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Abstract 

At present, although the human speech separation has achieved fruitful re-
sults, it is not ideal for the separation of singing and accompaniment. Based 
on low-rank and sparse optimization theory, in this paper, we propose a new 
singing voice separation algorithm called Low-rank, Sparse Representation 
with pre-learned dictionaries and side Information (LSRi). The algorithm in-
corporates both the vocal and instrumental spectrograms as sparse matrix and 
low-rank matrix, meanwhile combines pre-learning dictionary and the recon-
structed voice spectrogram form the annotation. Evaluations on the iKala da-
taset show that the proposed methods are effective and efficient for singing 
voice separation. 
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1. Introduction 

Separating singing voice from music recording is very useful in many applica-
tions, such as music information retrieval, singer identification and lyrics recog-
nition and alignment [1]. Although the human auditory system can easily dis-
tinguish the vocal and instrumental of music recording, it is extremely difficult 
for computer systems. In this context, researchers are increasingly concerned 
with the mining of music information. Many algorithms have been proposed to 
separate singing voice from music recording. 

Robust Principal Component Analysis (RPCA) is a matrix factorization algo-
rithm for solving underlying low-rank and sparse matrices [2]. Suppose we are 
given a large data matrix M, and know that it may be decomposed as X A E= + , 
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where A is a low-rank matrix and E is a sparse matrix. Based on RPCA, Huang et 
al. [3] have separated singing-voice from music accompaniment. They assumed 
that the repetitive music accompaniment lies in a low-rank subspace, while the 
singing voices can be regarded as sparse within songs. The main drawback to 
this approach is that it is completely unsupervised, just based on the particular 
properties of each individual components to guide the decomposition. After, Yu 
et al. [4] utilized any pre-learned information and pre-learned universal voice 
and music dictionaries from isolated singing voice and background music train-
ing data. They proposed Low-rank and Sparse representation with Pre-learned 
Dictionaries (LSPD) for singing voice separation. Chan et al. [5] proposed a 
modified RPCA algorithm. This work represented one of the first attempts to 
incorporate vocal activity information into the RPCA algorithm, then the vocal 
activity detection was widely studied [6] [7]. Chan et al. [8] proposed to separate 
singing voice by group-sparse representation with the idea of pitch annotations 
separation. 

In this paper, we present a model named Low-rank, Sparse representation 
with pre-learned dictionaries and side information (LSRi) under the ADMM 
framework. First, we pre-learn voice and music dictionaries from isolated sing-
ing voice and background music training data, respectively. Then, we use a 
sparse spectrogram and a low-rank spectrogram to model the singing voice and 
the background music, respectively. Outside, a residual term is added to capture 
the components that are not well modeled by either the sparse or the low-rank 
term. Finally, we combine the reconstructed voice spectrogram from the vocal 
annotation. Evaluations on the iKala dataset [9] show its better performance 
than comparison methods. 

The rest of this paper is organized as follows. The overview of the music anal-
ysis model is presented in Section 2. The description of theoretical knowledge 
and experimental results are presented in Section 3. Final Section concludes this 
work. 

2. The Proposed Method 

Before we come up with our method, let’s review the Low-rank and Sparse re-
presentation with Pre-learned Dictionaries (LSPD) method [4],  

1 2
1 1 2 2* 1 1,

1 1 2 2

min

. .
Z Z

Z Z E

s t X D Z D Z E

λ λ+ +

= + +                     
(1) 

where X is the input spectrogram, 1
1

m kD R ×∈  is a pre-learned dictionary of the 
music accompaniment, 2

2
m kD R ×∈  is a pre-learned dictionary of the singing 

voice, 1 1D Z  is the separated instrumentals, 2 2D Z  is the separated voice. E de-
notes the residual part. 1 2,λ λ  are two weighting parameters for balancing the 
different regularization terms in this model. 

Compared with the unsupervised RPCA algorithm, the LSPD algorithm adds 
pre-learning dictionary information and improves the separation quality. To 
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further improve the separation quality of singing voice and music accompaniment, 
we proposed Low-rank, Sparse Representation with pre-learned dictionaries and 
side Information (LSRi). 

In our model, we considered more prior information i.e., the reconstructed 
voice spectrogram from the annotation. Model as follows,  

1 2

2
1 1 2 2 2 2 0* 1 1,

1 1 2 2

min
2

. .  

FZ Z
Z Z E D Z E

s t X D Z D Z E

γ
λ λ+ + + −

= + +             

(2) 

Here all parameters in model 2 are in accordance with model 1, and 0E  de-
notes the reconstructed voice spectrogram from the annotation. 

