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Abstract 

In this paper, we first reformulate the max-min dispersion problem as a 
saddle-point problem. Specifically, we introduce an auxiliary problem whose 
optimum value gives an upper bound on that of the original problem. Then 
we propose the saddle-point problem to be solved by an adaptive custom 
proximal point algorithm. Numerical results show that the proposed algo-
rithm is efficient.  
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1. Introduction 

Consider the following weighted max-min dispersion problem:  

( ){ }2

1, ,
max : min ,i

ii mx
f x x x

χ
ω

=∈
= −

                   
(1) 

where ( ){ }T2 2
1| , , ,1n

ny y yχ = ∈ ∈  ,   is a convex cone, 1, , m nx x ∈    

are m given point, 0iω >  for 1, ,i m= 
 and ⋅  denotes the Euclidean 

norm. Let ( )Pχν  denote the optimal value of the problem (1). The problem 
aims to find a point x in a closed set χ that is furthest from a given set of points 

1, , mx x  in n  in a weighted max-min sense. It has wide applications in spa-
tial management, facility location, and pattern recognition (see [1] [2] [3] [4] 
and references therein). In the equal weight case, i.e., 1 mω ω= = , (1) has the 
geometric interpretation of finding the largest Euclidean sphere with center in 

boxP  and enclosing no given point.  
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Without loss of generality, we assume that ( ) 0Pχν > . The weighted 
max-min dispersion problem is known to be NP-hard in general, even in the 
case of equal weights and [ ]1,1 nχ = −  [5] or { }1x xχ = ≤  [6]. We denote the 
two special cases by boxP  and ballP , which correspond to setting  

{ }1
1| , 1, ,n

j ny y y j n+
+= ∈ ≤ =   and { }1

1 1|n
n ny y y y+

+= ∈ + + ≤  re-
spectively. 

In the low-dimensional cases of 3n ≤  and χ being a polyhedral set, this 
problem is solvable in polynomial time [4] [7]. For 4n > , heuristic approaches 
have been proposed [1] [4]. 

In paper [5], they use an optimal solution of convex relaxations from semide-
finite programming (SDP) and second order cone programming (SOCP) to con-
struct an approximate solution of (1), and prove an approximation bound  

of 
( )( )*1 ln

2

O m γ−
, where *γ  depends on χ. When { }1,1 nχ = −  or 

[ ]1,1 nχ = − , * 1O
n

γ  =  
 

. This is the first nontrivial approximation bound for a 

convex relaxation of (1). Wang and Xia [6] then focus on the study of ballP  and 

show the approximation bound of their algorithm is 
( )( )1 ln

2

O m n−
 based 

on a linear programming relaxation. 
In this paper, we focus on the equal weight max-min dispersion problem, 

which is called by “max-min dispersion problem” for simplicity. Firstly, we 
model the max-min dispersion problem as a saddle point problem, and then we 
adopt an adaptive custom proximal point algorithm to obtain a ε-approximation 
scheme1. 

The remainder of the paper is organized as follows. In Section 2, we reformu-
late max-min dispersion problem as a saddle point problem. In Section 3, we 
propose a new adaptive custom proximal point algorithm to approximately solve 
the saddle point problem and establish the convergence analysis. Section 4 
presents some numerical comparisons between our proximal point algorithm 
and SDP-based algorithm. Conclusions are made in Section 5. 

2. Saddle Point Model 

Without loss of generality, we drop the weight parameters ωi from the objective 
function, since all the ωis are equal. In the following of this paper, we consider 
the problem:  

( ){ }2

1, ,
max : min .i

i mx
f x x x

χ =∈
= −

                    
(2) 

Note that, it has been proved that this problem is NP-hard in general [5] [6]. 
Denote m∆  by the unit simplex in m , that is, { }T| 0, 1m

m x x e x∆ = ∈ ≥ =  
with e being the all one vector, then (2) is equivalent to the following saddle 
point problem:  

 

 

1We call ( )g x  is the ε-approximation of ( )*g x  if ( ) ( )*g x g x ε≥ − . 
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i
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yγ
=

