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Abstract 
This study investigates the effectiveness of ambient charges under non-point 
source (NPS) pollutions in an imperfect competition framework. To this end, 
following Ganguli and Raju [1], it constructs a one-stage game and a 
two-stage game in which Bertrand duopolistic firms choose their best prices 
and abatement technology, respectively. It is demonstrated in both games that 
an increase in the ambient charge can lead to a decrease in pollution. This 
finding indicates that the ambient charge can efficiently control pollution in a 
Bertrand duopoly. 
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1. Introduction 

It is now well-known that most of today’s pollutions such as air pollution, river 
pollution and lake pollution have multiple sources although any pollution origi-
nates from a single point source. It is, however, not known how to control these 
NPS (non-point source) pollutions. Segarson [2] suggests an ambient charge 
control: the government adopts an environmental policy to establish a cut-off 
level of the whole pollution and make the following rule, regardless of each 
firm’s specific emission level, if the actual level of the total level exceeds the 
cut-off level, then all firms levy the same penalty while if the actual level falls 
short of the cut-off level, the all firms are awarded the same subsidy. The main 
purpose of this study is to demonstrate that the ambient charges can control the 
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total amount of NPS pollutions under ála Bertrand imperfect competition. Based 
on the analysis of Raju and Ganguli [3] in a Cournot duopoly setting, Matsu-
moto et al. [4] show a “good-natured” effect of ambient charges in an N-firm 
Cournot framework that an increase in the ambient charge leads to decreases of 
the total level of industry pollutions. On the other hand, Ganguli and Raju [1] 
consider the same subject in a Bertrand duopolistic market and numerically ex-
hibit a “perverse” effect that an increase of ambient charge may lead to an in-
crease in pollution in two distinct settings, one in the one-stage game and the 
other in the two-stage game. Ishikawa et al. [5] consider an ambient charge effect 
in an N-firm Bertrand framework. This study shows the good-natured effect of 
ambient charges in Bertrand duopoly, analytically in one-stage game and nu-
merically in two-stage game. 

The rest of the paper is organized as follows. In section 2, the optimal price 
strategies of Bertrand duopolistic firms are derived in one-stage game in which 
all actions take place simultaneously. In Section 3, the optimal choices of abate-
ment technology at the first stage and prices at the second stage are considered 
in two-stage game in which the actions take place in sequence. Concluding re-
marks and further extension of this study are given in Section 4. 

2. One-Stage Game 

In this section we consider the effect of the ambient charge in one stage game in 
which the regulator has announced the ambient charge and a cut-off ambient 
standard while two firms have fixed their pollution abatement technologies. 
Under this circumstance the firms choose their optimal prices to maximize their 
profits. Each firm produces a differentiated product. Market demand function 
for firm i  for , 1, 2i j =  and i j≠  is 

i i jq a p pγ= − +                       (1) 

where iq  denotes good i  produced by firm i , ip  is the price of iq , jp  is 
the price for the good j and γ is a parameter with 0 1γ< <  measuring the subs-
titutability between two goods.1 We exclude two extreme cases, one with 1γ =  
where the two goods are homogenous and the other with 0γ =  where they are 
independent. The total amount of pollution E generated by the two firms is giv-
en by 

i i j jE q qφ φ= +                          (2) 

where iφ  and jφ  represent pollution abatement technologies of firms i  and 
j. 1iφ =  means the worst technology with 100% pollution while 0iφ =  means 
the best technology with no (0%) pollution. Accordingly, it is assumed that 
0 1iφ≤ ≤ . 

