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Abstract 
The Artificial Bee Colony (ABC) is one of the numerous stochastic algorithms 
for optimization that has been written for solving constrained and uncon-
strained optimization problems. This novel optimization algorithm is very ef-
ficient and as promising as it is; it can be favourably compared to other opti-
mization algorithms and in some cases, it has been proven to be better than 
some known algorithms (like Particle Swarm Optimization (PSO)), especially 
when used in Well placement optimization problems that can be encountered 
in the Petroleum industry. In this paper, the ABC algorithm has been mod-
ified to improve its speed and convergence in finding the optimum solution to 
a well placement optimization problem. The effects of variations of the con-
trol parameters for both algorithms were studied, as well as the algorithms’ 
performances in the cases studied. The modified ABC (MABC) algorithm 
gave better results than the Artificial Bee Colony algorithm. It was noticed 
that the performance of the ABC algorithm increased with increase in the 
number of its optimization agents for both algorithms studied. The modified 
ABC algorithm overcame the challenge posed by the use of uniformly gener-
ated random numbers with very rough NPV surface. This new modified ABC 
algorithm proposed in this work will be a great tool in optimization for the 
Petroleum industry as it involves Well placements for optimum oil produc-
tion. 
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1. Introduction 

Well Placement has to do with the positioning of wells in the reservoir so as to 
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produce from it. Optimality comes in when the wells so placed are positioned in 
the best locations in the reservoir and operated with the most effective controls 
to maximize production from it and minimize or postpone problems associated 
with hydrocarbon production [1]. 

Well placement is one of the most crucial decisions to be made during field 
development as it directly affects production from the reservoir and hence the 
economics of the project at hand [2]. More fluid will be produced from the re-
servoir if wells are placed in regions with higher Net Present Value (NPV) of in-
vestment or alternatively, Cumulative Production (of oil and/or gas) from the 
reservoir [3]. 

Optimizing well placement involves the determination of the optimum num-
ber of wells, the rate at which to produce these wells, the location to place the 
wells and the trajectory of the wells in order to maximize hydrocarbon recovery, 
postpone water production, and extend well life [4]. 

Recently, the Petroleum industry has focused more attention on well place-
ment due to: increased demand for hydrocarbon, the rising cost of producing 
from newly discovered or mature oil and gas fields and rising need to produce 
maximum recovery from reservoirs with minimal cost [5]. 

As reservoir and fluid behavior vary with time, coupled with the complex na-
ture of some reservoirs, it is eminent not to rely on engineering judgment alone, 
thus the need for the optimization algorithm used in this study to aid improve 
engineering judgment [6]. 

In this study, only the Well location was optimized using the already existing 
ABC algorithm and the derived modified ABC algorithm (MABC) and their 
performances compared. Other criteria such as number of wells, trajectory and 
control of the wells were not considered. 

2. Methodology 
2.1. Algorithm 

Algorithms are step-by-step procedures for solving optimization problems. 
These algorithms help to automate the otherwise cumbersome process of ma-
nual Well placement by performing direct or stochastic searches to optimize 
Well placement [7].  

Numerous optimization algorithms have been developed to solve Well place-
ment problems. Amongst them are: Particle Swarm Optimization (PSO), Genet-
ic Algorithm (GA), and Simulated Annealing (SA). These algorithms are either 
used in their pure form or modified/hybridized in a way to improve its accuracy 
and/or speed. Minton [8] gave a comprehensive review of the most common op-
timization tools used to optimize Well placement in the Petroleum industry. 

2.2. ABC Algorithm 

Artificial Bee Colony (ABC) algorithm is a new optimization algorithm that 
mimics the foraging behavior of honey bees in their hives. It is essentially com-
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posed of three types of bees namely; employed, onlooker, and scout bees per-
forming distinct functions [9]. 