= =∑ . ( ),x yφ  is convex for x and concave for y separately, although 

the saddle point model is neither convex nor concave.  
Define ( ) ( )min ,

my
g x x yφ

∈∆
= , and let * *,x y  be the optimal saddle point of ob-

jective (3). Note that *x  is also necessarily a minimizer of ( )g x  and  

( ) 2*

1
max min

m

m
i

iyx i
g x y x x

χ ∈∆∈ =

= −∑ . Now it suffices for us to find a point x such that 

( ) ( )*g x g x ε≥ − , because such an x is necessarily a ε-approximate solution to 

(3). 
However, ( ),x yφ  is not strongly concave with respect to y. Furthermore, 

define the regularized saddle point problem  

( ){ }2T T Tmax min , : 2 2 ,
myx

x y y A x y b x yλχ
φ γ λ

∈∆∈
= − − + −

         
(4) 

So ( ),x yλφ  is λ-strongly concave on y and γ-strongly convex on x. 
Denote the optimal solution of (4) by ( ),x y  . The relation between the op-

timal value of (3) and that of (4) can be characterized in the following lemma. 

Lemma 1. ( ) ( )* 2g x g x ε− ≤  if 
2
ελ ≤ . 

Proof. Denoting ( )arg min ,
my
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∈∆

= 
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Since when 1 21, 0my y y= = = = , max 1y = , and we then have 

( ) ( )*

2
g x g x y ε

λ− ≤ ≤ .  

3. Adaptive Custom Proximal Point Algorithm 

In this section, we adopt an adaptive custom proximal point (ACPP) algorithm 
to solve (4), which is quadratic and then can be approximately solved in a short 
time. From the optimal conditions of the problem and the convexity of related 
functions, the (4) can be solved by the followed by the variational inequality: for 
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then the variational inequality can be reduction to: find the solution u ∈Ω , sa-
tisfy:  

( ) ( )T
0,y y u u F u− + − ≥  

                  
(5) 

It’s easy to verify that F is monotonous, so (5) is monotonous, and then the 
solution set is not empty. 

We denote  
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(6) 

We give the details of the (ACPP) method as in Algorithm 1. 
 

Algorithm 1. A1: ACPP algorithm for the unweighted max-min dispersion model. 

Step 0: Matrix n mA ×∈ , vector mb∈ , parameters , 0λ γ > , [ ]1,1θ ∈ − , 0t > , 0s > , 

( ) ( )2 T
max

1 1
4

ts A Aθ λ> + .  

Step 1 Solve the variational inequality  
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Step 4 if 2

2

kAx b
b

ε
−

≤  end; else for 1k k= + , do Step 2 
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In mathematics, the arguments of the minimum (abbreviated arg min or arg-
min) are the points of the domain of some function at which the function values 
are minimized.  

Convergence Analysis 

We present a convergence theorem for A1 in this section. In order to proof our 
theorem, we now give some lemmas. The following lemmas 2-4 are standard re-
sults in [8] [9] [10]. 

Lemma 2. For H and M in (6), assume 0, 0s t> > , then the follow inequa-
tion is establish:  

( ) ( )2 T
max

1 1 .
4

ts A Aθ λ> +
                   

(13) 

where H and ( )T1
2

M M+  is positive definite matrix. 

Lemma 3. ku  is the solution of (7), and M is defined in (6), then for u∀  , we 
have  

( ) ( ) ( ) ( )T Tk k k k k ku u M u u u u M u u− − ≥ − − 

   

Lemma 4. For M  and H in (6), there exist a constant 0 0c > , can make 
{ }ku  in (8) satisfy:  

( )
2 2 21

02k k k k
kH H

u u u u c u uγ γ α+ − ≤ − − − −  

  

Now we can give the theorem of the ACPP algorithm. 
Theorem 1. The ACPP algorithm is a shrinkage algorithm of the saddle point 

problem (4), and the sequence ( ){ },k k ku x y=  generated by the algorithm 
convergence to a solution of (4).  

Proof. For n nM R ×∈ , there exist a constant 0c , we have  
2T

0 , nd Md c d d R≥ ∀ ∈ , when the inequation is hold, the kα
  has a lower 

bound:  
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0 0
2 T .

k k

k
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c u u c
M MM u u

α
−

= ≥
−
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





 

On the basis of lemma 4, we have  

( )
22 2 21 0

T
2k k k k

H H

cu u u u u u
M M

γ γ+ − ≤ − − − − 





 

when 1γ = , ACPP algorithm is a H-norm shrinkage algorithm of the saddle 
point problem (4).  