The profit function of firm i  is 

 

 

1Intuitively, ix  and jx  are substitutes in the following sence that > 0jp∆  implies < 0jx∆  and 

> 0jp∆  with > 0γ  implies > 0.ix∆  Hence to a change in price ,j  the quantity response of 
good i  runs in an opposite direction of the response of good .j  
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( )i i i i i i j jp q cq t q q Eπ φ φ= − − + −                      (3) 

where 0E >  denotes ambient standard specified by the regulator, icq  is the 
production cost where 0c >  is the common marginal cost of production and t 
is an ambient charge or tax with 0 1t≤ ≤ . According to the spirit of the ambient 
charge, although the two firms’ contributions to pollutions might be different, 
each firm will pay the identical fine ( )t E E−  if 0E E− >  and receive the 
identical subsidy ( )t E E−  if 0E E− < . Substituting (1) into (3) and differen-
tiating the resultant profit function with respect to ip  give the first order con-
dition for an interior solution maximizing profit of firm i , 

( )( ) ( )1 1 0i
i j i i j

i

d
a p p p c t

dp
π

γ φ φ γ = − + + − − − − + =   

or 

( )2 .i j i jp p a c tγ φ γφ− = + + −                     (4) 

Maximizing jπ  with respect to jp  presents a similar first-oder condition 
for firm j. Hence solving the following simultaneous system, which is obtained 
from first order conditions for firms i  and j, 

( )
( )

2
2

i ji

j j i

a c tp
p a c t

φ γφγ
γ φ γφ

 + + −−     =    − + + −    
 

yields the Bertrand equilibrium prices, 

( )
( )2

21
24

i ji

j j i

a c tp
p a c t

φ γφγ
γγ φ γφ

 + + −    =    − + + −    
 

that are, after arranging the terms, 

( ) ( )( ) ( ){ }
( ) ( )( ) ( ){ }

2
2

2
2

1, 2 2 ,
4

1, 2 2 .
4

B
i i j

B
j j i

p t a c t

p t a c t

γ γ γ φ γφ
γ

γ γ γ φ γφ
γ

 = + + + − − −

 = + + + − − −

        (5) 

Concerning the positivity of the Bertrand price, we have the following results. 
Theorem 1 If i jφ φ≥  or if i jφ φ<  and 1 3a c+ ≥ , then 0B

ip > . 
Proof. If i jφ φ≥  holds, then 

( ) ( )
( )( )

2 22 2

1 2 0.
i j i

i

γ φ γφ γ γ φ

γ γ φ

− − ≥ − −

= − + >
 

Then the first equation of (5) implies 0B
ip > . Now suppose that i jφ φ< . If 

the right hand side of the first equation of (5) is equal to zero, then solving it for 

jφ  gives the form of 

( )( )2 22 .j i
a c

t
γγ

φ φ
γ γ

+ +−
= +  

Assumption 1t ≤  implies 
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( )( ) ( )( )2 2
.

a c a c
t

γ γ
γ γ

+ + + +
≥  

Since ( )2 1 3γ γ+ <  for 1γ < , the term on the right hand side is greater than 
unity if 1 3a c+ ≥  under which, for all 1jφ ≤ , 

( )( )2 22 .j i
a c

t
γγ

φ φ
γ γ

+ +−
< +  

The inequality implies that 0B
ip > .                               Q.E.D. 

Differentiating the Bertrand price of firm i  with respect to t reveals that the 
sign of the derivative is the same as the sign of the terms in the square brackets 
in (5), 

( )22 .
B
i

i j
dp

sign sign
dt

γ φ γφ
   = − −    

 

Hence the effect caused by a change in the ambient charge on the Bertrand pric-
es can summarized as follows. 

Theorem 2 A firm with a larger or equal abatement technology positively re-
sponds to a change in the ambient charge whereas the response of a firm with a 
smaller abatement technology is ambiguous, 

If , then 0 and 0,

If , then 0 and 0,

If , then 0 and 0.

BB
ji

i j

BB
ji

i j

BB
ji

i j

dpdp
dt dt

dpdp
dt dt

dpdp
dt dt

φ φ

φ φ

φ φ

> >

= > >

< >





 

Proof. If i jφ φ≥ , then for firm i , the bracketed terms in (5) are 

( ) ( )( )22 2 1 0 implying that 0
B
i

i j i
dp
dt

γ φ γφ γ γ φ− − > + − > >  

and for firm j, from the bracketed terms in the second equation of (5) to be equal 
to zero, we can define the ratio of the abatement technologies 

2 .
2

j

i

φ γ
φ γ

∗
 

= 
− 

 

This ratio is less than unity implying 

0 according to when 1.
B
j j j j

i i i

dp
dt

φ φ φ
φ φ φ

∗
 

≤ 
 

   

The same procedure can be applied for the case of i jφ φ< .             Q.E.D 
Substituting the Bertrand prices into the demand functions in (1) presents the 

Bertrand outputs of firm i  and j, 

,

.

