PFDEs (see Table 1 and Table 2).

Table 1. Numerical values for Equation (4.1) [11].

v=0.5 v=0.75 v=1
t x exact
LDM ADM LDM ADM LDM ADM

0.2500 0.11276 0.112844  0.07878 0.078787  0.050000  0.050000  0.05000

0.5000 0.22553 0.225688  0.15756 0.157574  0.100000  0.100000  0.10000
0.2

0.7500 0.33829 0.311249  0.23635 0.236361  0.150000  0.150001  0.15000

1.0000 0.45106 0.451375  0.31513 0.315148  0.200000  0.200001  0.20000

0.2500  0.162261  0.164004 0.128775  0.128941  0.100011  0.100023  0.10000

0.5000  0.324523  0.328008 0.257550  0.128941  0.200022  0.200046  0.20000
0.4

0.7500  0.486785  0.492011 0.386326  0.386821  0.300033  0.300069  0.30000

1.0000  0.649047  0.656015 0.515101  0.515762  0.400045  0.400092  0.40000

Table 2. Numerical values for Equation (4.8) [16].

v=0.5 v=0.75 v=1
t x exact

LDM LDM LDM

0.25 0.059283 0.048701 0.043395 0.043403

0.50 0.237132 0.194804 0.173580 0.173611

02 0.75 0.533549 0.438311 0.390555 0.390625

1.0 0.948531 0.779219 0.694321 0.694445

0.25 0.065411 0.043748 0.031566 0.031887

0.50 0.261647 0.174992 0.126267 0.127551

04 0.75 0.588706 0.393732 0.284102 0.286989

1.0 1.046589 0.699968 0.505071 0.510204
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The solutions of these examples of methods are utilized for the solution of

high-order initial value problems.
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