The employed bees (foragers) are associated with specific food sources: Food 
sources are defined as potential solutions to the problem under consideration. 
Their responsibility is to exploit a particular food source, store information; po-
sition and nectar quality (fitness), about the food source and communicate same 
to other bees in the hive. Additional to this responsibility is the perturbation 
(generation of a trial solution around the neighborhood) of the current food 
source and the evaluation of the new (perturbed) food source’s fitness value. If 
the fitness of the perturbed solution is better than that from which it was 
formed, then the new solution replaces the old one in the memory of the forager 
else the new food source is perturbed until the specified “limit” is reached after 
which it is abandoned and a new solution generated. This is a greedy-selection 
scheme [9].  

The onlooker bees calculate the probability of choosing a food source based 
on the food source’s fitness quality. The probability values Pi for the solutions xi 
are calculated and normalized into [0, 1] by means of their fitness values using 
Equation (1) 
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=
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where fiti is the fitness value of solution xi. 
Fitness values of solutions are calculated using Equation (2). 
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Here, fi is the value of the objective function for solution xi.  
Upon choosing the best food source, this food source is memorized and a new 

trial solution is generated using Equation (3) by the onlooker bee around the 
neighborhood of this best solution. 

( ) ( ) [ ] ( ) ( )( ), , 1,1 , ,v i j x i j rand x i j x k j= + − −              (3) 

Here, ( )1,2, ,j D∈ �  and ( )1,2, ,k SN∈ �  where (k ≠ i) are randomly gen-
erated indices and rand [−1, 1] is a random number in the range [−1, 1], which 
works as a scaling factor. SN is the population or colony size and D is the di-
mension of the of the optimization problem.  

Finally, these bees carry out the greedy selection as described under employed 
bees. 

The scout bees are tasked with the responsibility of generating a new food 
source to replace a food source which could not be improve after a pre-determined 
number of trials called “limit”. In practice, the limit is estimated via the 
following expression: 

limit ec n D= × ×  
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where ne is the number of unemployed bees; c is a constant coefficient with a 
recommended value of 0.5 or 1 [10]. The new solution is generated within the 
entire search space. 

With such combination of responsibility, it is impossible for ABC to get stuck 
in local optima like other optimization methods as the particular task of the 
scout bee guards against this. This makes the ABC algorithm very promising.  

The intelligence of the swarm lies in the networks of interactions among these 
simple agents, and between agents and the environment. The initial solutions in 
ABC are usually randomly generated and improved upon in the course of the 
optimization. Equation (4) is used to generate the initial solutions. 

( ) ( )j i i ix i LB UB LB r= + − ×                    (4) 

where r ~ (0, 1) is a random number between 0 and 1. 
In the procedures above, it is presumed that an onlooker bee whose food 

source has sufficiently depleted, or cannot be improved after reaching the speci-
fied limit becomes a scout bee. Also, the number of employed and onlooker bees 
equals the colony size. 

The general procedure for the operation of ABC is summarized by Bolaji et al 
[11] while the pseudo code for the implementation of ABC is outlined in the 
ABC official website. 

So far, the great potential of the ABC algorithm has only been exploited by 
two researchers in the Petroleum industry namely; Nozohour-leilabady and Fa-
zelabdolabadi [7], who used it to optimize well placement, and Irani and Nasimi 
[12], who used it to train neural network for bottom hole prediction in underba-
lanced drilling. 

2.3. Modification of ABC (MABC) Algorithm 

The following modifications were made on the ABC algorithm to improve its 
performance. 

Dealing with Out-of-Boundary-Point 
Due to the stochastic nature of the ABC algorithm, it, at some point generates 
new solutions that are outside the search space (i.e. the defined boundaries of the 
problem). The default way of dealing with this problem is to place such points 
(solutions) at the boundary (upper or lower as the case may be) of the search 
space. This method is not very effective for the following reasons: 

1) It leads to the repetition of points that may have been visited already. Thus 
increasing the time, it would take the algorithm to locate the optimum solution. 
In extreme cases, this repetition inhibits the algorithm from finding the global 
maximum solution [13]. A mathematical method was therefore developed to in-
hibit this undesired behavior. 