B B B
i i j

B B B
j j i

q a p p

q a p p

γ

γ

= − +

= − +
                       (6) 
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To check whether B
iq  is positive, we subtract the second equation of (6) from 

the first equation to obtain 

( )( )1B B B B
i j j iq q p pγ− = + −                     (7) 

where, in the same way, from (5) 

( )1 .
2

B B
i j i jp p tγ

φ φ
γ

+
− = −

+
                     (8) 

Concerning the positivity of the Bertrand output, we have the following: 
Theorem 3 If 1a c≥ + , then 0B

iq >  and 0B
jq >  for 0 1kφ≤ ≤  for 

1,2k = . 
Proof. If i jφ φ≥  holds, then (8) leads to B B

i jp p≥  with which (7) implies
B B
i jq q≤ . On the other hand, the first equation of (6) with the forms of B

ip  and 
B
jp  given in (5) is reduced to 

( )
3 2

3 2 1 0
24

B
i

a a a aq γ γ γ
γ

+ + +
=

− −
                      (9) 

where 

3 0,ja tφ= >  

2 0,a c= − <  

( )1 3 0,ja a c tφ= − + + <  

( )0 2 0ia a c tφ= − − − ≤  

The direction of the last inequality is due to 1a c≥ +  and 1itφ ≤ . Let the nu-
merator of (9) be ( )f γ . Then due to Descartes’ rule of sign, ( ) 0f γ =  has 
only one positive root, 0 0γ > . Substituting 1γ =  gives 

( ) ( ) ( )3 2 1 01 2 0.j if a a a a a t a tφ φ= + + + = − + − − <  

The last inequality means that ( ) ( )00f fγ γ< =  for 1γ < , with which then 
(9) leads to 0B

iq > , implying that 0B
jq >  as well. If j iφ φ> , then interchang-

ing the two firms generates the same result.                         Q.E.D. 
Now consider the effect of a change in the ambient charge on each output lev-

el. 

( )

( )

2
2

2
2

1 2 3 ,
4

1 2 3 .
4

BB B
ji i

i j

B B B
j j i

j i

dpdq dp
dt dt dt

dq dp dp
dt dt dt

γ φ γ γ φ
γ

γ φ γ γ φ
γ

 = − + = − + − −

 = − + = − + − −

        (10) 

Concerning the ambient charge effect on output, we have the following re-
sults. 

Theorem 4 A firm with a larger or equal abatement technology negatively re-
sponds to a change in the ambient charge whereas the response of a firm with a 
smaller abatement technology is ambiguous: 

https://doi.org/10.4236/tel.2018.85073


A. Matsumoto et al. 
 

 

DOI: 10.4236/tel.2018.85073 1063 Theoretical Economics Letters 
 

If , then 0 and 0,

If , then 0 and 0,

If , then 0 and 0.

BB
ji

i j

BB
ji

i j

BB
ji

i j

dqdq
dt dt

dqdq
dt dt

dqdq
dt dt

φ φ

φ φ

φ φ

> <

= < <

< <





 

Proof. If i jφ φ= , then ( )23 2γ γ− <  for 1γ <  immediately implies the re-
sults. If i jφ φ> , then ( )23 0γ γ− >  for 0γ >  indicates that for firm i, 

( ) ( )2 22 3 2 3 0 implying 0
B
i

i j i
dq
dt

φ γ γ φ γ γ φ − + − < − + − < <   

and for firm j, there is a threshold value of the parameter ratio such as 

( )23
1 leading to 0 according to and 1.