4. Numerical Results 

In this section, we do some simple numerical comparisons. All the Numerical 
texts are implemented in Matlab R2014a and run on a laptop with 2.30 GHz 
processor and 4 GB RAM. We are now ready to apply Algorithm 1 to our model 
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(4), which is shown in detail in Algorithm 2.  
We present the numerical comparison between our ACPP algorithm and 

SDP-based algorithm proposed in [6] for solving ballP  ( { }1x xχ = ≤ ). We 
note that when the weighted 1iω =  in [6], the two algorithm can comparable. 
We do numerical experiments on 24 random instances of dimension 5n = , 
where the number of input point m varies from 6 to 30. All the input points 

( )1, ,ix i m=   with 6, ,30m = 
 orderly form an 450n×  matrix. We ran-

domly generate this matrix using the following Matlab scripts:  

Rand (‘state’, 0); X = 2 * rand (n, 450)-1; 

where the rand() is a random function that produces a random number between 
0 and 1. We set 310 , 2ε λ ε−= = , and report the numerical results in Table 1.  

 
Algorithm 2. A2: ACPP algorithm for max-min dispersion problem. 

Input: m point 1, , mx x  and error constant 0ε >   

Output: ( )Tx  is an ( )1 O ε−  approximation to model (4) 

1: ( ) ( )T T1 , , mA x x ←   . 

2: , 1
2
ελ γ= = , and 52

2

10 , 0.25, 90,
kAx b

s
b

θ−
+

< = − =

 

( ) ( ) ( )
2

T
max

1
, 0, 4t A A

s
θ

λ µ
µ
+

= ∈  

3: ( ) ( ) ( )T T, 1 , , , , , ,x y A A n t sλ γ θ←  

4: return ( )Tx  

 
Table 1. Numerical results for n = 5, m = 6 to 30. 

m cvx_opt 
The SDP-based algorithm 

2*our algorithm 
vmax vmin vave 

6 2.74 2.06 1.25 1.75 2.01 

7 2.50 1.77 1.06 1.33 2.19 

8 1.80 1.49 0.74 1.07 1.68 

9 2.45 1.50 0.72 1.06 2.35 

10 2.31 1.61 0.66 1.18 2.12 

11 2.22 1.85 0.76 1.27 1.98 

12 2.21 1.58 0.76 1.07 1.92 

13 1.74 1.25 0.64 0.91 1.72 

14 1.81 1.43 0.56 1.02 1.58 

15 2.19 1.41 0.72 1.00 1.90 

16 1.89 1.15 0.62 0.93 1.88 

17 2.13 1.16 0.60 1.05 1.93 

18 1.93 1.24 0.50 0.88 1.87 

19 1.93 1.22 0.61 0.97 1.91 

20 2.51 1.46 0.72 1.16 1.98 

21 2.07 1.37 0.65 0.97 2.01 
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Continued 

22 2.20 1.08 0.55 0.79 1.85 

23 2.13 0.99 0.55 0.81 1.95 

24 1.85 0.98 0.50 0.55 1.80 

25 1.92 1.28 0.70 0.98 1.91 

26 1.82 0.86 0.49 0.68 1.45 

27 1.88 1.05 0.54 0.73 1.76 

28 1.85 1.45 0.56 0.87 1.45 

29 2.39 1.25 0.44 1.02 2.30 

30 1.82 1.14 0.39 0.84 1.77 

 
The columns cvx_opt present optimal objection function values of the 20 in-
stance of ballP  [6]. The next two columns present the statistical results over the 
10 runs of the algorithm proposed in [6] and our ACPP algorithm, respectively. 
The subcolumns max min,v v  and avev  give the best, the worst and the average 
objective function values found among 10 tests, respectively. The results show 
that compared with the SDP-based algorithm our algorithm is competitive in 
most cases.  

From the table, we can see that the solution of our algorithm is very close to 
the exact solution of the second column, which is better than the SDP algorithm. 

5. Conclusion 

In this paper, we reformulate the max-min dispersion problem as a saddle point 
problem and then adopt an adaptive custom proximal point algorithm to obtain 
an approximation scheme. It can be proved that the proposed algorithm pro-
duces a ε-approximation solution to the max-min dispersion problem with equal 
weight. Numerical results show that the proposed algorithm is efficient. 
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