2) It may result in the duplication of a location of an already existing Well. 
This situation mimics production from a dual Well (in the case where two pro-
ducing Wells are placed at the same point) or a case of simultaneous fluid injec-
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tion and hydrocarbon production (SWAG or WAG) from a single Well where a 
producer and an injector Well are placed at the same point. These are not situa-
tions we want to mimic. To solve this problem, a database consisting of the Well 
location and its performance (i.e. the NPV of the Well at that location) is gener-
ated for each location suggested by the algorithm and updated with each call by 
the algorithm to the simulator. It is ensured that no location is visited more than 
once. This is accomplished by comparing the randomly generated locations with 
the points existing in the database. This method is similar to the kriging proxy 
employed by some researchers [6] [14] [15]. The exception is that, the database 
of points (proxy) in our case is not used to replace the simulator when estimat-
ing for un-simulated points as is done with the kriging proxy. Also, in kriging 
proxy, the proxy is not used to restrict the algorithm from visiting already scru-
tinized points [6]. 

3) The minimum Well spacing imposed on the algorithm may not be ho-
noured resulting in inefficient exploitation of the reservoir. To deal with this 
problem, a minimum spacing of 3-cells in-between wells was imposed on the 
algorithm. This ensures that the Wells are at least 3-cells (i.e. 900ft apart as our 
reservoir model is 300 × 300 ft in dimension). The choice of the minimum spac-
ing in-between Wells was arbitrary. This restriction also ensures that no two 
Wells are placed on the same cell, thus averting the situations described above 
under out-of-boundary-points. 

4) In the course of the improvement of a solution, ABC generates trial solu-
tions which sometimes exceed the bounds of the search space. The default way 
of dealing with this problem is by placing such points at the boundary of the 
search space. There are other better ways of dealing with this problem. The me-
thods as stated by Nozohour-leilabady and Fazelabdolabadi [7] included the Pe-
riodic Boundary Condition (PBC) and Reflective Boundary Condition (RBC). 

PBC is made to simulate a continuous infinite system and cannot be used to 
obtain the topology of a sphere with a regular lattice of arbitrary size whereas 
RBC is best suited for boundaries where the system to be simulated also has a 
well-defined boundary [16]. As a result of the foregoing and coupled with the 
fact that RBC consistently lead to faster convergence than PBC, RBC was applied 
to handle out-of-boundary points in this study.  

2.4. Reservoir Description—A Hypothetical Case Study 

The model used in this study was made up of 30 × 30 × 10 grid cells 300 × 300 × 
20 ft. in dimension. The phases present were oil, water, gas and dissolved gas. 
Porosity values were 0.087, 0.097, 0.111, 0.16, 0.13, 0.17, 0.17, 0.08, 0.14, and 0.13 
for the ten layers respectively. The reservoir top layer was at 5000 ft with the 
gas-oil contact (GOC) at 4500 ft, water-oil contact (WOC) at 5500 ft, while the 
datum depth was at 5040 ft. The initial pressure of the reservoir was 4000 psi, 
rock compressibility was 4E−6, Oil density = 49.94 lbf/cuft, water density = 
62.43 lbf/cuft and gas density = 0.061 lbf/cuft. The permeability was randomly 
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generated as described in the “Test Case” section. The X-permeability was equal 
to the Y-Permeability with the Z-Permeability roughly 1/100th of the 
X-Permeability. Eight producing wells all perforated from the 2 - 4th layer and 
two injector wells perforated from the 8-10th layer are to be placed in the field. 
Water was to be injected at the rate of 5000 bbls/day through the injector wells 
while oil was produced at the rate of 1500 bbls/day from each producing well. A 
minimum oil rate of 100 bbl/day and a maximum water cut of 95% were speci-
fied for the model. The simulation was run for 3600 days (10 years) [17]. The 
petrophysical properties of the model were shown in Figure 1(a) and Figure 
1(b) and Figure 2. 
 

 
(a) 

 
(b) 

Figure 1. (a) Permeability distribution in the reservoir for Case 1; (b) Permeability dis-
tribution in the reservoir for Case 2. 
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Figure 2. Porosity distribution in both reservoirs. 