2

B
j j j j j

i i i i

dq
dt

γ γ φ φ φ φ
φ φ φ φ

∗ ∗−    
= < <   
   

   

The same procedure can be applied for the case of i jφ φ< .            Q.E.D. 
It should be noticed first that firm i  with a larger iφ  has an inefficient 

technology because it generates larger emission. Theorems 2 and 4 imply that, 
the firm with inefficient technology exhibits natural response to the change in 
the ambient charge, that is, it increases price and decreases output. On the other 
hand the firm with efficient technology responds ambiguously. It should be no-
ticed second that these firm-specific responses are non-observable for the regu-
lator which can see only the total amount in the case of NPS pollution. 

The total level of pollution at the Bertrand equilibrium is obtained by substi-
tuting B

iq  and B
jq  into (2) 

.B B B
i i j jE q qφ φ= +  

Concerning the effect of a change in the ambient charge on the total pollution, 
we have the following result. 

Theorem 5 An increase in the ambient charge decreases the total level of pol-
lution, 

0.
BdE

dt
<  

Proof. Differentiating BE  with respect t gives 

( ){ }2 2 2
2

2 3 .
4

BBB
ji

i j i j i j

dqdqdE
dt dt dt

φ φ φ φ γ γ φ φ
γ

−
= + = + − −

−
 

Notice that ( )23 2γ γ− ≤  and the equality holds when 1γ = . Hence 

( ) ( )22 2 2 2 23 2 0.i j i j i j i j i jφ φ γ γ φφ φ φ φφ φ φ+ − − > + − = − ≥  

Therefore we arrive at the result where the strict inequality is due to the assump-
tion, 1γ < .                                                   Q.E.D. 

Although Theorem 4 implies a possibility of the perverse effect on emission of 
the individual firm with the efficient abetment technology, Theorem 5 implies 
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that the total effect is always negative, implying that the negative effect of the in-
efficient firm dominates the positive effect of the efficient firm. 

3. Two-Stage Game 

In this section the firms and the regulator take actions in two stages. At the first 
stage, each firm determines its optimal abatement technology whereas the regu-
lator announces the ambient charge and the cut-off level of total pollution. Then 
at the second stage, the firms choose their prices to maximize their profits, given 
the ambient charge, the cut-of level and their abatement technologies. 

The decision-making at the second stage have been already considered in the 
one-stage game. Given the Bertrand prices and outputs in (5) and (6), we con-
sider the actions of choosing abatement technology at the first stage. The Ber-
trand profit function of firm i  under Bertrand prices and Bertrand output is 
defined as 

( ) ( )21B B B B B B
i i i i i i i j jp q cq t q q Eπ φ φ φ = − + − − + −          (11) 

for , 1, 2i j =  and i j≠ . Notice that there is a small difference between the de-
finitions of (3) and (11). There is a term ( )21 iφ−  in (11) and no such a term in 
(3). This term reflects the cost associated with selecting the abatement technolo-
gy.2 At the second stage, the abatement technology has been already selected 
somehow and thus it does not affect the determination of the optimal price 
whether this cost is included or not. However this cost function is effective for 
choosing technology at the first stage where the firm i  determines its abate-
ment technology, iφ , so as to maximize its Bertrand profit. Differentiating (11) 
with respect to iφ  gives the first-order condition for the optimal level of iφ , 

, ;given

= 0
B B
i j

BB B B B B
ji i i i i

i i i j i i p p

pp
p p

π π π π
φ φ φ φ

∂∂ ∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂ ∂ ∂
 

where 

( )

( ) ( )
, ;given

2

0 by the first order condition at the second stage,

,

2 1 ,

.
4

B B
i j

B
i

i
B

Bi
i i j

j

B
B Bi

i i j
i p p

B
j

i

p

p c t
p

t a p p

p t

π

π
γ γ γφ φ

π
φ γ

φ

γ
φ γ

∂
=

∂

∂
= − − −

∂

∂
= − − − +

∂

∂
= −

∂ −

 

Arranging the terms in 0B
i iπ φ∂ ∂ =  with taking account of the forms of the 

Bertrand prices in (5) yield the modified FOC at the first stage, 

( ) ( ) ( ) ( )2 22 2 4 2 2 22 2 4 9 16 2 4i jt t tdγ φ γ γ γ φ γ − − − − + = − − +  
           (12) 

 

 

2See Raju and Ganguli [3] for this cost. 
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where 

( ) ( )4 2 1d a cγ γ= + − −    

In the same way, arranging the terms in 0B
j jπ φ∂ ∂ =  yields the modified FOC 

for firm j 

( ) ( ) ( ) ( )2 224 2 2 2 29 16 2 2 4 2 4 .i jt t tdγ γ γ φ γ φ γ − − + + − − = − − +  
  (13) 

Solving (12) and (13) simultaneously for iφ  and jφ  presents the optimal ab-
atement technology for both firms, 

( )
( )

( ) ( ) ( )

22

22 2 4 2 2

2 4
, .