F⋅  denotes 
the Frobenius norm. In the following, we also use the ADMM algorithm [10] to 
solve the optimization problem, by introducing two auxiliary variables 1J  and 

2J  as well as three equality constraints,  

1 2 1 2

2
1 1 2 2 2 2 0* 1 1, , ,

1 1 2 2 1 1 2 2

min
2

. .  , ,

FZ Z J J
J J E D Z E

s t X D Z D Z E Z J Z J

γ
λ λ+ + + −

= + + = =            

(3) 

The unconstrained augmented Lagrangian   is given by  

( )

2T
1 1 2 2 2 2 01 1*

1 1 1 2 2 2 1 1 3 2 2

2 2 2
1 1 2 2 1 1 2 2

2
, , ,

2

F

F F F

J J E D Z E

Y X D Z D Z E Y Z J Y Z J

X D Z D Z E Z J Z J

γ
λ λ

µ

= + + + −

+ − − − + − + −

+ − − − + − + −



       

(4) 

where 1 2 3, ,Y Y Y  are the Lagrange multipliers. We then iteratively update the 
solutions for 1 1 2, ,J Z J  and 2Z . 

1) Update 1J :  

( ) [ ]
1

21 T
1 1 1 1 2 1*arg min

2J F
J J J Z Y US V

µ

µ
µ−= + − + = Σ

         
(5) 

where ( )1
1 2 .U V svd Z Yµ−Σ = +  

2) Update 1Z :  

( ) ( )T T
1 1 2 1 1 1 2 2 1 1

1

D Y Y D X D Z D Z E Z J
Z

µ µ∂
= − + − − − − + −

∂


      
(6) 

setting 
1

0
Z
∂

=
∂
 , we have  

( ) ( )( )1T T 1 1
1 1 1 1 2 2 1 2 1Z D D I D X D Z E Y Y Jµ µ

− − −= + − − + − +
       

(7) 

3) Update 2J :  

( )
2

21
2 1 2 1 1 31arg min

2J F
J J J Z Yµ

λ µ−= + − +
             

(8) 

that can be solve by the soft-threshold operator  

( )1
2 2 31

J S Z Yλ
µ

µ−= +

                      
(9) 
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since the spectrogram is non-negative  

( )1

1
2 2 3max ,0J S Z Yλ

µ

µ−
  = + 
                    

(10) 

where 0 is an all zero matrix of the size as 2J . 
4) Update 2Z :  

( ) ( ) ( )T T T
2 2 2 0 2 1 3 2 1 1 2 2 2 2

2

D D Z E D Y Y D X D Z D Z E Z J
Z

γ µ µ∂
= − − + − − − − + −

∂
 (11) 

setting 
2

0
Z
∂

=
∂
 , we have  

( )( ) ( )( )1T T T T
2 2 2 2 0 2 1 3 2 1 1 2

1
T T
2 2 2 1 1 0 1 3 2

1 11

Z D D I D E D Y Y D X D Z E J

D D I D X D Z E E Y Y J

γ µ µ γ µ µ

γ γ
µ µ µ µ

−

−

= + + + − + − − +

      
= + + − − + + − +      

      

(12) 

5) Update E:  

( ) 21
2 1 1 2 2 11arg min

2E F
E E E X D Z D Z Yµ

λ µ−= + − − − +
       

(13) 

Similar to 2J ,  

( )2

1
1 1 2 2 1max ,0E S X D Z D Z Yλ

µ

µ−
  = − − + 
               

(14) 

Finally, we update the Lagrange multipliers as in [11]. 

3. Experiment 

3.1. Dataset 

Our experiment was conducted on the iKala dataset [9]. The iKala dataset con-
tains 252 30-second clips of Chinese popular songs in CD quality. In the follow-
ing experiments, we randomly select 44 songs for training (i.e., learning the dic-
tionaries D1 and D2), leaving 208 songs for testing the performance of separation. 
To reduce the computational cost and the memory footprint of the proposed al-
gorithm, we down sample all the audio recordings from 44,100 to 22,050 Hz. 
Then, computed its STFT by sliding a Hamming window of 1411 samples with a 
75% overlap to obtain the spectrogram. 

3.2. Dictionary and E0 

Our implementation of Online Dictionary Learning for Sparse Coding (ODL) 
[12] is based on the SPAMS toolbox. Given N signals ( i mx ∈ ), ODL learns a 
dictionary D by solving the following joint optimization problem,  

2

2 10, 1

T

1 1min
2

. .  1, 0

N

i i iD i

j j i

x D
N

s t d d

α
α λ α

α

≥ =

 − + 
 
≤ ≥

∑

                

(15) 
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where 
2⋅  denotes the Euclidean and λ is a regularization parameter. The input 

frames are extracted from the training set after short-time Fourier transform 
(STFT). Following [8], we define the dictionary size to be 100 atoms. 

To get the reconstructed voice spectrogram from the annotation (E0), we first 
transform the human-labeled vocal pitch contours into a time-frequency binary 
mask. The authors in [13] have proposed a harmonic mask similar to that of [14], 
which only passes integral multiples of the vocal fundamental frequencies [15] 
[16],  

( ) ( )01, if 2,
,

0, otherwise.

f nF t w n N
M f t

+ − < ∃ ∈= 
             

(16) 

Here ( )0F t  is the vocal fundamental frequency at time t, n is the order of the 
harmonic, and w is the width of the mask. Then we simply define the vocal an-
notations as 0E X M=  , where 


 denotes the Hadamard product. 