2.4.1. Test Cases 
Two scenarios were tested. The first, herein referred to as “Case 1” was a model 
in which the permeability was generated from uniform random numbers using 
the “unifrnd” keyword in the MATLAB software [18]. 

The second case used normally distributed random numbers (MATLAB key-
word is “normrnd”) to generate permeability for the model. This case was herein 
referred to as “Case 2”. 

The cases used herein were similar to that described in Example 1 of the pub-
lication by Nozohour-leilabady and Fazelabdolabadi [7]. 

2.4.2. Objective Function Development 
The objective function optimized was the Net Present Value (NPV). Nozo-
hour-leilabady and Fazelabdolabadi [7]. It was defined mathematically as can be 
seen in Equation (5). The data used for the NPV calculation is given in Table 1.  

( )1
NPV CAPEX

1 ROI

T
o o g g w w wi wi

t
t

P Q P Q P Q P Q

=

 × + × − × − ×
 = −
 + 

∑      (5) 

The case 1 presents a great challenge for any optimization algorithm as the 
permeability values so generated vary greatly for each cell thus making the over-
all petrophysical property of the reservoir complex and the determination of the 
optimum well location cumbersome. This can be seen from the NPV surface plot 
as shown in Figure 3. 

The assumption made in this paper was that the reservoir properties were 
completely known, thus, there was no need to study the effect of the variation of 
these properties on the performance of the algorithm. Our ABC code was writ-
ten and implemented in MATLAB a proven sophisticated statistical tool well 
known in the researchers. 
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Figure 3. NPV of solutions as a function of the number of optimization runs for ABC 
(blue curves) and MABC (red curves). Thin lines correspond to individual runs, while 
thick lines represent averages over the three runs. 
 
Table 1. Data for NPV calculation [13]. 

Description Cost ($) 

Pg 22 

Po 52 

Pwi 3 

Pw 3 

ROI 10% 

CAPEX 5,000,000 

3. Results of Optimization Runs 

The Starting point dependency, effect of swarm size, and number of optimiza-
tion cycles were investigated. For the starting point dependency, the optimiza-
tion runs were attempted from several random staring points. Effect of swarm 
size and optimization cycles are as shown in Figure 1(a) and Figure 1(b). The 
results so shown were those obtained for placing ten vertical Wells in the reser-
voir.  

To enhance accuracy, each specific case was ran for 3 times, and the average of 
the three results obtained at a given swarm size/maximum optimization cycles 
was recorded as shown in Figure 3.  

The results obtained in Figure 4(a) and Figure 4(b) showed that both algo-
rithms were not affected by starting point dependency. However, the modified 
ABC (MABC) had consistently out-performed the ABC algorithm even when it 
began with very low points as can be seen in Figure 4(a) and Figure 4(b). 

For each of the cases tested, optimization of the x and y-coordinates only were 
considered with the assumption that the layers to be perforated are already 
known. The entire NPV surface can therefore be constructed by placing a single 
well in the model and performing 30 × 30 reservoir simulations. Figure 5(a) and 
Figure 5(b) shows the result so obtained. 
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(a) 

 
(b) 

Figure 4. (a) Algorithm performance for case 1; (b) Algorithm performance for case 2. 
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(a)                                      (b) 

Figure 5. (a) NPV surface plot for case 1; (b) NPV surface plot for case 2. 

4. Conclusions 

If the reservoir is to be optimally exploited and maximum profit derived there 
from, wells need not to be haphazardly placed but targeted for the most produc-
tive zones of the reservoir. The problem in doing this is how to determine the 
most productive zone in the field, so as to place the wells. 

In the work thus presented, it can be concluded that the modified ABC algo-
rithm is a better optimizer than the ABC algorithm based on the results ob-
tained. 

The modified ABC algorithm holds a better promise due to its faster conver-
gence as it does not repeat points which otherwise would extend the time needed 
to locate the Global maximum solution. 

Precise well placement improves the long term and short term performance of 
the Wells. 
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