2 2 4 9 16
i j

td
t

t t

γ
φ φ φ γ

γ γ γ γ

∗ ∗ ∗
− − +

= = =
 − − − − +  

    (14) 

Although the form of the solution seems to be highly complicated, the following 
result is obtained. 

Proposition 1 If 2 3 a c≥ > , then the optimal abatement technology 
( ), tφ γ∗  is positive for 0 1γ< <  and 0 1t≤ ≤ . 
Proof. It is numerically confirmed that the denominator of (14) is negative for 

0 1γ< <  and 0 1t≤ ≤ . 3 The numerator is rewritten as 

( ) ( ) ( ){ }2 2 2 1a c t fγ γ γ+ − − −                     (15) 

where 

( ) ( ) ( ) ( )22 2 and 3 8 for 0 1.f fγ γ γ γ γ= − + < < < <  

Assumption a c>  implies ( )1 0a cγ− − > . The sign of the terms in the 
braces of (15) is negative for 0t =  (i.e., ( ) 0f γ− < ) and is also negative for 

1t =  if 2 3a < . As the terms satisfies the inequality 

( ) ( ) ( )2 1 2 .a c f a fγ γ γ− − − < −    

and the lower bound of ( )f γ  is 3, then the right hand side is negative for 
0 1γ< <  if 2 3a ≤ . Thus the sign of the left hand side is also negative. Hence 

( ) ( )2 1 0a c t fγ γ− − − <    for 0 1t≤ ≤ . Therefore (14) with the negative de-
nominator and the negative numerator implies ( ), 0tφ γ∗ > .           Q.E.D. 

Notice that the following set is not empty, 

( ){ }, | 0 3 2 and 0 1 ,a c a c a< ≤ < ≤ −  

implying that the conditions imposed on the values of a  and c  given in 
Theorem 3 and Proposition 1 are compatible. Substituting φ∗  into the Bertrand 
prices in (5) gives the optimal Bertrand price 

( ) ( ) ( ) ( )1, 1
2i jp p p t a c t tγ γ φ

γ
∗ ∗ ∗ ∗ = = = + + − −

        (16) 

that is clearly positive for 0 1γ< <  and 0 1t≤ ≤ , which is summarized as fol-
lows. 

 

 

3Numerical calculations of this and any others that follow are done with Mathematica, ver. 11. 
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Proposition 2 If 3 2 a c≥ > , then the optimal Bertrand price ( ),p tγ∗  is 
positive for 0 1γ< <  and 0 1t≤ ≤ . 

The optimal Bertrand output is obtained by substituting ( ),p tγ∗  into the 
demand function, (1), 

( ) ( ) ( ), 1 , .q t a p tγ γ γ∗ ∗= − −                      (17) 

Concerning the optimal output, we can have the following, 
Proposition 3 ( ), 0q tγ∗ <  for 0γ =  and 1t = . 
Proof. Substituting 0γ =  into (14) and (16) present 

( ) ( ) ( )
( )2

410,
2 2 1

t a c
p t a c t

t
∗

 − −
 = + +
 − 

 

that is, in turn, substituted into (17) to obtain 

( ) ( ) ( ) ( )2
2

10, 3 4 2
4 1

q t a c t t a c
t

∗  = − + − − −
 

then 

( ) ( )21, 1 1, 1

4lim 0, lim 0
4 1t t t t

a cq t
t

∗

→ < → <

− +
= <

−
 

where the numerator is positive and the denominator is negative. This completes 
the proof.                                                    Q.E.D. 