3.3. Evaluation 

Separation performance is measured by BSS EVAL toolbox version 3.01. We use 
source-to-interference ratio (SIR), source-to-artifacts ratio (SAR) and 
source-to-distortion ratio (SDR) provided in the commonly used BSS EVAL 
toolbox version 3.0. Denotes the singing voice v̂ , the original clean singing 
voice v, the source-to-distortion ratio (SDR) [17] is computed as follows,  

( )
2

10 22 2

ˆ,
ˆSDR , 10log .

ˆ ˆ,

v v
v v

v v v v

 
 =
 −               

(17) 

Normalized SDR (NSDR) is the improvement of SDR from the original mix-
ture x to the separated singing voice v̂  [18] [19], and is commonly used to 
measure the separation performance for each mixture,  

( ) ( ) ( )ˆ ˆNSDR , , SDR , SDR , .v v x v v x v= −              (18) 

For overall performance evaluation, the global NSDR (GNSDR) is calculated 
as,  

( )
1

1

ˆNSDR , ,
GNSDR ,

N

i i i i
i

N

i
i

w v v x

w

=

=

=
∑

∑
                

(19) 

where N is the total number of the songs and wi is the length of the i-th song. 
Higher values of SIR, SAR, SDR, GSIR, GSAR, GSDR and GNSDR represent 
better quality of the separation. 

3.4. Parameter Selection 

During parameter selection, we use the indicator of global normalized 
source-to-distortion ratio (GNSDR) as the evaluation index. The higher the val-

 

 

1http://bass-db.gforge.inria.fr/. 
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ue is, the better the separation quality is. In our algorithms, we set 
( )1 2 1 max ,m nλ λ= =  for each m nX R ×∈  similar to [9], Here we only adjust 

γ.  
Figure 1 presents the GNSDR for the separated singing voice and background 

music, using LSPDi. In the vocal part, we can see that, the GNSDR monotoni-
cally increases with γ first and then gradually decreases. When 5γ = , the LSRi 
achieves the overall highest GNSDR. In the accompaniment part, the values of 
GNSDR increase first, steady after 5γ = . Therefore, we set the parameter 

5γ = . 

3.5. Comparison Results 

We compare three different Low-rank, Sparse algorithms on the iKala dataset,  
• RPCA unsupervised method proposed by Huang et al. [3], use default para-

meter values 
( )

1
max ,m n

λ = .  

• LSPD Supervised method proposed by Yu et al. [4], use default parameter 

values 
( )1 2

1
max ,m n

λ λ= = .  

• LSRi Proposed LSRi method with Low-Rank representation and the recon-
structed voice spectrogram from the annotation,  

( )1 2
1

max ,m n
λ λ= =  and 5γ = .  

 

 
Figure 1. Separation performance measured by GNSDR for the singing voice (left) and background music (right), using our pro-
posed method LSPDi. 
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Table 1. Separation quality for the singing voice and music for the iKala dataset of RPCA, 
LSPD and LSRi.  

Index 
Method 

Vocal Music 

 GNSDR GSIR GSAR GNSDR GSIR GSAR 

RPCA 2.41 8.14 12.53 4.48 3.23 7.00 

LSPD 1.45 11.47 7.19 4.95 2.47 11.73 

LSRi 7.48 19.91 12.16 11.72 16.70 8.88 

 
As shown in Table 1, whether the singing part or the accompaniment, our 

method has a higher value of global normalized source-to-distortion ratio 
(GNSDR), which suggests that LSRi algorithm performs well in the overall sepa-
ration performance, and introduction of prior knowledge improve the separa-
tion performance. In the vocal part, our algorithm achieves higher GSIR than 
RPCA and LSPD, which shows that LSRi has better ability to remove the in-
strumental sounds than RPCA and LSPD. In the background music part, our 
algorithm achieves higher GSIR, which suggests that LSRi has better ability to 
remove the singing, a better performs in limiting artifacts during the separation 
process. But GSAR values did not improve significantly, this indicates that we 
need to improve on eliminating the interference of the algorithm. 

4. Conclusion 

In this paper, we have presented a time-frequency based source separation algo-
rithm for music signals. LSRi considers both the vocal and instrumental spec-
trograms as sparse matrix and low-rank matrix, respectively. And the compo-
nents that are not identified parts are specified as a residual term. Note that the 
dictionaries for the singing voice and background music are pre-learned from 
isolated singing voice and background music training data, respectively. Fur-
thermore, LSRi incorporates vocal annotations information further, through 
which prior knowledge of the voice and background music is introduced to the 
source separation processing. Our approach has successfully exploited relevant 
useful information. Evaluations on the iKala dataset show the proposed methods 
better performance for both the separated singing voice and music accompani-
ment. In future studies, we can consider applying LSRi to the separation of com-
plete songs. 
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