Proposition 3 implies that ( ),q tγ∗  is inevitably negative for a small neigh-
borhood of point ( )0,1 . Numerical confirmation of Proposition 3 is given in 
Figure 1 in which the Bertrand output is negative in the shaded region and posi-
tive otherwise.4 The shaded region should be eliminated from further considera-
tions. 
 

 
Figure 1. q* > 0 in the white region and q* < 0 in the shaded region. 

 

 

4 = 3 2a  and = 1 2c  are taken for this and the following examples. The vertical and horisontal 
intersecpts of the black curve are 

0 00.187 and 0.563.tγ    
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Finally, the optimal level of total pollution is 

( ) ( ) ( ), 2 , ,E t t q tγ φ γ γ∗ ∗=                      (18) 

that is apparently negative if ( ), 0q tγ∗ < , that is, in the shaded region in Figure 
1. Its derivative with respect to t is 

2dE q t t q
dt t t tq

φ φ
φ

∗ ∗ ∗ ∗ ∗

∗ ∗

 ∂ ∂
= + ∂ ∂ 

                (19) 

where tφ∗∂ ∂  and q t∗∂ ∂  can be of either sign and thus the sign of the terms 
in the square bracket seems ambiguous. Numerically, as as shown in Figure 2(a) 
and Figure 2(b), each derivative is confirmed to be positive in the correspond-
ing shaded region in which 

0ˆ 0.160γ   and 0̂ 0.53t   in Figure 2(a) 

and 

0 0.594γ   and 0 0.5t =  in Figure 2(b). 

The dotted upward-sloping curve in Figure 2(a) is described by the 0q∗ =  
curve. The shaded region is included in the region with 0q∗ <  so that the de-
rivative of the optimal technology is negative in the feasible region with 0q∗ > . 
Hence the sign of the tax-derivative of the total emission level is definitely nega-
tive in the white region in Figure 2(b) as both derivatives are negative. On the 
other hand, it is sensitive to the relative magnitude between the elasticities of the 
optimal ambient technology and the optimal output with respect to t in the 
shaded region in Figure 2(b). 

Given the parameter values, Figure 3 illustrates the values of dE dt∗  against 
a pair of ( ), tγ  with 0 1γ< <  and 0 1t≤ ≤ . Since it is seen that any point on 
the 3D surface in Figure 3 is negative, it is numerically shown that 0dE dt∗ <  
for 0 1γ< <  and 0 1t≤ ≤ . According to equation (19), the sign of dE dt∗  is 
 

 
(a)                                      (b) 

Figure 2. Divisions of the nonnegative (γ, t) region. 
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Figure 3. Effective ambient charge under a = 3/2 and c = 1/2. 

 
ambiguous in the shaded region of Figure 2(b). However, Figure 3 implies that 
the elasticity of φ∗  in absolute value is larger than that of q∗ , leading to the 
negative sign of dE dt∗ . Therefore we have our main result that an increase in 
ambient charge always decreases the total level of optimal pollution.5 We sum-
marize this result. 

Proposition 4 It is numerically confirmed that a change in the ambient 
charge has the good-natured effect, 

0 for 0 1 and 0 1.dE t
dt

γ
∗

< < < ≤ ≤  

4. Concluding Remark 

In this paper, we reconsider the “perverse” effect caused by a change in ambient 
charges shown by Ganguli and Raju [1]. To this end, following their basic 
framework, we first re-examine the effect in one-stage game in which the Ber-
trand firms determine their prices so as to maximize their profits, given the ab-
atement technology. Our first result analytically demonstrates that an increase of 
ambient charges decreases the total level of NPS pollutions. We then turn atten-
tion to the effect in two-stage game in which the optimal abatement technology 
is selected at the first stage and the optimal prices are determined at the second 
stage. Our second result numerically shows the good-natured effect on the total 
level of pollution. With these results, we conclude that the ambient charge might 
be an efficient method to control NPS pollutions even in a duopoly Bertrand 
market. 

 

 

5We obtain this results with various values of a  and c . However, we are unable to prove it ana-
lytically so this is an numerically-shown result. 
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